For written notes on this lecture, please read chapter 19 of *The Practical Bioinformatician* and *Hawkins & Kihara, JBCB 5(1):1-30, 2007*

CS2220: Introduction to Computational Biology Lecture 6: Sequence Homology Interpretation

Limsoon Wong

- Recap of sequence alignment
- Guilt by association
- Active site/domain discovery
- What if no homology of known function is found?
 - Genome phylogenetic profiling
 - SVM-Pairwise
 - Protein-protein interactions
- Key mutation site discovery

Very Brief Recap of Sequence Comparison/Alignment

Motivations for Sequence Comparison

- DNA is blue print for living organisms
- \Rightarrow Evolution is related to changes in DNA
- ⇒ By comparing DNA sequences we can infer evolutionary relationships between the sequences w/o knowledge of the evolutionary events themselves
- Foundation for inferring function, active site, and key mutations

Sequence Alignment

Sequence Alignment: Poor Example Singapore

Poor seq alignment shows few matched positions
 The two proteins are not likely to be homologous

Alignment by FASTA of the sequences of amicyanin and domain 1 of ascorbate oxidase

60 70 80 90 100 Amicyanin MPHNVHFVAGVLGEAALKGPMMKKEOAYSLTFTEAGTYDYHCTPHPFMRGKVVVE :: Ascorbate Oxidase ILORGTPWADGTASISOCAINPGETFFYNFTVDNPGTFFYHGHLGMORSAGLYGSLI 70 80 90 100 110 120 No obvious match between Amicyanin and Ascorbate Oxidase

6

Sequence Alignment: Good Example

- Good alignment usually has clusters of extensive matched positions
- \Rightarrow The two proteins are likely to be homologous

D >gil13476732|refINP_108301.1| unknown protein [Mesorhizobium loti]
gil14027493|dbj|BAB53762.1| unknown protein [Mesorhizobium loti]
Length = 105

```
Score = 105 bits (262), Expect = 1e-22
Identities = 61/106 (57%), Positives = 73/106 (68%), Gaps = 1/106 (0%)
```

Query: 1 MKPGRLASIALAIIFLPMAVPAHAATIEITMENLVISPTEVSAKVGDTIRWVNKDVFAHT 60 MK G L ++ MA PA AATIE+T++ LV SP V AKVGDTI WVN DV AHT Sbjct: 1 MKAGALIRLSWLAALALMAAPAAAATIEVTIDKLVFSPATVEAKVGDTIEWVNNDVVAHT 60

> good match between Amicyanin and unknown M. loti protein

Multiple Alignment: An Example

- Multiple seq alignment maximizes number of positions in agreement across several seqs
- seqs belonging to same "family" usually have more conserved positions in a multiple seq alignment
- gi|126467| FHFTSWPDFGVPFTPIGMLKFLKKVKACNP--OYAGAIV/HCSAGVGRTGTFVVIDAMLD FHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIMLD gi|2499753 gi|462550| YHYTOWPDMGVPEYALPVLTFVRRSSAARM--PETGPVIVHCSAGVGRTGTYIVIDSMLO gi|2499751 FHFTSWPDHGVPDTTDLLINFRYLVRDYMKOSPPESPILVHCSAGVGRTGTFIAIDRLIY FOFTAWPDHGVPEHPTPFLAFLRRVKTCNP--PDAGPMVVHCSAGVGRTGCFIVIDAMLE gi|1709906 gi|126471| LHFTSWPDFGVPFTPIGMLKFLKKVKTLNP--VHAGPIVVHCSAGVGRTGTFIVIDAMMA gi|548626| FHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVHCSAGAGRTGCYIVIDIMLD FHFTGWPDHGVPYHATGLLGFVRQVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIMLD gi|131570| gi|2144715 FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY ****... ** _ _ * * *

Conserved sites

of Singapore

Application of Sequence Comparison: Guilt-by-Association

A protein is a ...

- A protein is a large complex molecule made up of one or more chains of amino acids
- Protein performs a wide variety of activities in the cell

Function Assignment to Protein Sequence

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE VT

 How do we attempt to assign a function to a new protein sequence?

Invariant and Abductive Reasoning

- Function is determined by 3D struct of protein & environment protein is in
- Constraints imposed by 3D struct & environment give rise to "invariant" properties observed in proteins having the ancestor with that function

 \Rightarrow Abductive reasoning

 If those invariant properties are seen in a protein, then the protein is homolog of this protein

Guilt-by-Association

- Compare the target sequence T with sequences $S_1, ..., S_n$ of known function in a database
- Determine which ones amongst S₁, ..., S_n are the mostly likely homologs of T
- Then assign to T the same function as these homologs
- Finally, confirm with suitable wet experiments

Guilt-by-Association

Copyright 2012 © Limsoon Wong

BLAST: How It Works Altschul et al., *JMB*, 215:403--410, 1990

 BLAST is one of the most popular tool for doing "guilt-by-association" sequence homology search

6

Homologs obtained by BLAST

	Score	E
Sequences producing significant alignments:	(bits)	Value
	_	
qi 14193729 qb AAK56109.1 AF332081_1 protein tyrosin phosph	<u>62:</u>	e-177
gi 126467 sp P18433 PTRA_HUMAN Protein-tyrosine phosphatase	<u>621 L</u>	e-177
gi 4506303 ref NP_002827.1 protein tyrosine phosphatase, r	621 L	e-176
<u>qi 227294 prf 1701300A</u> protein Tyr phosphatase	<u>620</u>	e-176
gi 18450369 ref NP_543030.1 protein tyrosine phosphatase,	<u>621 L</u>	e-176
gi 32067 emb CAA37447.1 tyrosine phosphatase precursor [Ho	61: L	e-176
<pre>qi 285113 pir JC1285 protein-tyrosine-phosphatase (EC 3.1</pre>	<u>619</u>	e-176
gi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r	<u>61:</u>	e-176
gi 2098414 pdb 1YFO A Chain A, Receptor Protein Tyrosine Ph	<u>61</u> S	e-174
qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo	<u>61 L</u>	e-174
<u>qi 450583 qb AAB04150.1 </u> protein tyrosine phosphatase >gi 4	<u>605</u>	e-172
gi 6679557 ref NP_033006.1 protein tyrosine phosphatase, r	<u>60, L</u>	e-172
<u>qi 483922 qb AAA17990.1 </u> protein tyrosine phosphatase alpha	<u>599</u>	e-170

 Thus our example sequence could be a protein tyrosine phosphatase α (PTPα)

Example Alignment with $PTP\alpha$

Score = 632 bits (1629), Expect = e-180
Identities = 294/302 (97%), Positives = 294/302 (97%)

- Sbjct: 202 SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR 261
- Query: 61 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 120 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
- Sbjct: 262 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 321
- Query: 121 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD 180 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
- Sbjct: 322 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD 381
- Query: 181 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 240 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
- Sbjct: 382 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 441
- Query: 241 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE 300 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
- Sbjct: 442 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE 501

Guilt-by-Association: Caveats

- Ensure that the effect of database size has been accounted for
- Ensure that the function of the homology is not derived via invalid "transitive assignment"
- Ensure that the target sequence has all the key features associated with the function, e.g., active site and/or domain

Law of Large Numbers

9

- Suppose you are in a room with 365 other people
- Q: What is the prob that a specific person in the room has the same birthday as you?
- A: 1/365 = 0.3%

- Q: What is the prob that there is a person in the room having the same birthday as you?
- A: $1 (364/365)^{365} = 63\%$
- Q: What is the prob that there are two persons in the room having the same birthday?
- A: 100%

Interpretation of P-value

- Seq. comparison progs, e.g. BLAST, often associate a P-value to each hit
- P-value is interpreted as prob that a random seq has an equally good alignment

- Suppose the P-value of an alignment is 10⁻⁶
- If database has 10⁷ seqs, then you expect 10⁷ * 10⁻⁶ = 10 seqs in it that give an equally good alignment
- ⇒ Need to correct for database size if your seq comparison prog does not do that!

Exercise: Name a commonly used method for correcting p-value for a situation like this

Note: $P = 1 - e^{-E}$

Lightning Does Strike Twice!

- Roy Sullivan, a former park ranger from Virgina, was struck by lightning 7 times
 - 1942 (lost big-toe nail)
 - 1969 (lost eyebrows)
 - 1970 (left shoulder seared)
 - 1972 (hair set on fire)
 - 1973 (hair set on fire & legs seared)
 - 1976 (ankle injured)
 - 1977 (chest & stomach burned)

• September 1983, he committed suicide

Cartoon: Ron Hipschman Data: David Hand

Effect of Seq Compositional Bias

- One fourth of all residues in protein seqs occur in regions with biased amino acid composition
- Alignments of two such regions achieves high score purely due to segment composition
- ⇒ While it is worth noting that two proteins contain similar low complexity regions, they are best excluded when constructing alignments
- E.g., by default, BLAST employs the SEG algo to filter low complexity regions from proteins before executing a search

Source: NCBI

24

Effect of Sequence Length

25

Examples of Invalid Function Assignment: The IMP Dehydrogenases (IMPDH

18 entries were found

ID	Organism	PIR	Swiss-Prot/TrEMBL	RefSeq/GenPept		
<u>NF00181857</u>	Methanococcus jannaschii	<u>E64381</u> conserved hypothetical protein MJ0653	<u>Y653_METJA</u> Hypothetical protein MJ0653	g <u>1592300</u> inosine-5'-monophosphate dehydrogenase (guaB) <u>NP_247637</u> inosine-5'-monophosphate dehydrogenase (guaB)		
<u>NF00187788</u>	Archaeoglobus fulgidus	C69355 MJ0653 homolog AF0847 ALT_NAMES: inosine-monophosphate dehydrogenase (guaB-1) homolog [misnomer]	O29411 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-1)	<mark>g2649754</mark> inosine monophosphate dehydrogenase (guaB-1) <u>NP_069681</u> inosine monophosphate dehydrogenase (guaB-1)		
<u>NF00188267</u>	Archaeoglobus fulgidus	<u>F69514</u> yhcV homolog 2 <i>ALT_NAMES</i> : inosine-monophosphate dehydrogenase (guaB-2) homolog [misnomer]	O28162 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-2)	<u>g2648410</u> inosine monophosphate dehydrogenase (guaB-2) <u>NP_070943</u> inosine monophosphate dehydrogenase (guaB-2)		
<u>NF00188697</u>	Archae A partia	d list of IMPdeb	nydrogenase misn	ophosphate ive inophosphate ive		
<u>NF00197776</u>	Thermo in CO	omplete genome public d	s remaining in so atabases	me d protein nonophosphate d protein		
<u>NF00414709</u>	Methanothermobacter thermautotrophicus	ALT_NAMES: inosine-monophosphate dehydrogenase related protein V [misnomer]	O27294 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN V	onophosphate dehydrogenase related protein V <u>NP_276354</u> inosine-5'-monophosphate dehydrogenase related protein V		
NF00414811	Methanothermobacter thermautotrophicus	D69035 MJ1232 protein homolog MTH126 <i>ALT_NAMES</i> : inosine-5'-monophosphate dehydrogenase related protein VII [misnomer]	O26229 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN VII	g2621166 inosine-5'-monophosphate dehydrogenase related protein VII <u>NP_275269</u> inosine-5'-monophosphate dehydrogenase related protein VII		
NF00414837	Methanothermobacter thermautotrophicus	H69232 MJ1225-related protein MTH992 ALT_NAMES: inosine-5'-monophosphate dehydrogenase related protein IX [misnomer]	O27073 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN IX	<mark>g2622093</mark> inosine-5 ¹ -monophosphate dehydrogenase related protein IX <u>NP_276127</u> inosine-5 ¹ -monophosphate dehydrogenase related protein IX		
<u>NF00414969</u>	Methanothermobacter thermautotrophicus	<u>B69077</u> yhcV homolog 2 <i>ALT_NAMES</i> : inosine-monophosphate dehydrogenase related protein X [misnomer]	O27616 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN X	<u>g2622697</u> inosine-5'-monophosphate dehydrogenase related protein X <u>NP_276687</u> inosine-5'-monophosphate dehydrogenase related protein X		

Copyright 2012 © Limsoon Wong

IMPDH Domain Structure

	Image: weight of the second	0487: PDOC003 178: IMP dehvdr	91,IMP dehydrogenase / G ogenase / GMP reductase (MP reductas Cterminus	e signature	
	+-+-+ PF005	i71: CBS domai	n			
	00-00 PF013	/81: Helix-turn-h	elix			
		74: IMP dehydr	ogenase / GMP reductase N	l terminus		
	PF021	95: ParB-like nu	iclease domain			
A31997					~	
(SF000130)	agus gu	174074074074404040	teteletek xeletelete	· 🛶	*******	514
E70218			~			404
(SF000131)	ala fa	4	*******	****	******	
E64381			194		IMPDH Mi	snomer in Methanococcus jannaschii
(SFUU4090)		olotolotolotok				,
G69355			189			
(SFUU4090)	Apletatetate A	siojojojojok			N	
F69514			183			IMPDH Misnomers in Archaeoglobus fulgidus
(SF004694)	0000000 **	aletetetete e	4-4-4-4-4-4-4-			,
000 407				2	59	
869407						

- Typical IMPDHs have 2 IMPDH domains that form the catalytic core and 2 CBS domains.
- A less common but functional IMPDH (E70218) lacks the CBS domains.
- Misnomers show similarity to the CBS domains

Invalid Transitive Assignment

Root of invalid transitive assignment _____

B⊨⇒	□ <u>H70468</u>	<u>SF001258</u>	<u>051440</u>	phosphoribosyl-AMP cyclohydrolase 3.5.4.19) / phosphoribosyl-ATP pyrog (EC 3.6.1.31) [similarity]	<u>(EC</u> phosphatase	Aquifex aeolicus	Prok/other	594.3	4.8e-26	205	39.086	197	
	□ <u>\$76963</u>	SF001258	<u>039935</u>	phosphoribosyl-AMP cyclohydrolase 3.5.4.19) / phosphoribosyl-ATP pyrog (EC 3.6.1.31) [similarity]	(EC phosphatase	Synechocystis sp.	Prok/gram-	557.0	5.7e-24	230	39.175	194	
	T35073	SF029243	005738	probable phosphoribosyl-AMP cyclob	nydrolase	Streptomyces coelicolor	Prok/gram+	399.3	3.5e-15	128	42.157	102	
	□ <u>\$53349</u>	<u>SF001257</u>	<u>001188</u>	phosphoribosyl-AMP cyclohydrolase (EC 3.5.4.19) / phosphoribosyl-ATP pyrophosphatase (EC 3.6.1.31) / histidinol dehydrogenase (EC 1.1.1.23)		Saccharomyces cerevisiae	Euk/fungi	384.1	2.5e-14	799	31.863	204	
$A \Rightarrow$	E <u>E69493</u>	SF029243	005738	phosphoribosyl-AMP cyclohydrolase 3.5.4.19) [similarity]	<u>(EC</u>	Archaeoglobus fulgidus	Archae	396.8	4.8e-15	108	47. <i>7</i> 78	90	
C⇒	□ <u>G64337</u>	SF006833	030827	phosphoribosyl-ATP pyrophosphatas 3.6.131) [similarity]	e (EC	Methanococcus jannaschii	Archae	246.9	1.1e-06	95	36.842	95	
	D81178	<u>SF006833</u>	<u>101491</u>	phosphoribosyl-ATP pyrophosphatas 3.0.1.31) NMB0603 [similarity]	e (EC	Neicceria meninoitidic	Prok/oram.	23Q Q	2 6e-06	107	35 227	22	
	□ <u>G81925</u>	SF006833	<u>101491</u>	hosphoribosyl-ATP pyrophosphat 3.6.1.31) NMA0807 [similarity]		$A \rightarrow B$	-> C	=> ,	A -> (С			-
	□ <u>\$51513</u>	<u>SF001257</u>	<u>007188</u>	phosphoribosyl-AMP cyclohydrola 3.5.4.19) / phosphoribosyl-ATP py (EC 3.6.1.31) / histidinol dehydrog 1.1.1.23)		7	B (SFC	01258)				-
Mis-assignment					A	(SF029243)	*		C	(SF	00683	3)	
of function					No I	MPDH do	main						

Copyright 2012 © Limsoon Wong

28

Emerging Pattern

- Most IMPDHs have 2 IMPDH and 2 CBS domains
- Some IMPDH (E70218) lacks CBS domains
- \Rightarrow IMPDH domain is the emerging pattern

Application of Sequence Comparison: Active Site/Domain Discovery

Discover Active Site and/or Domain

- How to discover the active site and/or domain of a function in the first place?
 - Multiple alignment of homologous seqs
 - Determine conserved positions
 - \Rightarrow Emerging patterns relative to background
 - \Rightarrow Candidate active sites and/or domains
- Easier if sequences of distance homologs are used

Exercise: Why?

3

In the course of evolution...

Multiple Alignment of PTPs

gi 126467	FHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTGTFVVIDAMLD
gi 2499753	FHFTGWPDHGVPYHATGLLSFIRRVKLSNPPSAGPIVVHCSAGAGRTGCYIVIDIMLD
gi 462550	YHYTQWPDMGVPEYALPVLTFVRRSSAARMPETGPVLVHCSAGVGRTGTYIVIDSMLQ
gi 2499751	FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY
gi 1709906	FQFTAWPDHGVPEHPTPFLAFLRRVKTCNPPDAGPMVVHCSAGVGRTGCFIVIDAMLE
gi 126471	LHFTSWPDFGVPFTPIGMLKFLKKVKTLNPVHAGPIVVHCSAGVGRTGTFIVIDAMMA
gi 548626	FHFTGWPDHGVPYHATGLLSFIRRVKLSNPPSAGPIVVHCSAGAGRTGCYIVIDIMLD
gi 131570	FHFTGWPDHGVPYHATGLLGFVRQVKSKSPPNAGPLVVHCSAGAGRTGCFIVIDIMLD
gi 2144715	FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY
	··* *** *** · * ··* ··* ··* ··* ··

- Notice the PTPs agree with each other on some positions more than other positions
- These positions are more impt wrt PTPs
- Else they wouldn't be conserved by evolution
- \Rightarrow They are candidate active sites

Guilt-by-Association: What if no homolog of known function is found?

What if there is no useful seq homolog

- Guilt by other types of association!
 - Domain modeling (e.g., HMMPFAM)
 - Similarity of phylogenetic profiles
 - ✓ Similarity of dissimilarities (e.g., SVM-PAIRWISE)
 - Similarity of subcellular co-localization & other physico-chemico properties(e.g., PROTFUN)
 - Similarity of gene expression profiles
 - ✓ Similarity of protein-protein interaction partners
 - Fusion of multiple types of info

. . .

Phylogenetic Profiling Pellegrini et al., PNAS, 96:4285--4288, 1999

- Gene (and hence proteins) with identical patterns of occurrence across phyla tend to function together
- ⇒ Even if no homolog with known function is available, it is still possible to infer function of a protein

P1

P2

P3

P4

P5

P6

P7

Phylogenetic **Profiling:** How it Works

36

Copyright 2012 © Limsoon Wong

Phylogenetic Profiling: P-value

The probability of observing by chance z occurrences of genes X and Y in a set of N lineages, given that X occurs in x lineages and Y in y lineages is

$$P(z|N, x, y) = \frac{w_z * \overline{w_z}}{W}$$

where

No. of ways to distribute
$$z$$

co-occurrences over N
lineage's
No. of ways to distribute
 $W = \binom{N-z}{x-z} * \binom{N-x}{y-z}$
No. of ways to distribute
the remaining $x - z$ and $y - z$
occurrences over the remaining
 $N - z$ lineage's

Phylogenetic Profiles: Evidence

Pellegrini et al., PNAS, 96:4285--4288, 1999

	No. of non-	No. neighbors	No. neighbors	
	proteins in	in keyword	in random	
Keyword	group	group	group	
Ribosome	60	197	27	
Transcription	36	17	10	
tRNA synthase and ligase	26	11	5	
Membrane proteins*	25	89	5	
Flagellar	21	89	3	
Iron, ferric, and ferritin	19	31	2	
Galactose metabolism	18	31	2	
Molybdoterin and Molybdenum,				
and molybdoterin	12	6	1	
Hypothetical [†]	1,084	108,226	8,440	

• E. coli proteins grouped based on similar keywords in SWISS-PROT have similar phylogenetic profiles

 Proteins having low hamming distance (thus highly similar phylogenetic profiles) tend to share common pathways
 Exercise: Why do proteins having high hamming distance also have this behaviour?

Copyright 2012 © Limsoon Wong

of Singapore

Guilt by Association of Dissimilarities

Differences of "unknown" to other fruits are same as "apple" to other fruits

Orange	Banana ₁	
Color = red vs orange	Color = red vs yellow	
Skin = smooth vs rough	Skin = smooth vs smooth	
Size = small vs small	Size = small vs small	
Shape = round vs round	Shape = round vs oblong	
Color = orange vs orange	Color = orange vs yellow	
Skin = rough vs rough	Skin = rough vs smooth	
Size = small vs small	Size = small vs small	
Shape = round vs round	Shape = round vs oblong	
Color = red vs orange	Color = red vs yellow	
Skin = smooth vs rough	Skin = smooth vs smooth	
Size = small vs small	Size = small vs small	
	Shape = round vs obiolog	
	Color = red vs orange Skin = smooth vs rough Size = small vs small Shape = round vs round Color = orange vs orange Skin = rough vs rough Size = small vs small Shape = round vs round Color = red vs orange Skin = smooth vs rough Size = small vs small Shape = round vs round	Orange1Banana1Color = red vs orangeColor = red vs yellowSkin = smooth vs roughSkin = smooth vs smoothSize = small vs smallSize = small vs smallShape = round vs roundShape = round vs oblongColor = orange vs orangeColor = orange vs yellowSkin = rough vs roughSkin = rough vs smoothSize = small vs smallSize = small vs smallShape = round vs roughSize = small vs smallShape = round vs roughShape = round vs oblongColor = red vs orangeColor = red vs yellowSkin = smooth vs roughShape = round vs oblongColor = red vs orangeColor = red vs yellowSkin = smooth vs roughSkin = smooth vs smoothSize = small vs smallShape = round vs oblongSize = small vs smallShape = round vs smoothSize = small vs smallShape = round vs oblongSize = small vs smallShape = round vs oblongShape = round vs roundSize = small vs smallShape = round vs roundSize = small vs smallShape = round vs roundSize = small vs smallShape = round vs roundShape = round vs oblong

SVM-Pairwise Framework

Image credit: Kenny Chua

Performance of SVM-Pairwise

Receiver Operating Characteristic (ROC)

- The area under the curve derived from plotting true positives as a function of false positives for various thresholds.
- Rate of median False Positives (RFP)
 - The fraction of negative test examples with a score better or equals to the median of the scores of positive test examples.

Level-1 neighbour

Protein Function Prediction from Protein Interactions

Functional Association Thru Interactions

• Direct functional association:

- Interaction partners of a protein are likely to share functions w/ it
- Proteins from the same pathways are likely to interact

Indirect functional association

- Proteins that share interaction partners with a protein may also likely to share functions w/ it
- Proteins that have common biochemical, physical properties and/or subcellular localization are likely to bind to the same proteins

An illustrative Case of Indirect Functional Association?

- Is *indirect functional association* plausible?
- Is it found often in real interaction data?
- Can it be used to improve protein function prediction from protein interaction data?

Freq of Indirect Functional Association

Prediction Power By Majority Voting

- Remove overlaps in level-1 and level-2 neighbours to study predictive power of "level-1 only" and "level-2 only" neighbours
- Sensitivity vs Precision analysis

$$PR = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} m_{i}} \quad SN = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} n_{i}}$$

- n_i is no. of fn of protein i
- m_i is no. of fn predicted for protein i
- k_i is no. of fn predicted correctly for protein i

- ⇒ "level-2 only" neighbours performs better
- ⇒ L1 ∩ L2 neighbours has greatest prediction power

Functional Similarity Estimate: Czekanowski-Dice Distance

• Functional distance between two proteins (Brun et al, 2003)

$$D(u,v) = \frac{|N_u \Delta N_v|}{|N_u \cup N_v| + |N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- $X \Delta Y$ is symmetric diff betw two sets X and Y
- Greater weight given to similarity

Is this a good measure if u and v have very diff number of neighbours?

\Rightarrow Similarity can be defined as

$$S(u,v) = 1 - D(u,v) = \frac{2X}{2X + (Y+Z)}$$

Functional Similarity Estimate: FS-Weighted Measure

FS-weighted measure

$$S(u,v) = \frac{2|N_u \cap N_v|}{|N_u - N_v| + 2|N_u \cap N_v|} \times \frac{2|N_u \cap N_v|}{|N_v - N_u| + 2|N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- Greater weight given to similarity

 \Rightarrow Rewriting this as

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Correlation betw functional similarity & estimates

Neighbours	CD-Distance	FS-Weight	
$f{S}_1 \ frac{S_2}{S_1 \cup S_2}$	0.471810 0.224705 0.224581	0.498745 0.298843 0.29629	((

• Equiv measure slightly better in correlation w/ similarity for L1 & L2 neighbours

Reliability of Expt Sources

- Diff Expt Sources have diff reliabilities
 - Assign reliability to an interaction based on its
 expt sources (Nabieva et al, 2004)
- Reliability betw u and v computed by:

$$r_{u,v} = 1 - \prod_{i \in E_{u,v}} (1 - r_i)$$

- r_i is reliability of expt source i,
- E_{u,v} is the set of expt sources in which interaction betw u and v is observed

Source	Reliability
Affinity Chromatography	0.823077
Affinity Precipitation	0.455904
Biochemical Assay	0.666667
Dosage Lethality	0.5
Purified Complex	0.891473
Reconstituted Complex	0.5
Synthetic Lethality	0.37386
Synthetic Rescue	1
Two Hybrid	0.265407

Functional Similarity Estimate: FS-Weighted Measure with Reliability

• Take reliability into consideration when computing FS-weighted measure:

$$S_{R}(u,v) = \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{u} - N_{v}} r_{u,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w}(1 - r_{v,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}} \times \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{v} - N_{u}} r_{v,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{v,w}(1 - r_{u,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}}$$

• N_k is the set of interacting partners of k

• $r_{u,w}$ is reliability weight of interaction betw u and v

 \Rightarrow Rewriting

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Integrating Reliability

 Equiv measure shows improved correlation w/ functional similarity when reliability of interactions is considered:

Neighbours	CD-Distance	FS-Weight	FS-Weight R
$f{S}_1 \ frac{S_2}{S_1 \cup S_2}$	0.471810	0.498745	0.532596
	0.224705	0.298843	0.375317
	0.224581	0.29629	0.363025

Improvement to Prediction Power by Majority Voting

Improvement to Over-Rep of Functions in Neighbours

Use L1 & L2 Neighbours for Prediction

FS-weighted Average

$$f_{x}(u) = \frac{1}{Z} \left[\lambda r_{\text{int}} \pi_{x} + \sum_{v \in N_{u}} \left(S_{TR}(u, v) \delta(v, x) + \sum_{w \in N_{v}} S_{TR}(u, w) \delta(w, x) \right) \right]$$

- *r_{int}* is fraction of all interaction pairs sharing function
- λ is weight of contribution of background freq
- $\delta(\mathbf{k}, \mathbf{x}) = 1$ if k has function x, 0 otherwise
- N_k is the set of interacting partners of k
- π_x is freq of function x in the dataset
- Z is sum of all weights,

$$Z = 1 + \sum_{v \in N_u} \left(S_{TR}(u, v) + \sum_{w \in N_v} S_{TR}(u, w) \right)$$

1

56

• LOOCV comparison with Neighbour Counting, Chi-Square, PRODISTIN

57

About the Inventor: Chua Hon Nia

Chua Hon Nian

- PhD, NUS, 2008
- Postdoc at Harvard
 & Univ of Toronto
- 49th hottest paper in Computer Science published in 2006
- Winner, DREAM2
 challenge PPI
 subnetwork, 2007

Application of Sequence Comparison: Key Mutation Site Discovery

Identifying Key Mutation Sites K.L.Lim et al., *JBC*, 273:28986--28993, 1998

Sequence from a typical PTP domain D2

>gi|00000|PTPA-D2 EEEFKKLTSIKIQNDKMRTGNLPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASF IDGYRQKDSYIASQGPLLHTIEDFWRMIWEWKSCSIVMLTELEERGQEKCAQYWPSDGLV SYGDITVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFHGWPEVGIPSDGKGMISII AAVQKQQQQSGNHPITVHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVKSLRLQRPH MVQTLEQYEFCYKVVQEYIDAFSDYANFK

- Some PTPs have 2 PTP domains
- PTP domain D1 is has much more activity than PTP domain D2
- Why? And how do you figure that out?

Emerging Patterns of PTP D1 vs D

- Collect example PTP D1 sequences
- Collect example PTP D2 sequences
- Make multiple alignment A1 of PTP D1
- Make multiple alignment A2 of PTP D2
- Are there positions conserved in A1 that are violated in A2?
- These are candidate mutations that cause PTP activity to weaken
- Confirm by wet experiments

Emerging Patterns of PTP D1 vs D

This site is consistently conserved in D1, but is not consistently missing in D2 \Rightarrow it is not an EP \Rightarrow not a likely cause of D2's loss of function Exercise: Why?

This site is consistently conserved in D1, but is consistently missing in D2 \Rightarrow it is an EP \Rightarrow possible cause of D2's loss of function

Key Mutation Site: PTP D1 vs D2

gi|00000|P gi|126467| gi|2499753 gi|462550| gi|2499751 gi|1709906 gi|126471| gi|548626| gi|131570| gi|2144715

2 2 2 22 2 2 OFHFHGWPEVGIPSDGKGMISIIAAVOKOOOO-SGNHPITVHCSAGAGRTGTFCALSTVL QFHFTSWPDFGVPFTPIGMLKFLKKVKACNP--QYAGAIVVHCSAGVGRTGTFVVIDAML OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML OYHYTOWPDMGVPEYALPVLTFVRRSSAARM--PETGPVLVHCSAGVGRTGTYIVIDSML OF HF TSWPDHGVPDTTDLL INFRYLVRDYMKOSPPESPILVHCSAGVGRTGTFIAIDRLI OF OF TAWPDHGVPEHPTPFLAFLRRVKTCNP--PDAGPMVVHCSAGVGRTGCF IV IDAML OLHFTSWPDFGVPFTPIGMLKFLKKVKTLNP--VHAGPIVVHCSAGVGRTGTFIVIDAMM OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML OFHFTGWPDHGVPYHATGLLGFVROVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIML QFHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLI **. *.* ***** **** * ..

- Positions marked by "!" and "?" are likely places responsible for reduced PTP activity
 - All PTP D1 agree on them
 - All PTP D2 disagree on them

Key Mutation Site: PTP D1 vs D2

 Positions marked by "!" are even more likely as 3D modeling predicts they induce large distortion to structure

Confirmation by Mutagenesis Expt

- What wet experiments are needed to confirm the prediction?
 - Mutate E \rightarrow D in D2 and see if there is gain in PTP activity
 - Mutate D \rightarrow E in D1 and see if there is loss in PTP activity

Exercise: Why do you need this 2-way expt?

Prasanna Kolatkar

- Research Fellow,
 BIC, NUS, 1997 1999
- Currently Group
 Leader at GIS

66

Concluding Remarks

NUS National University of Singapore

What have we learned?

- General methodologies & applications
 - Guilt by association for protein function inference
 - Invariants for active site discovery
 - Emerging patterns for mutation site discovery
- Important tactics
 - Genome phylogenetic profiling
 - SVM-Pairwise
 - Protein-protein interactions

Any Question?

Acknowledgements

 Some of the slides are based on slides given to me by Kenny Chua

References

- T.F.Smith & X.Zhang. "The challenges of genome sequence annotation or `The devil is in the details'", *Nature Biotech*, 15:1222--1223, 1997
- D. Devos & A.Valencia. "Intrinsic errors in genome annotation", *TIG*, 17:429--431, 2001
- K.L.Lim et al. "Interconversion of kinetic identities of the tandem catalytic domains of receptor-like protein tyrosine phosphatase PTP-alpha by two point mutations is synergist and substrate dependent", *JBC*, 273:28986--28993, 1998
- S.F.Altshcul et al. "Basic local alignment search tool", *JMB*, 215:403--410, 1990
- S.F.Altschul et al. "Gapped BLAST and PSI-BLAST: A new generation of protein database search programs", *NAR*, 25(17):3389--3402, 1997

References

- S.E.Brenner. "Errors in genome annotation", *TIG*, 15:132--133, 1999
- M. Pellegrini et al. "Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles", *PNAS*, 96:4285--4288, 1999
- J. Wu et al. "Identification of functional links between genes using phylogenetic profiles", *Bioinformatics*, 19:1524--1530, 2003
- L.J.Jensen et al. "Prediction of human protein function from post-translational modifications and localization features", *JMB*, 319:1257--1265, 2002
- C. Wu, W. Barker. "A Family Classification Approach to Functional Annotation of Proteins", *The Practical Bioinformatician*, Chapter 19, pages 401—416, WSPC, 2004

References

- H.N. Chua, W.-K. Sung. <u>A better gap penalty for pairwise SVM</u>. Proc. APBC05, pages 11-20
- Hon Nian Chua, Wing Kin Sung, Limsoon Wong. Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions. *Bioinformatics*, 22:1623-1630, 2006.
- T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote homologies. *JCB*, 7(1-2):95— 11, 2000
- T. Hawkins and D. Kihara. Function prediction of uncharacterized proteins. *JBCB*, 5(1):1-30, 2007