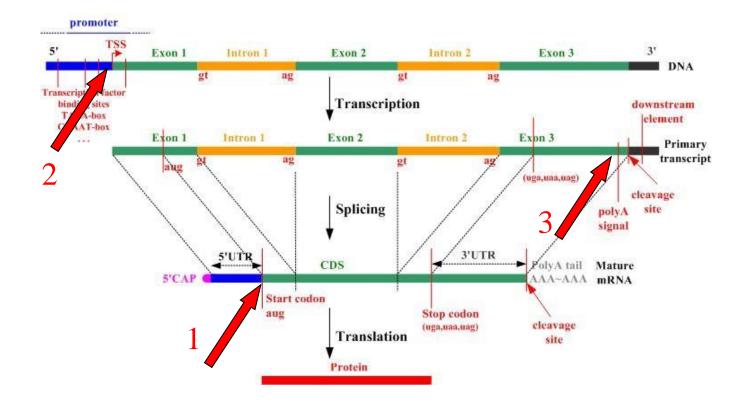
For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*, and Koh & Wong, "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences", *Proc GIW* 2007, pages 73--82

CS2220: Introduction to Computational Biology
Lecture 3: Gene Feature Recognition

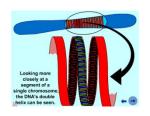
Limsoon Wong

National University of Singapore

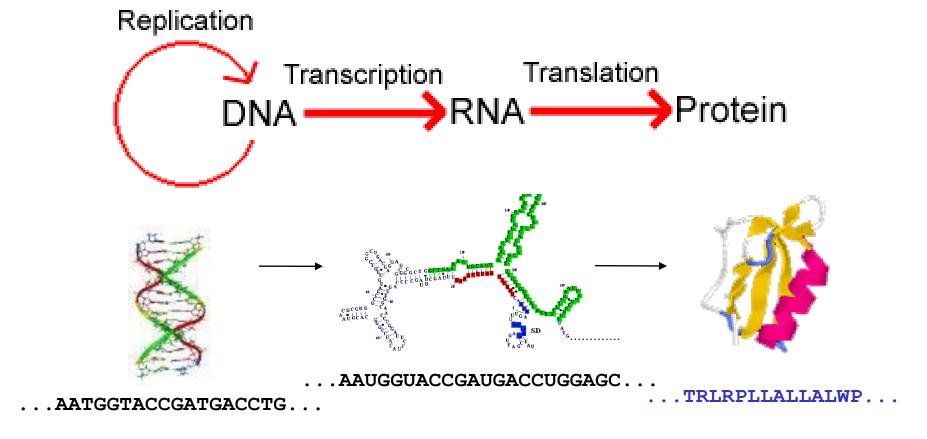
Plan

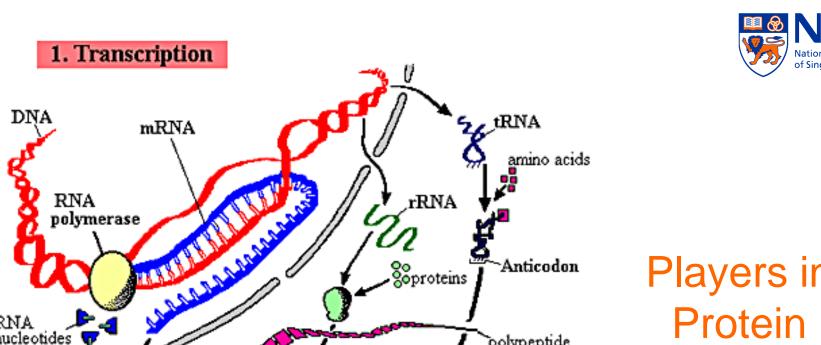


Some Relevant Biology



Central Dogma





–Ribosome

polypeptide

chain

2. Translation

Players in **Protein Synthesis**

Protein synthesis

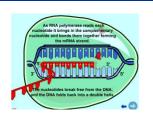
codon

nucleotides 😽

mRNA

RNA

nuclear membrane



- Synthesize mRNA from one strand of DNA
 - An enzyme RNA polymerase temporarily separates doublestranded DNA
 - It begins transcription at transcription start site
 - A → A, C→C, G→G, &
 T→U
 - Once RNA polymerase reaches transcription stop site, transcription stops

- Additional "steps" for Eukaryotes
 - Transcription produces pre-mRNA that contains both introns & exons
 - 5' cap & poly-A tail are added to pre-mRNA
 - RNA splicing removes introns & mRNA is made
 - mRNA are transported out of nucleus



Translation

- Synthesize protein from mRNA
- Each amino acid is encoded by consecutive seq of 3 nucleotides, called a codon
- The decoding table from codon to amino acid is called genetic code

- 4³=64 diff codons
- ⇒ Codons are not 1-to-1 corr to 20 amino acids
- All organisms use the same decoding table (except some mitochrondrial genes)
- Amino acids can be classified into 4 groups. A single-base change in a codon is usu insufficient to cause a codon to code for an amino acid in diff group

National University of Singapore

Genetic Code

- Start codon
 - ATG (code for M)
- Stop codon
 - TAA
 - TAG
 - TGA

		Second Position of Codon					
		T	С	A	G		
F	Т	TTT Phe [F] TTC Phe [F] TTA Leu [L] TTG Leu [L]	TCT Ser [S] TCC Ser [S] TCA Ser [S] TCG Ser [S]	TAT Tyr [Y] TAC Tyr [Y] TAA Ter [end] TAG Ter [end]	TGT Cys [C] TGC Cys [C] TGA Ter [end] TGG Trp [W]	T C A G	T
r s t	С	CTT Leu [L] CTC Leu [L] CTA Leu [L] CTG Leu [L]	CCT Pro [P] CCC Pro [P] CCA Pro [P] CCG Pro [P]	CAT His [H] CAC His [H] CAA Gln [Q] CAG Gln [Q]	CGT Arg [R] CGC Arg [R] CGA Arg [R] CGG Arg [R]	T C A G	i r d
o s i t	A	ATT lle [I] ATC lle [I] ATA lle [I] ATG Met [M]	ACT Thr [T] ACC Thr [T] ACA Thr [T] ACG Thr [T]	AAT Asn [N] AAC Asn [N] AAA Lys [K] AAG Lys [K]	AGT Ser [S] AGC Ser [S] AGA Arg [R] AGG Arg [R]	T C A G	o s i t
o n	G	GTT Val [V] GTC Val [V] GTA Val [V] GTG Val [V]	GCT Ala [A] GCC Ala [A] GCA Ala [A] GCG Ala [A]	GAT Asp [D] GAC Asp [D] GAA Glu [E] GAG Glu [E]	GGT Gly [G] GGC Gly [G] GGA Gly [G] GGG Gly [G]	T C A G	n

National University of Singapore

Example

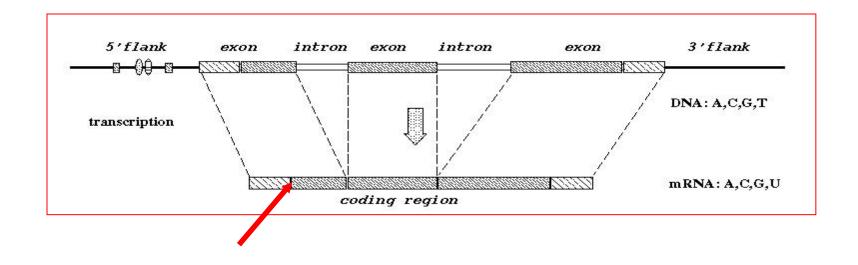
Example of computational translation - notice the indication of (alternative) start-codons:

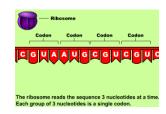
```
VIRTUAL RIBOSOME
Translation table: Standard SGCO
>Seq1
Reading frame: 1
  M V L S A A D K G N V K A A W G K V G G H A A E Y G A E A L
5' ATGGTGCTGTCTGCCGCCGACAAGGGCAATGTCAAGGCCGCCTGGGGCAAGGTTGGCGGCCACGCTGCAGAGTATGGCGCAGAGGCCCTG 90
 >>>...)))................)))
                       Y F P H F D L S H G S A Q V K G H G
5' GAGAGGATGTTCCTGAGCTTCCCCACCACCACCACCACCACTTCCCCCACTTCGACCTGAGCCACGGCTCCGCGCAGGTCAAGGGCCACGGC
  .....>>>...))
                                  G
.....))).....)))......)))
5' AAGCTGCGTGTGGACCCGGTCAACTTCAAGCTTCTGAGCCACTCCCTGCTGGTGACCCTGCCCCACCTCCCCAGTGATTTCACCCCC 360
  ...))).....))
              KFLAN
5' GCGGTCCACGCCTCCCTGGACAAGTTCTTGGCCAACGTGAGCACCGTGCTGACCTCCAAATACCGTTAA 429
  .....)))......***
Annotation key:
>>> : START codon (strict)
))) : START codon (alternative)
*** : STOP
```

Recognition of Translation Initiation Sites

An introduction to the World's simplest TIS recognition system

Translation Initiation Site





A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGACACACTGACTCCCAGCTGTG	80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC <u>ATG</u> GCTTTTGGCTGTCAGGGCAGCTGTA	160
GGAGGCAG <u>ATG</u> AGAAGAGGGAG <u>ATG</u> GCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
iEEEEEEEEEEEEEEEE	160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

What makes the second ATG the TIS?

Approach

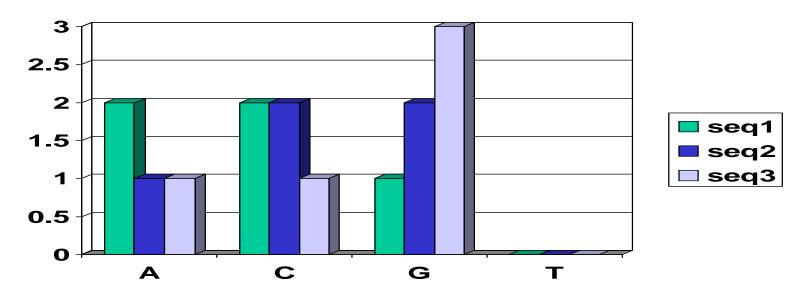
- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts

Signal Generation

- K-grams (ie., k consecutive letters)
 - -K = 1, 2, 3, 4, 5, ...
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame



Signal Generation: An Example

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGC <u>AGCCTGC</u>	AGCTGCCCCAAGCCA	TGGCTGAACACTGACTCC	CAGCTGTG	80
CCCAGGGCTTCAAAGACTTC	CTCAGCTTCGAGCAT	GGCTTTTGGCTGTCAGGG	CAGCTGTA	160
GGAGGCAGATGAGAAGAGGG	GAGATGGCCTTGGAG	GAAGGGAAGGGGCCTGGT	GCCGAGGA	240
COTOTOTO COLO CON CONTO	TOTO TO A COLOR OF A CA	CCTTCCA CCCA A CA A CCA	CTCCCT	

- Window = ±100 bases
- In-frame, downstream

Any-frame, downstream

$$-GCT = 3$$
, $TTT = 2$, $ATG = 2$...

- In-frame, upstream
 - -GCT = 2, TTT = 0, ATG = 0, ...

Exercise: Find the in-frame downstream ATG

Exercise: What are the possible k-grams (k=3) in this sequence?

National University of Singapore

Feature Generation - Summary

Raw Data

206 BBCALCB.1 CAT X71666 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; CCGTCAGAGCGCCGACCGCCGACCGCCAAGCAAAATGGGAAATGAGGCAAGTTATCCT TTGGAAATGTGCTCACACTTTGATGCAGATGAAATTAAAAGGCTAGGAAAGAGATTTAAGAAGCTCGATTTGGACAATTC TGGTTCTTTGAGTGTGAAAGAGTTCATGTCTCTACCTGAGTTACAA

An ATG segment – positive sample

> 206 +1_Index(56)

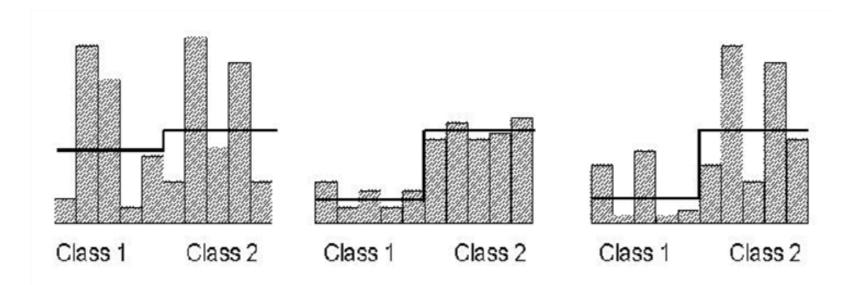
A feature vector --- upstream/downstream inframe 3 grams

Too Many Features

- For each value of k, there are 4^k * 3 * 2 k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 +
 1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms

Signal Selection (Basic Idea)

- Choose a signal w/ low intra-class distance
- Choose a signal w/ high inter-class distance



Signal Selection (e.g., t-statistics

The t-stats of a signal is defined as

$$t = \frac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$

where σ_i^2 is the variance of that signal in class i, μ_i is the mean of that signal in class i, and n_i is the size of class i.

Signal Selection (e.g., MIT-correlation) National University of Singapore

The MIT-correlation value of a signal is defined as

$$MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}$$

where σ_i is the standard deviation of that signal in class i and μ_i is the mean of that signal in class i.

Signal Selection (e.g., χ2)

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^{2}}{E_{ij}},$$

where m is the number of intervals, k the number of classes, A_{ij} the number of samples in the ith interval, jth class, R_i the number of samples in the ith interval, C_j the number of samples in the jth class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

Example

 Suppose you have a sample of 50 men and 50 women and the following weight distribution is observed:

	obs	exp	(obs – exp) ² /exp
НМ	40	60*50/100=30	3.3
HW	20	60*50/100=30	3.3
LM	10	40*50/100=20	5.0
LW	30	40*50/100=20	5.0

$$\chi 2=16.6$$

P = 0.00004,
df = 1
So weight and
sex are not indep

 Is weight a good attribute for distinguishing men from women?

Signal Selection (e.g., CFS)

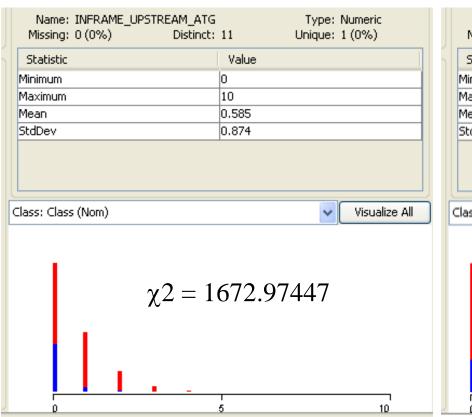
 Instead of scoring individual signals, how about scoring a group of signals as a whole?

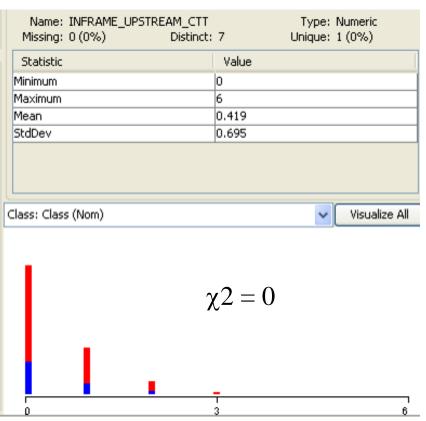
CFS

- Correlation-based Feature Selection
- A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?

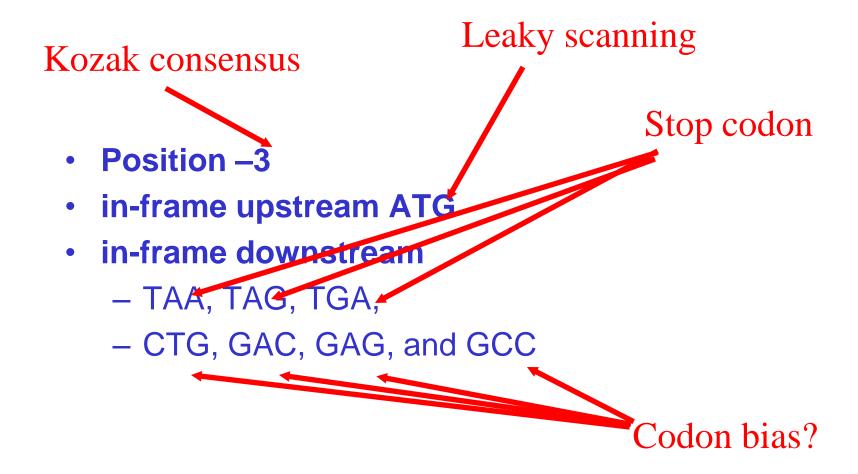
Distributions of Two Example 3-Grand





Which is the better one?

Sample k-grams Selected by CFS NUS for Recognizing TIS



Signal Integration

kNN

 Given a test sample, find the k training samples that are most similar to it. Let the majority class win

SVM

- Given a group of training samples from two classes, determine a separating plane that maximises the margin of error
- Naïve Bayes, ANN, C4.5, ...

Results (3-fold x-validation)

	predicted	predicted
	as positive	as negative
positive	TP	FN
negative	FP	TN

Exercise: What is TP/(TP+FP)?

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Improvement by Voting

 Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
Worst of 4	73.9%	86.1%	66.3%	85.7%

Improvement by Scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That's the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
NB+Scanning	87.3%	96.1%	87.9%	93.9%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%

Performance Comparisons

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

^{*} result not directly comparable

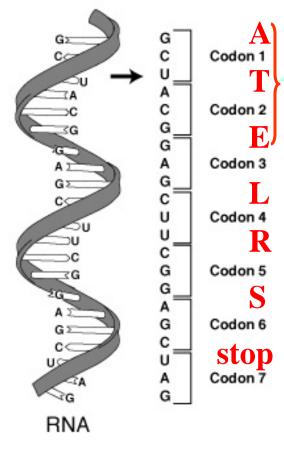
Technique Comparisons

- Pedersen&Nielsen [ISMB'97]
 - Neural network
 - No explicit features
- Zien [Bioinformatics'00]
 - SVM+kernel engineering
 - No explicit features
- Hatzigeorgiou
 [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

Our approach

- Explicit feature generation
- Explicit feature selection
- Use any machine learning method w/o any form of complicated tuning
- Scanning rule is optional

mRNA-protein



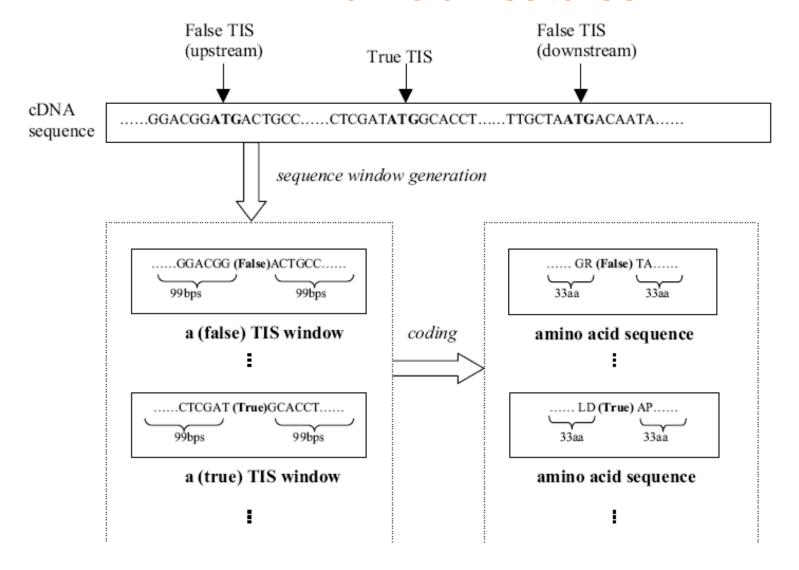
Ribonucleic acid

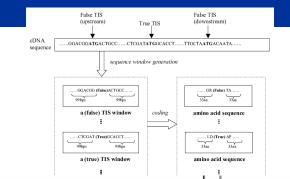
Exercise: List the first 10 amino acid in our example sequence

How about using k-grams from the translation?

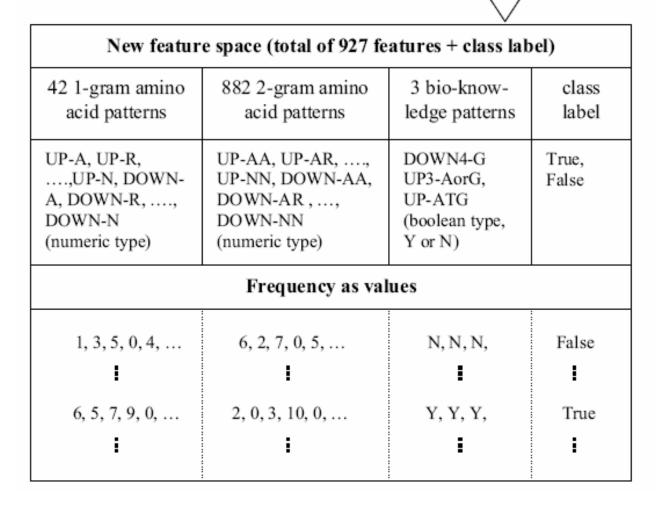
First	U	С	A	G	Last
U	Phe F	Ser S	Tyr Y	Cys 🦰	U
	Phe	Ser	Tyr	Суѕ	С
	Leu T.	Ser	Stop (Ochre)	Stop (Umber)	A
	Leu	Ser	Stop (Amber)	Trp W	G
С	Leu	Pro P	His H	Arg R	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gin O	Arg	A
	Leu	Pro	Gin	Arg	G
A	∏e ⊤	Thr 🕌	Asn N	Ser	U
	Ile 📩	Thr	Asn	Ser	С
	Пе	Thr	Lys K	Arg	A
	Met M	Thr	Lys	Arg	G
G	Val V	Ala 🔼	Asp D	Gly G	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu E	Gly	A
	Val	Ala	Glu	Gly	G

Amino-Acid Features

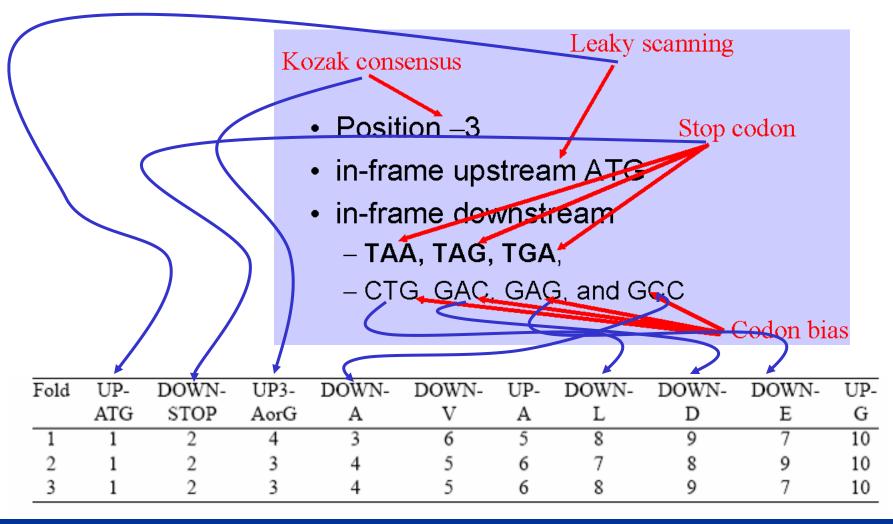




Amino-Acid Features



Amino Acid K-grams Discovered (by entropy)



Independent Validation Sets

A. Hatzigeorgiou:

- 480 fully sequenced human cDNAs
- 188 left after eliminating sequences similar to training set (Pedersen & Nielsen's)
- 3.42% of ATGs are TIS

Our own:

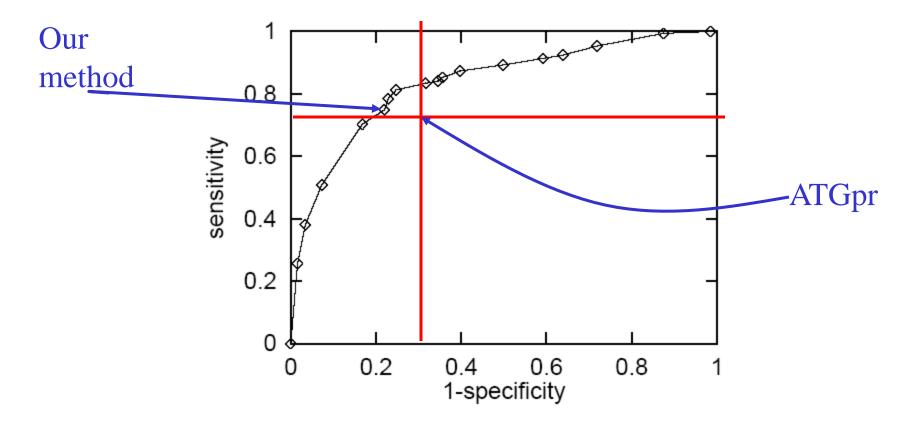
 well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

Validation Results (on Hatzigeorgiou

Algorithm	Sensitivity	Specificity	Precision	Accuracy
SVMs(linear)	96.28%	89.15%	25.31%	89.42%
SVMs(quad)	94.14%	90.13%	26.70%	90.28%
Ensemble Trees	92.02%	92.71%	32.52%	92.68%
OT 73 6 (1')	0.5.010/	00 540/	21.000/	00.000/

 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's dataset

Validation Results (on Chr X and Chr 215)



 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's

National University of Singapore

About the Inventor: Huiqing Liu

Huiqing Liu

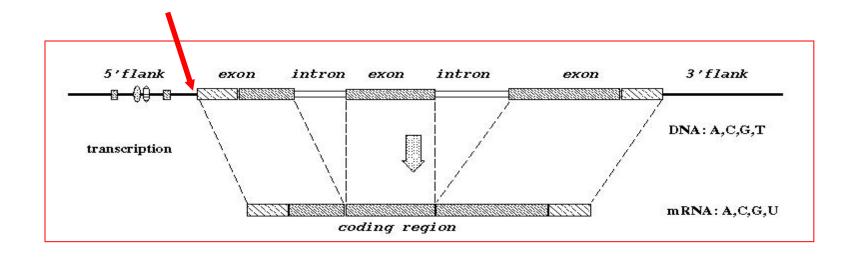
- PhD, NUS, 2004
- Currently Senior
 Scientist at Centocor
- Asian InnovationGold Award 2003
- New Jersey Cancer
 Research Award for
 Scientific Excellence
 2008
- Gallo Prize 2008

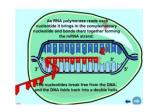
Recognition of Transcription Start Sites

An introduction to the World's best TSS recognition system:

A heavy tuning approach

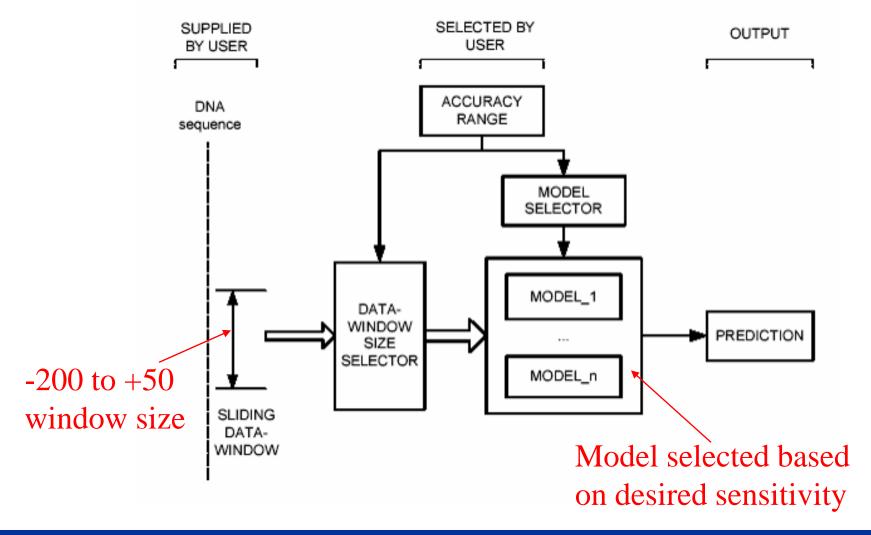
Transcription Start Site

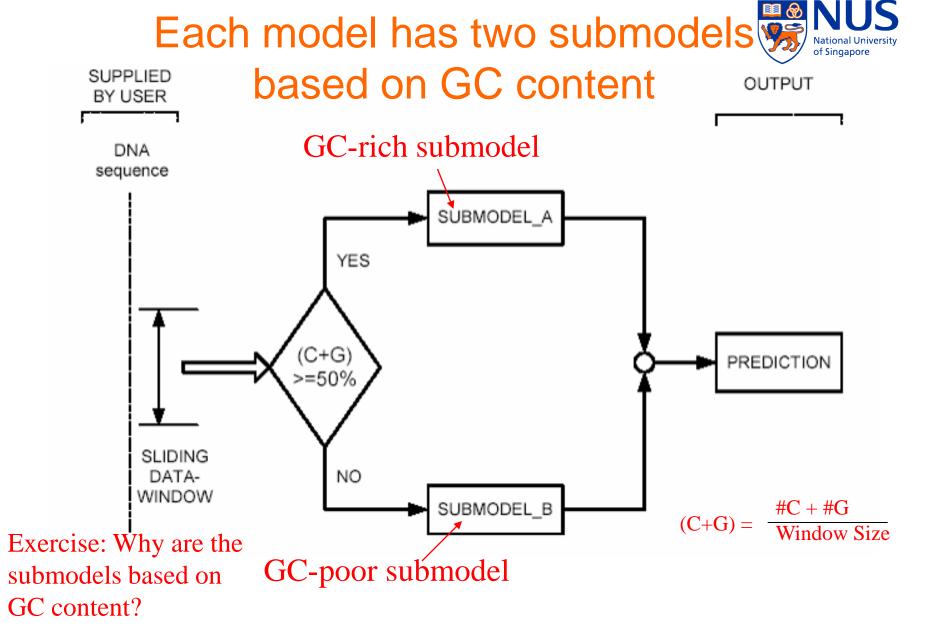




of Singapore

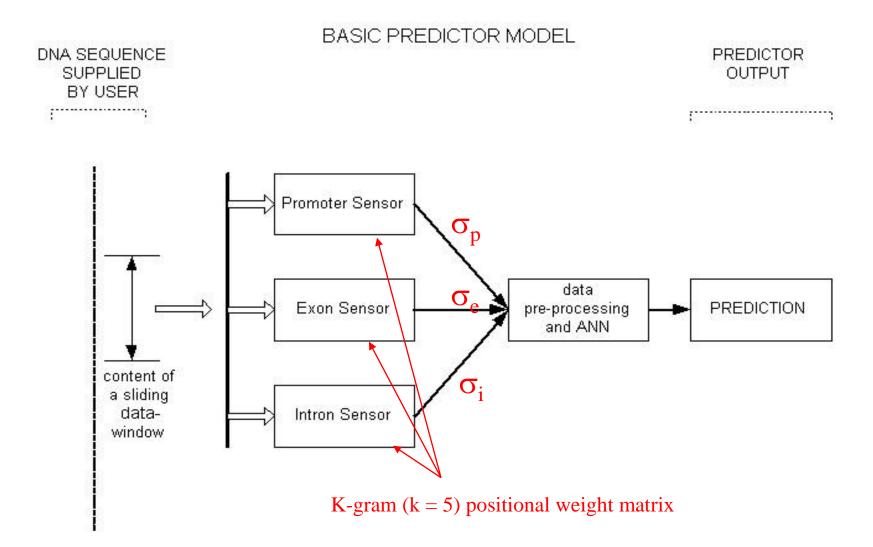
Structure of Dragon Promoter Finder





National University of Singapore

Data Analysis Within Submodel



Promoter, Exon, Intron Sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively

 Pentamer at ith

Just to make sure you know what I mean.

Give me 3 DNA seq of length 10:

- $Seq_1 = ACCGAGTTCT$
- Seq₂ = AGTGTACCTG
- $Seq_3 = AGTTCGTATG$

Then

1-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9	pos10
Α	3/3	0/3	0/3							
C	0/3	1/3	1/3		Exerc	ise: Fil	l in the	rest of t	he table	
G	0/3	2/3	0/3							
Т	0/3	0/3	2/3							

Just to make sure you know what I mean.

Give me 3 DNA seq of length 10:

- Seq₁ = ACCGAGTTCT
- Seq₂ = AGTGTACCTG
- $Seq_3 = AGTTCGTATG$
- Then

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

2-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9
AA	0/3	0/3	0/3						
AC	1/3	0/3	0/3		Exerci	se: Fill:	in the re	est of th	e table
TT	0/3	0/3	1/3				1/3		

Data Preprocessing & ANN

Tuning parameters

$$s_{E} = sat(\sigma_{p} - \sigma_{e}, a_{e}, b_{e}),$$

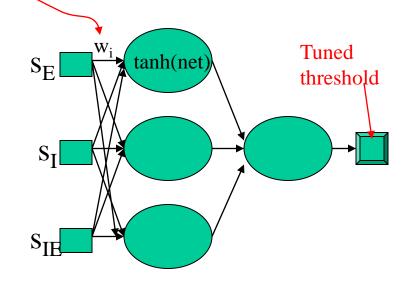
$$s_{I} = sat(\sigma_{p} - \sigma_{i}, a_{i}, b_{i}),$$

$$s_{EI} = sat(\sigma_{e} - \sigma_{i}, a_{ei}, b_{ei}),$$

where the function *sat* is defined by

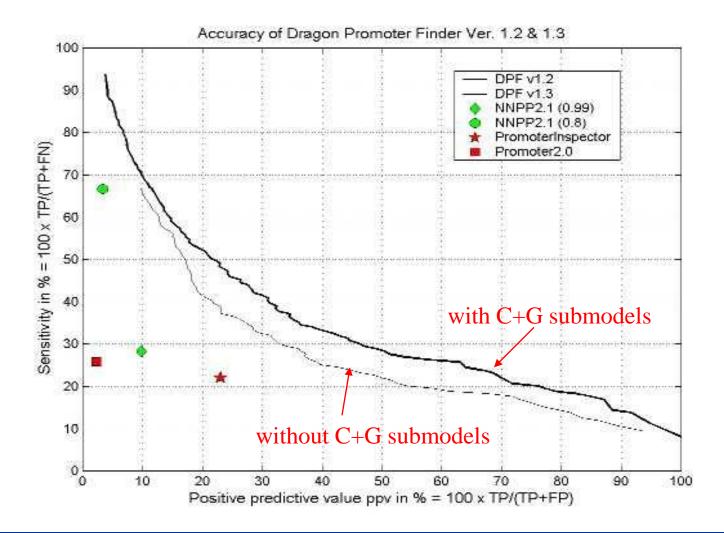
$$sat(x, a, b) = \begin{cases} a, & \text{if } x > a \\ x, & \text{if } b \le x \le a. \\ b, & \text{if } b > x \end{cases}$$

Simple feedforward ANN trained by the Bayesian regularisation method



$$tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$net = \sum s_{i} * w_{i}$$

Accuracy Comparisons



Training Data Criteria & Preparatio

- Contain both positive and negative sequences
- Sufficient diversity, resembling different transcription start mechanisms
- Sufficient diversity, resembling different nonpromoters
- Sanitized as much as possible

- TSS taken from
 - 793 vertebrate promoters from EPD
 - -200 to +50 bp of TSS
- non-TSS taken from
 - GenBank,
 - 800 exons
 - 4000 introns,
 - 250 bp,
 - non-overlapping,
 - <50% identities</p>

Tuning Data Preparation

 To tune adjustable system parameters in Dragon, we need a separate tuning data set

TSS taken from

- 20 full-length gene seqs
 with known TSS
- -200 to +50 bp of TSS
- no overlap with EPD

Non-TSS taken from

- 1600 human 3'UTR seqs
- 500 human exons
- 500 human introns
- 250 bp
- no overlap

Testing Data Criteria & Preparatio

- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities

- 159 TSS from 147 human and human virus seqs
- cummulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.

About the Inventor: Vlad Bajic

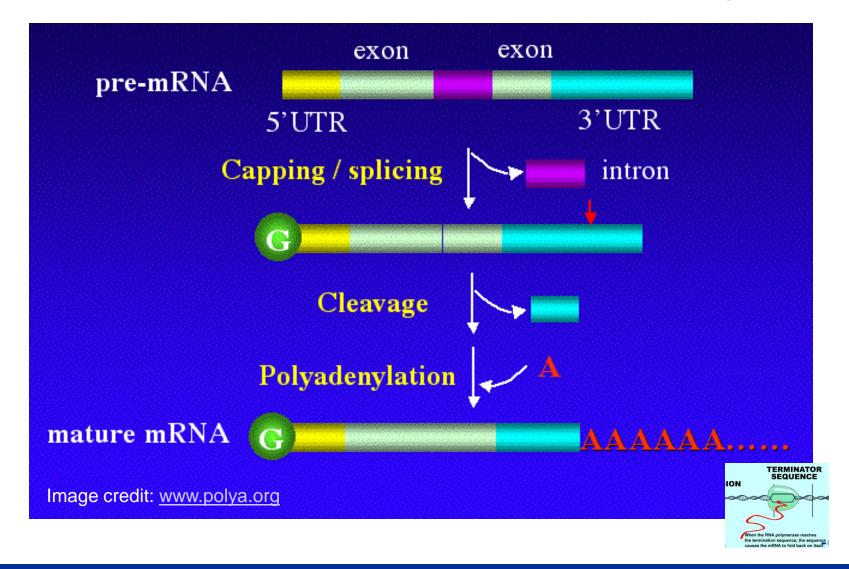
Vladimir B. Bajic

- Principal Scientist,
 I²R, 2001-2006
- Currently Director &
 Professor,
 Computational
 Bioscience Research
 Center, KAUST

Recognition of Poly-A Signal Sites

A twist to the "feature generation, feature selection, feature integration" approach

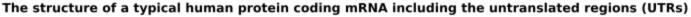
Eukaryotic Pre-mRNA Processing



Polyadenylation in Eukaryotes

- Addition of poly(A) tail to RNA
 - Begins as transcription finishes
 - 3'-most segment of newly-made RNA is cleaved off
 - Poly(A) tail is then synthesized at 3' end

- Poly(A) tail is impt for nuclear export, translation & stability of mRNA
- Tail is shortened over time. When short enough, the mRNA is degraded

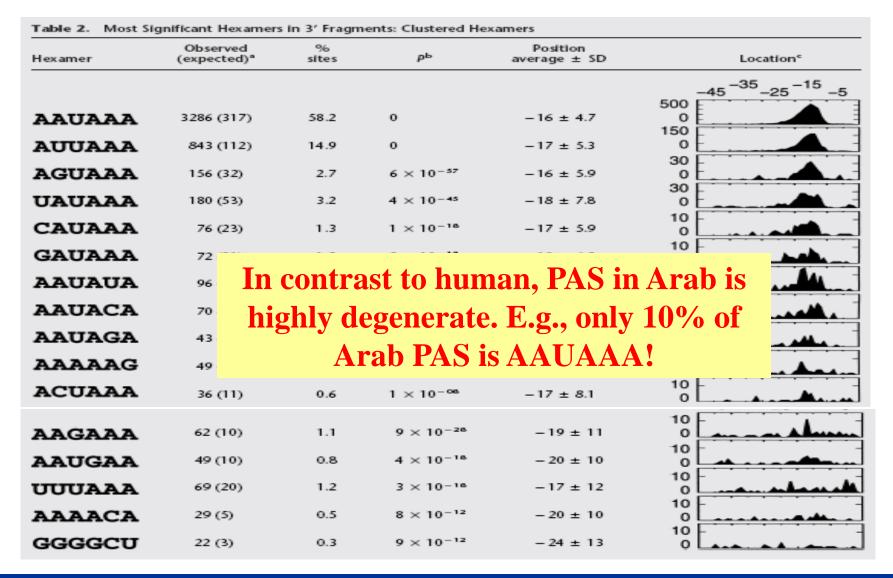




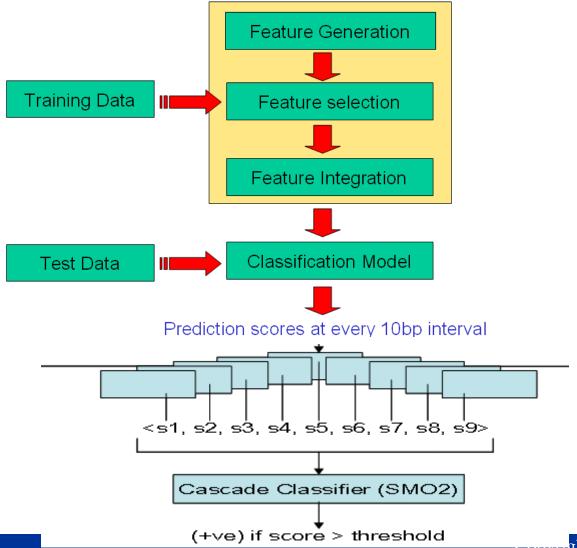
Poly-A Signals in Human (Gautheret et al., 20 National University of Singapore

Hexamer	Observed (expected) ^a	% sites	рь	Position average ± SD	Location ^c
					-45 ⁻³⁵ -25 ⁻¹⁵ -5
AAUAAA	3286 (317)	58.2	o	-16 ± 4.7	500
AAAUUA	843 (112)	14.9	o	-17 ± 5.3	0
AGUAAA	156 (32)	2.7	6×10^{-57}	-16 ± 5.9	30
UAUAAA	180 (53)	3.2	4 × 10-45	-18 ± 7.8	30
CAUAAA	76 (23)	1.3	1 × 10 ⁻¹⁶	-17 ± 5.9	10
GAUAAA	72 (21)	1.3	2×10^{-18}	-18 ± 6.9	10
AAUAUA	96 (33)	1.7	2×10^{-19}	-18 ± 6.9	10
AAUACA	70 (16)	1.2	5 × 10 ⁻²³	-18 ± 8.7	10
AAUAGA	43 (14)	0.7	1 × 10-°	-18 ± 6.3	10
AAAAAG	49 (11)	0.8	5 × 10 ⁻¹⁷	-18 ± 8.9	10
ACUAAA	36 (11)	0.6	1 × 10−∞	-17 ± 8.1	10
	30 (11)	0.0	1 ~ 10	-17 ± 0.1	0
AAGAAA	62 (10)	1.1	9×10^{-26}	-19 ± 11	10
AAUGAA	49 (10)	0.8	4×10^{-18}	-20 ± 10	10
AAAUUU	69 (20)	1.2	3×10^{-16}	-17 ± 12	10
AAAACA	29 (5)	0.5	8×10^{-12}	-20 ± 10	10
GGGGCU	22 (3)	0.3	9 × 10 ⁻¹²	- 24 ± 13	10

Poly-A Signals in Arabidopsis



Approach on Arab PAS Sites (I)



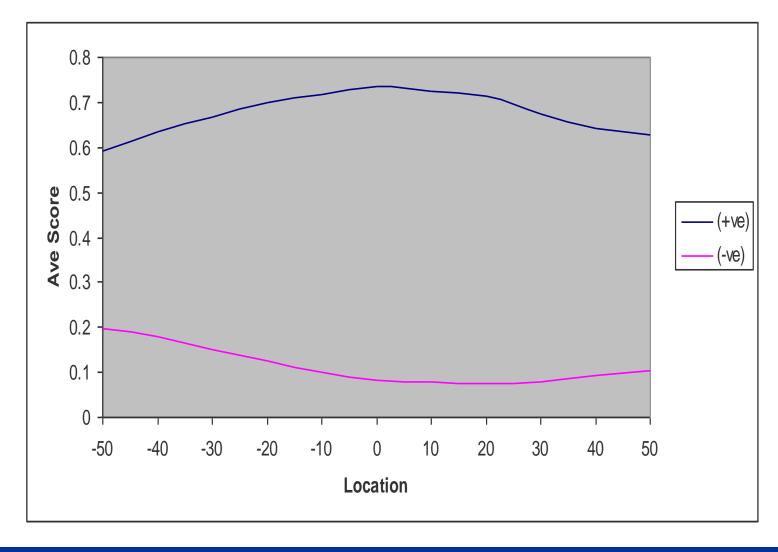
Approach on Arab PAS Sites (II)

- Data collection
 - #1 from Hao Han, 811+ve seq (-200/+200)
 - #2 from Hao Han, 9742-ve seq (-200/+200)
 - #3 from Qingshun Li,
 - 6209 (+ve) seq (-300/+100)
 - 1581 (-ve) intron (-300/+100)
 - 1501 (-ve) coding (-300/+100)
 - 864 (-ve) 5'utr (-300/+100)

Feature generation

- 3-grams, compositional features (4U/1N. G/U*7, etc)
- Freq of features above in 3 diff windows: (-110/+5), (-35/+15), (-50/+30)
- Feature selection
 - $-\chi 2$
- Feature integration & Cascade
 - SVM

Score Profile Relative to Candidate Sit



Validation Results

SN_0	SMO 1		SMO 2		PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	90%	0.26	94%	0.24	95%	3.7
5'UTR	79%	0.42	85%	0.49	78%	5.5
Intron	64%	0.59	71%	0.67	63%	6.3

Table 2, Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_10.

SN_10	SMO 1		SM	IO 2	PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	94%	0.36	96%	0.31	96%	4
5'UTR	86%	0.53	89%	0.6	81%	5.7
Intron	73%	0.68	77%	0.77	67%	6.6

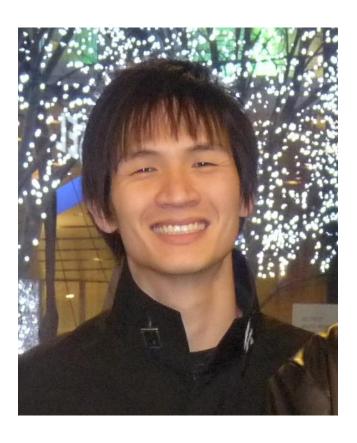
Table 3, Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_30.

SN_30	SMO 1		SMO 2		PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	97%	0.44	97%	0.37	97%	4.3
5'UTR	90%	0.62	92%	0.67	84%	6.2
Intron	79%	0.75	83%	0.81	72%	6.8

About the Inventor: Koh Chuan Hock

Koh Chuan Hock

- BComp (CB), NUS,2008
- Currently PhD candidate at SOC



Concluding Remarks...

What have we learned?

- Gene feature recognition applications
 - TIS, TSS, PAS
- General methodology
 - "Feature generation, feature selection, feature integration"
- Important tactics
 - Multiple models to optimize overall performance
 - Feature transformation (DNA → amino acid)
 - Classifier cascades

Any Question?

Acknowledgements

 The slides for PAS site prediction are adapted from slides given to me by Koh Chuan Hock

References (TIS Recognition)

- A. G. Pedersen, H. Nielsen, "Neural network prediction of translation initiation sites in eukaryotes", ISMB 5:226--233, 1997
- A. Zien et al., "Engineering support vector machine kernels that recognize translation initiation sites", *Bioinformatics* 16:799--807, 2000
- A. G. Hatzigeorgiou, "Translation initiation start prediction in human cDNAs with high accuracy", *Bioinformatics* 18:343--350, 2002
- J. Li et al., "Techniques for Recognition of Translation Initiation Sites", *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004

References (TSS Recognition)

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003
- J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997
- M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB 297:599--606, 2000
- V. B. Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical Bioinformatician*, Chapter 7, pages 157—165, 2004

References (PAS Recognition)

- Q. Li et al., "Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures". *Plant Physiology*, 138:1457-1468, 2005
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences". *Gene*, 231:77-86, 1999
- M. Legendre, D. Gautheret, "Sequence determinants in human polyadenylation site selection". BMC Genomics, 4:7, 2003
- B. Tian et al., "Prediction of mRNA polyadenylation sites by support vector machine". Bioinformatics, 22:2320-2325, 2006
- C. H. Koh, L. Wong. "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences". *Proc. GIW 2007*, pages 73--82

References (Feature Selection)

- M. A. Hall, "Correlation-based feature selection machine learning", PhD thesis, Dept of Comp. Sci., Univ. of Waikato, New Zealand, 1998
- U. M. Fayyad, K. B. Irani, "Multi-interval discretization of continuous-valued attributes", *IJCAI* 13:1022-1027, 1993
- H. Liu, R. Sentiono, "Chi2: Feature selection and discretization of numeric attributes", *IEEE Intl. Conf. Tools with Artificial Intelligence* 7:338--391, 1995