For written notes on this lecture, please read chapter 3 of *The Practical Bioinformatician. Alternatively, please read* "Rule-Based Data Mining Methods for Classification Problems in Biomedical Domains", a tutorial at *PKDD04* by Jinyan Li and Limsoon Wong, September 2004. http://www.comp.nus.edu.sg/~wongls/talks/pkdd04/

CS2220: Introduction to Computational Biology Unit 2: Essence of Knowledge Discovery

Li Xiaoli

Outlines

- 1. Decision Tree Ensembles
- 2. Other Machine Learning Approaches
 - kNN
 - NB
 - SVM
- 3. Classification Model Evaluation
- 4. Feature Selection

Majority class

Motivating Example

- h_1 , h_2 , h_3 are indep classifiers w/ accuracy = 60%
- C₁, C₂ are the only classes
- t is a test instance in C₁
- $h(t) = \operatorname{argmax}_{C \in \{C1, C2\}} |\{h_j \in \{h_1, h_2, h_3\} | h_j(t) = C\}|$
- Then prob(h(t) = C_1)
 - $= \operatorname{prob}(h_{1}(t)=C_{1} \& h_{2}(t)=C_{1} \& h_{3}(t)=C_{1}) + \operatorname{prob}(h_{1}(t)=C_{1} \& h_{2}(t)=C_{1} \& h_{3}(t)=C_{2}) + \operatorname{prob}(h_{1}(t)=C_{1} \& h_{2}(t)=C_{2} \& h_{3}(t)=C_{1}) + \operatorname{prob}(h_{1}(t)=C_{2} \& h_{2}(t)=C_{1} \& h_{3}(t)=C_{1}) \\ = 60\% * 60\% * 60\% + 60\% * 60\% * 40\% + 60\% * 60\% * 40\% + 60\% * 60\% * 60\% = 64.8\%$

Bagging

4

- Proposed by Breiman (1996)
- Also called Bootstrap aggregating
- Make use of randomness injected to training data

Decision Making by Bagging
Given a new test sample T
$$Assign T with
Majority class$$

$$bagged(T) = \operatorname{argmax}_{C_j \in \mathcal{U}} |\{h_i \in \mathcal{H} \mid h_i(T) = C_j\}|$$
where $\mathcal{U} = \{C_1, ..., C_r\}$

In practice, we can build a random forest by building multiple decision trees. Each decision tree can be built by randomly choosing training examples and/or features

http://en.wikipedia.org/wiki/Random_forest

6

Outlines

- 1. Decision Tree Ensembles
- 2. Other Machine Learning Approaches
 - kNN (k-Nearest Neighbors)
 - NB (Naïve Bayesian Classifier)
 - SVM (Support Vector Machines)
- 3. Feature Selection
- 4. Classification Model Evaluation

Instance-Based Classifiers

8

- Store the training records (without training *explicit* models) no induction step
- Use training records directly to predict the class label of unseen cases: deduction step

Set of Stored Cases

Instance Based Classifiers

Rote-learner

 Memorizes entire training data and performs classification only if attributes of record match one of the training examples *exactly*

k-Nearest Neighbors (k-NN)

 Uses k "closest" points (nearest neighbors) for performing classification

1) Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

• Requires three things

- The set of stored training records
- Distance metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve

• To classify an unknown record

- Compute distance to other training records
- Identify k nearest neighbors
- Use class labels of the nearest neighbors to determine the class label of the unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record *x* are data points that have the *k* smallest distance to *x*

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

- Compute distance between two points p & q:
 - Euclidean distance:

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the k-nearest neighbors (odd vs even number)
 - Weigh the vote according to distance
 - weight factor, $w = 1/d^2$

Nearest Neighbor Classification

Choosing the value of k:

- If k is too small, sensitive to noise points (e.g. k=1, 2, 3)
- If k is too large, neighborhood may include points from other classes

What if k=n, i.e. the number of all the data points? Then it becomes majority class in the training data If k is too large, the prediction will be depended on the data points that are not really related to my current data point

How to decide the value of *k*? cross validation or separate validation set

Nearest Neighbor Classification

Scaling issues

- Attributes may have to be scaled or normalized to prevent distance measures from being dominated by one of the attributes
- Example:
 - F1: height of a person may vary from 1.4m to 2.4m
 - F2: weight of a person may vary from 40kg to 442kg
 - F3: Annual income of a person may vary from \$10K to \$5,000K

 $p = (p_1 p_2 p_3) = (1.65, 48, 6000)$ $q = (q_1 q_2 q_3) = (1.82, 75, 8000)$ **F3** dominates the calculation of Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2} = \sqrt{(1.65 - 1.82)^2 + (48 - 75)^2 + (6000 - 8000)^2}$$

Normalization

6

- Min-max normalization:
 - $[min_A, max_A]$ - - > $[new_min_A, new_max_A]$

 $v' = \frac{v - min_{A}}{max_{A} - min_{A}} (new max_{A} - new min_{A}) + new min_{A}$

– Example:

Income range [\$12,000, \$98,000] normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,000-12,000}{98,000-12,000}(1.0-0)+0=0.71$ $\frac{12,000-12,000}{98,000-12,000}(1.0-0)+0=0$ $\frac{98,000-12,000}{98,000-12,000}(1.0-0)+0=1$

Nearest Neighbor Classification (conginus

Pros of kNN

- Easy to implement
- Incremental addition of training data trivial
- Cons
 - k-NN classifiers are lazy learners, which do not build models explicitly. This can be relatively more expensive than eager learners (such as decision tree) when classifying a test/unknown record.
 - Unlike decision tree that attempts to find a global model that fits the entire input space, nearest neighbor classifiers make the prediction based on local information, which can be more susceptible to noise.

Example Use of kNN: Ovarian Cancer Diagnosis Based on SELDI Proteomic Data

- Li et al, *Bioinformatics* 20:1638-1640, 2004
- Use kNN to diagnose ovarian cancers
 using proteomic spectra
- Data set is from Petricoin et al., Lancet 359:572-577, 2002

2) Bayesian Classifier

19

- A probabilistic framework for classification problems
- Conditional Probability:

• Bayes Theorem:

$$\frac{P(C \mid A)}{P(A)} = \frac{P(A \mid C)P(C)}{P(A)}$$

(3)

The Basic Idea to Apply Bayes Theorem

Dayes mediem	
$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(C \mid A)}$	National University of Singapore
P(A) = P(A)	•

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

C={**Y**, **N**}

- A is a test case, we want to predict its probability belonging to class C, e.g. given that
 A=(Refund=Yes, Marital=Married, Taxable=79), which class A belong to? Y or N
 P(Y |Refund=?, Marital=?, Taxable=79)
 P(N |Refund=?, Marital=?, Taxable=79)
 We will choose the bigger one
- Bayes Theorem: to compute P(C|A), we need to estimate P(A|C).
 - P(C) is easy to compute. There is no need to compute P(A)

The Basic Idea to Apply Bayes Theorem

	$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(C)}$				
		•)	P(A)		
Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	Νο	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

e.g. P(Marital=Married|N) = 4/7 (out of 7 N examples, we have 4 Married) P(Taxable Income =79|Y) = ? P(Taxable Income =179|Y) = ? How to Estimate Probabilities from Data for continuous attributes

- Discretize the range into bins
- Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability $P(A_i|C)$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	Νο
2	No	Married	100K	Νο
3	No	Single	70K	Νο
4	Yes	Married	120K	Νο
5	No	Divorced	95K	Yes
6	No	Married	60K	Νο
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	Νο
10	No	Single	90K	Yes

Normal distribution:

- One for each (A_i, C_i) pair
- For (Taxable Income, Class=No): Class=No
 - sample mean = 110

2

- sample variance = 2975
- Stand Deviation

 $\sigma = \sqrt{2975} = 54.54$

$$P(Income = 120 | No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record: X = (Refund = No, Married, Income = 120K)

Naive Bayes Classifier:

P(Refund=Yes|No) = 3/7 P(Refund=No|No) = 4/7 P(Refund=Yes|Yes) = 0 P(Refund=No|Yes) = 1 P(Marital Status=Single|No) = 2/7 P(Marital Status=Divorced|No)=1/7 P(Marital Status=Married|No) = 4/7 P(Marital Status=Single|Yes) = 2/7 P(Marital Status=Divorced|Yes)=1/7 P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110 sample variance=2975 If class=Yes: sample mean=90 sample variance=25 P(X|C|ass=No) = P(Refund=No|C|ass=No) \times P(Married| Class=No) × P(Income=120K|Class=No) $= 4/7 \times 4/7 \times 0.0072$ = 0.0024P(X|Class=Yes)= P(Refund=No|Class=Yes) \times P(Married| Class=Yes) × P(Income=120K| Class=Yes) $= 1 \times \mathbf{0} \times 1.2 \times 10^{-9} = 0$ Clearly, P(X|No)P(No) >P(X|Yes)P(Yes) Therefore P(No|X) > P(Yes|X)=> Class = No

of Singapore

Naïve Bayes Classifier: Smoothing

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original :
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace : $P(A_i | C) = \frac{N_{ic} + 1}{N_c + C}$

 N_{ic} : The number of times of feature A_i occurred in C

 N_c : the number of examples in C

c: number of classes

Pros and Cons of Naïve Bayes Classifier

• Pros

- Easy to implement
- Very efficient
- Good results obtained in many applications
- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes

• Cons

- Independence assumption may not hold for some attributes (Could therefore loss of accuracy)
- Use other techniques such as Bayesian Belief Networks (BBN)

3) Support Vector Machines

 Find a linear hyperplane (decision boundary) that will separate the data

Copyright 2015 © Wong Limsoon, Li Xiaoli

Support Vector Machines

One Possible Solution

Support Vector Machines

Another possible solution

Support Vector Machines

Many other possible solutions

Support Vector Machines

• Which one is better? B1 or B2? How do you define better?

Copyright 2015 © Wong Limsoon, Li Xiaoli

Support Vector Machines

Find a hyperplane maximizing the margin $=>2^{2}B1$ is better than B2

Support Vector Machines

33

Support Vector Machines

- We want to maximize: Margin $=\frac{2}{\|\vec{w}\|^2}$
 - Which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$
 - But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 \end{cases}$$

 This is a constrained optimization problem, which can be solved by some numerical approaches, e.g., quadratic programming (QP)

Support Vector Machines

• What if the problem is not linearly separable?

• What if decision boundary is not linear?

36
Nonlinear Support Vector Machines

- Transform data into higher dimensional space
- Using "Kernel Trick", actual transformation need not be known
- Just compute similarity between two vectors in original space
- Some Kernels:

 $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^p$ $K(\mathbf{x}, \mathbf{y}) = \exp(-|\mathbf{x} - \mathbf{y}|^2 / (2\sigma^2))$

http://svmlight.joachims.org/

3. Classification Model Evaluation

All models are wrong, but some are useful!

- Wrong because it is a simplification of reality
- Useful if it may reach certain prediction accuracy

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation

 How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Copyright 2015 © Wong Limsoon, Li Xiaoli

40

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix (element -> #cases in test set):

	PREI	DICTED CI		
		Class=Yes	Class=No	a: TP (true positive) b: FN (false negativ
ACTUAL	Class=Yes	а	b	c: FP (false positive
ULASS	Class=No	С	d	d: TN (true negative

Metrics for Performance Evaluation

42

In the test set

Actual Prediction

Yes

Yes

No

Yes

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	а	b	
	Class=No	С	d	

a: TP (true positive)b: FN (false negative)c: FP (false positive)d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
ULASS	Class=No	c (FP)	d (TN)

- Most widely-used metric Accuracy: Accuracy = $\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$
- Error Rate = 1- Accuracy

Limitation of Accuracy

- Consider a 2-class problem (imbalanced classification)
 - spam detection
 - fraud detection
 - disease diagnostic
- Usually negative class = OK class positive class = not-OK class
- Assume in the test set
 - Number of negative examples = 9990
 - Number of positive examples = 10

Limitation of Accuracy

- Number of negative examples = 9990
- Number of positive examples = 10
- If model predicts everything to be negative class, accuracy is 9990/(9990+10) = 99.9 %

(TP=0, TN=9990, FP=0, FN=10)

- Accuracy is misleading because model does not detect any positive class example
- In the *imbalanced* cases, accuracy is not really a reliable metric

46

	PREDICTED CLASS		
ACTUAL	C(<i>i j</i>)	Class=Yes	Class=No
	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Cost/penalty means how much you need to pay if you suffer misclassification

	PREDICTED CLASS			
	C(i j) Class=Cancer Class=Norma			
ACTUAL	Class=Cancer	C(Cancer Cancer)	C(Normal Cancer) 99999?	
CLASS	Class=Normal	C(Cancer Normal) 100?	C(Normal Normal)	

It is **NOT acceptable** to misclassify cancer patients into normal, as it could delay the treatment

It is also **Not that acceptable** to misclassify normal patients into cancer – why?

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Accuracy = 80% Cost = -1*150+100*40+60*1+0*250 =3910 M1 is better

Model M ₂	PREDICTED CLASS		
		+	-
ACTUAL	+	250	45
OLAGO	-	5	200

Accuracy = 90% Cost = -1*250+100*45+1*5+0*200 =4255

AQ

Precision: We predict *a*+*c* cases as positives, out of which *a* cases are correct

Recall: There are a+b positive cases, out of which *a* cases are classified as positive correctly.

What is the precision and recall (by default wrt positive/cancer class)?

Precision-Recall Trade-off

- A predicts better than B if A has better recall and precision than B
- There is a trade-off between recall and precision

- In some apps, once you reach satisfactory precision, you optimize for recall
- In some apps, once you reach satisfactory recall, you optimize for precision

Exercise: Why is there a trade off betw recall and precision?

Copyright 2015 © Wong Limsoon, Li Xiaoli

Example of Precision, Recall and F-measure

p= a/(a+c)=40/(40+160)=20%,
 r=a/(a+b)=40/(40+60)=40%

• r is also called *sensitivity* or *true positive rate* (TPR)

• **Specificity** or *true negative rate* =d/(c+d)=5000/(160+5000) =96.9%

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation

 How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

Learning curve shows how accuracy changes with varying sample size Requires a sampling schedule for creating learning curve:

- Arithmetic sampling (Langley, et al.), e.g. 10, 20, 30
- Geometric sampling (Provost et al,), e.g. 2, 4, 8, 16, 32,...

Effect of small sample size:

Bias in the estimate

Variance of estimate

Methods of Estimation

Holdout

Reserve 2/3 for training and 1/3 for testing

Random subsampling

- Repeated holdout

Cross validation

- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n

Bootstrap

- Sampling with replacement

Cross Validation

5-fold cross validation

56

- Divide samples into k roughly equal disjoint parts
- Each part has similar proportion of samples from different classes
- Use each part to test other parts
- Average accuracy and F-measure etc

Requirements of Biomedical Classification

- High accuracy/sensitivity/specificity/precision
- High comprehensibility

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation

 How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

59

All the measures that we have mentioned can be used

- Accuracy
- Error Rate
- Precision
- Recall/sensitivity
- Specificity
- F-measure
- ROC

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between **positive hits** and **false alarms** [You hope you can escape from fire but do not want to be disturbed by false alarm]
- ROC curve plots TP rate (on the y-axis) against FP rate (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - Changing the threshold of algorithm (prob) changes the location of the point

How to Construct an ROC curve

61

Probabilistic classifier (IR system) can generate a probability value to indicate how likely a case/record belongs to positive class

Instance	P(+ A)	True Class	 Use classifier that produces
1	0.95	+	posterior probability for each test
2	0.93	+	Instance P(+ A)
3	0.87	-	 Sort the instances according to
4	0.85	-	P(+ A) in decreasing order
5	0.85	-	 Apply threshold t at each unique
6	0.85	+	value of P(+ A)
7	0.76	-	• Count the number of TP, FP,
8	0.53	+	IN, FN at each threshold
9	0.43	-	• TP rate, TPR = TP/(TP+FN)
10	0.25	+	• FP rate, FPR = FP/(FP + TN)

Copyright 2015 © Wong Limsoon, Li Xiaoli

TP rate and FP rate

62

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	TP	FN	
	Class=No	FP	TN	

Ideal:
TP=1
FP=0

•TP rate, TPR = TP/(TP+FN) =Recall (pos)

fraction of positives that I get back

• FP rate (false alarm ratio), FPR = FP/(FP + TN)

out of all the negatives, what is the fraction of mistakes (they are classified as positives)

63

ROC Curves

- By changing t, we get a range of sensitivities and specificities of a classifier
- A predicts better than B if A has better sensitivities than B at most specificities
- Leads to ROC curve that plots sensitivity vs. (1 – specificity)

Exercise: Draw a typical curve of sensitivity vs specificity

• Then the larger the area under the ROC curve, the better

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

Outlines

65

- 1. Decision Tree Ensembles
- 2. Other Machine Learning Approaches
 - kNN
 - NB
 - SVM
- 3. Classification Model Evaluation
- 4. Feature Selection

66

Image credit: Zaki

67

Curse of Dimensionality

 How much of each dimension is needed to cover a proportion r of total sample space?

- Calculate by $e_p(r) = r^{1/p}$
- So, to cover 10% of a 15-D space, need 85% of each dimension!

Exercise: Why $e_p(r) = r^{1/p}$?

Copyright 2015 © Wong Limsoon, Li Xiaoli

Consequence of the Curse

- Suppose the number of samples given to us in the total sample space is fixed
- Let the dimension increase
- Then the distance of the k nearest neighbours of any point increases
- Then the k nearest neighbours are less and less useful for prediction, and can confuse the k-NN classifier

Feature Selection

- Given a sample space of p dimensions
- It is possible that some dimensions are irrelevant
- Need to find ways to separate those dimensions (aka features) that are relevant (aka signals) from those that are irrelevant (aka noise)

Signal Selection (Basic Idea)

- Choose a feature w/ low intra-class distance (variance is smaller)
- Choose a feature w/ high inter-class distance (mean difference is bigger)

Signal Selection (e.g., t-statistics)

The t-stats of a signal is defined as

$$t = rac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$

where σ_i^2 is the variance of that signal in class *i*, μ_i is the mean of that signal in class *i*, and n_i is the size of class *i*.

A feature *f* can be considered better than a feature *f*' if $t(f, C_1, C_2) > t(f', C_1, C_2)$. Thus given a collection of candidate features in samples of C_1 and C_2 , we simply sort them by their *t*-test statistical measure, and pick those with the largest *t*-test statistical measures

Self-fulfilling Oracle

- Construct artificial dataset with 100 samples, each with 100,000 randomly generated features and randomly assigned class labels
- Select 20 features with the best tstatistics (or other methods)

- Evaluate accuracy by cross validation using the 20 selected features
- The resulting accuracy can be ~90%
- But the true accuracy should be 50%, as the data were derived randomly
What Went Wrong?

- The 20 features were selected from whole dataset
- Information in the held-out testing samples has thus been "leaked" to the training process
- The correct way is to re-select the 20 features at each fold; better still, use a totally new set of samples for testing

While **dimensionality reduction** is an important tool in machine learning/data mining, we must always be aware that it can *distort* the data in misleading ways.

Above is a two dimensional projection of an intrinsically three dimensional world....

Original photographer unknown/ See also www.cs.gmu.edu/~jessica/DimReducDanger.htm

© Eamonn Keogh

76

A cloud of points in 3D

In 2D XY we see a circle

Copyright 2015 © Wong Limsoon, Li Xiaoli

Thank You

Contact: xlli@i2r.a-star.edu.sg if you have questions

Copyright 2015 © Wong Limsoon, Li Xiaoli

References

- L. Breiman, et al. Classification and Regression Trees.
 Wadsworth and Brooks, 1984
- L. Breiman, Bagging predictors, Machine Learning, 24:123-140, 1996
- L. Breiman, Random forests, Machine Learning, 45:5-32, 2001
- J. R. Quinlan, Induction of decision trees, Machine Learning, 1:81-106, 1986
- J. R. Quinlan, C4.5: Program for Machine Learning. Morgan Kaufmann, 1993
- C. Gini, Measurement of inequality of incomes, The Economic Journal, 31:124-126, 1921
- Jinyan Li et al., Data Mining Techniques for the Practical Bioinformatician, *The Practical Bioinformatician*, Chapter 3, pages 35-70, WSPC, 2004

References

- Y. Freund, et al. Experiments with a new boosting algorithm, ICML 1996, pages 148-156
- T. G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning, 40:139-157, 2000
- Naïve Bayesian Classification, Wikipedia, http://en.wikipedia.org/wiki/Naive_Bayesian_classification
- Hidden Markov Model, Wikipedia, <u>http://en.wikipedia.org/wiki/Hidden_Markov_model</u>