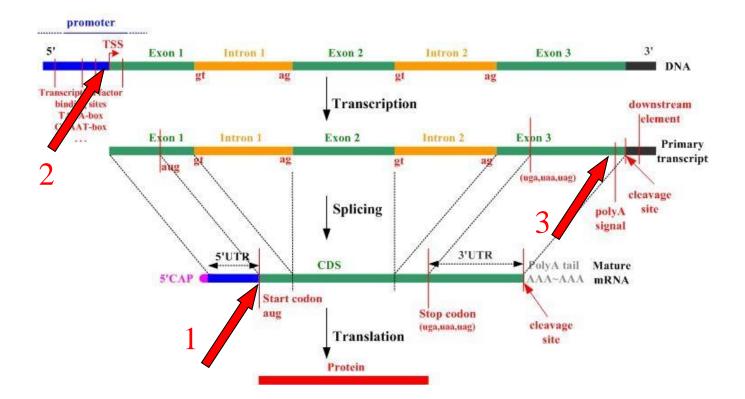
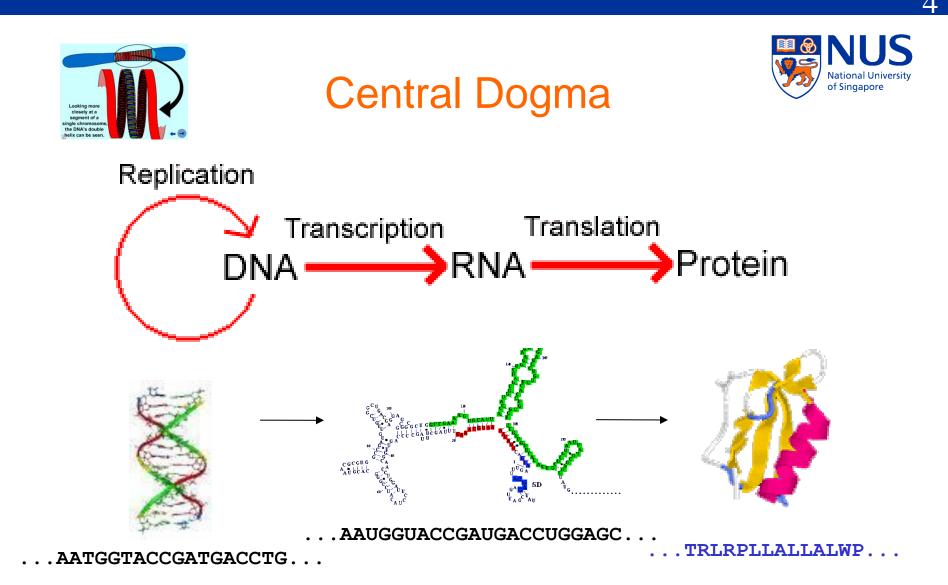
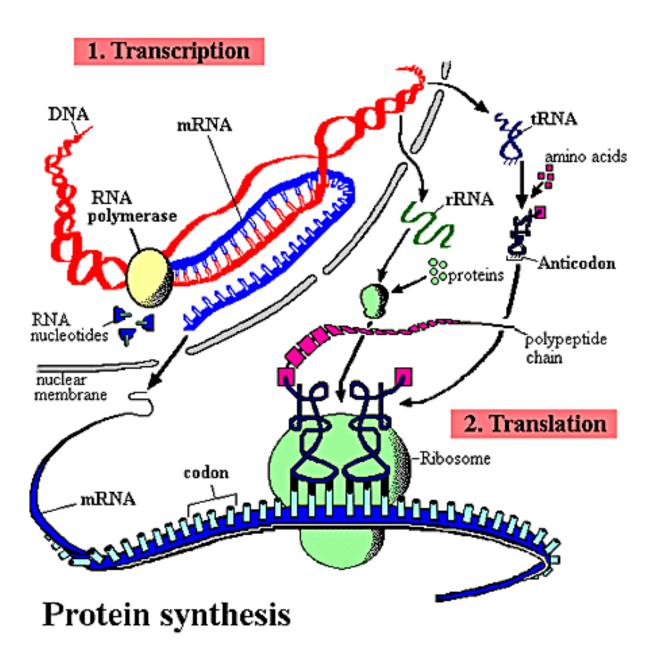
For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*, and Koh & Wong, "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences", *Proc GIW 2007*, pages 73--82

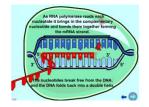

CS2220: Introduction to Computational Biology Unit 3: Gene Feature Recognition

Wong Limsoon





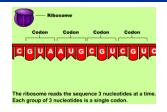
Some Relevant Biology



Copyright 2015 © Wong Limsoon

NUS National University of Singapore 5

Players in Protein Synthesis


Transcription

6

- Synthesize mRNA from one strand of DNA
 - An enzyme RNA polymerase temporarily separates doublestranded DNA
 - It begins transcription at transcription start site
 - $A \rightarrow A, C \rightarrow C, G \rightarrow G, \& T \rightarrow U$
 - Once RNA polymerase reaches transcription stop site, transcription stops

- Additional "steps" for Eukaryotes
 - Transcription produces pre-mRNA that contains both introns & exons
 - 5' cap & poly-A tail are added to pre-mRNA
 - RNA splicing removes introns & mRNA is made
 - mRNA are transported out of nucleus

Translation

- Synthesize protein from mRNA
- Each amino acid is encoded by consecutive seq of 3 nucleotides, called a codon
- The decoding table from codon to amino acid is called genetic code

- 4³=64 diff codons
- ⇒ Codons are not 1-to-1 corr to 20 amino acids
- All organisms use the same decoding table (except some mitochrondrial genes)
- Amino acids can be classified into 4 groups. A single-base change in a codon is usu insufficient to cause a codon to code for an amino acid in diff group

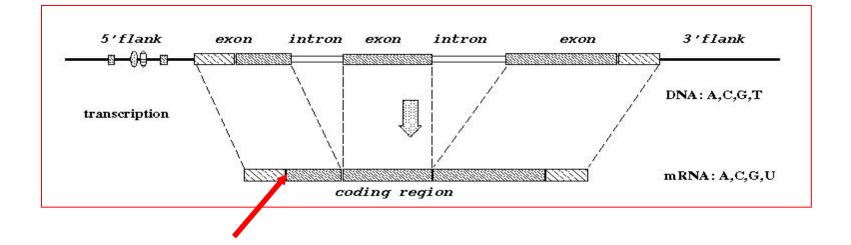
Genetic Code

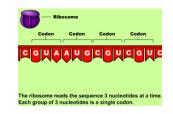
- Start codon
 - ATG (code for M)
- Stop codon
 - TAA
 - TAG
 - TGA

			Second Pos	sition of Codon			
		Т	С	А	G		
	\square	TTT Phe [F]	TCT Ser [S]	TAT Tyr [Y]	TGT Cys [C]	Т	
	т	TTC Phe [F]	TCC Ser [S]	TAC Tyr [Y]	TGC Cys [C]	c	
	L	TTA Leu [L]	TCA Ser [S]	TAA Ter [end]	TGA Ter [end]	A	
F		TTG Leu [L]	TCG Ser [S]	TAG Ter [end]	TGG Trp [W]	G	
i r	\square	CTT Leu [L]	CCT Pro [P]	CAT His [H]	CGT Arg [R]	Т	1
s		CTC Leu [L]	CCC Pro [P]	CAC His [H]	CGC Arg [R]	\mathbf{c}	
t	C	CTA Leu [L]	CCA Pro [P]	CAA Gln [Q]	CGA Arg [R]	A	
Р		CTG Leu [L]	CCG Pro [P]	CAG Gln [Q]	CGG Arg [R]	G	
0	\square	ATT Ile [I]	ACT Thr [T]	AAT Asn [N]	AGT Ser [S]	Т	
s i		ATC Ile [I]	ACC Thr [T]	AAC Asn [N]	AGC Ser [S]	\mathbf{c}	
t	A	ATA lle [I]	ACA Thr [T]	AAA Lys [K]	AGA Arg [R]	A	
i		ATG Met [M]	ACG Thr [T]	AAG Lys [K]	AGG Arg [R]	G	
o n		GTT Val [V]	GCT Ala [A]	GAT Asp [D]	GGT Gly [G]	Т	
	G	GTC Val [V]	GCC Ala [A]	GAC Asp [D]	GGC Gly [G]	\mathbf{c}	
	G	GTA Val [V]	GCA Ala [A]	GAA Glu [E]	GGA Gly [G]	A	
		GTG Val [V]	GCG Ala [A]	GAG Glu [E]	GGG Gly [G]	G	

Example of computational translation - notice the indication of (alternative) start-codons:

VIRTUAL RIBOSOME
 Translation table: Standard SGC0
>Seq1 Reading frame: 1
M V L S A A D K G N V K A A W G K V G G H A A E Y G A E A L 5' ATGGTGCTGTCTGCCGCCGACAAGGGCAATGTCAAGGCCGCCTGGGGGCAAGGTTGGCGGCCACGCTGCAGAGTATGGCGCAGAGGCCCTG 90 >>>))))))
E R M F L S F P T T K T Y F P H F D L S H G S A Q V K G H G 5' GAGAGGATGTTCCTGAGCTTCCCCACCACGAGACCTACTTCCCCCACTTCGACCTGAGCCACGGCTCCGCGCAGGTCAAGGGCCACGGC 180))))))
A K V A A A L T K A V E H L D D L P G A L S E L S D L H A H 5' GCGAAGGTGGCCGCCGCGCGCGAAAGCGGTGGAACACCTGGACGACCTGCCCGGTGCCCTGTCTGAACTGAGTGACCTGCACGCTCAC 270)))))))))))))))
K L R V D P V N F K L L S H S L L V T L A S H L P S D F T P 5' AAGCTGCGTGTGGACCCGGTCAACTTCAAGCTTCTGAGCCACTCCCTGGTGGACCCTGGCCTCCCACCTCCCCAGTGATTTCACCCCC 360)))))))))))))
A V H A S L D K F L A N V S T V L T S K Y R * 5' GCGGTCCACGCCTCCCTGGACAAGTTCTTGGCCAACGTGAGCACCGTGCTGACCTCCAAATACCGTTAA 429))))))))))))
Annotation key: >>> : START codon (strict)))) : START codon (alternative) *** : STOP


Recognition of Translation Initiation Sites


An introduction to the World's simplest TIS recognition system

Translation Initiation Site

Copyright 2015 © Wong Limsoon

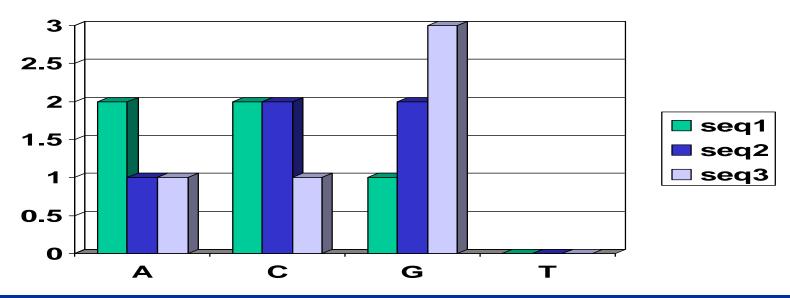
A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC <u>ATG</u> GCTGAACACTGACTCCCAGCTGTG	80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC <u>ATG</u> GCTTTTGGCTGTCAGGGCAGCTGTA	160
GGAGGCAG <mark>ATG</mark> AGAAGAGGGAG <mark>ATG</mark> GCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
ieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

• What makes the second ATG the TIS?

Approach

- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...


Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts

Signal Generation

- K-grams (ie., k consecutive letters)
 - K = 1, 2, 3, 4, 5, ...
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame

Signal Generation: An Example

- Window = ± 100 bases
- In-frame, downstream
 - GCT = 1, TTT = 1, ATG = 1...
- Any-frame, downstream
 - GCT = 3, TTT = 2, ATG = 2...
- In-frame, upstream

- GCT = 2, TTT = 0, ATG = 0, ...

Exercise: Find the in-frame downstream ATG

Exercise: What are the possible k-grams (k=3) in this sequence?

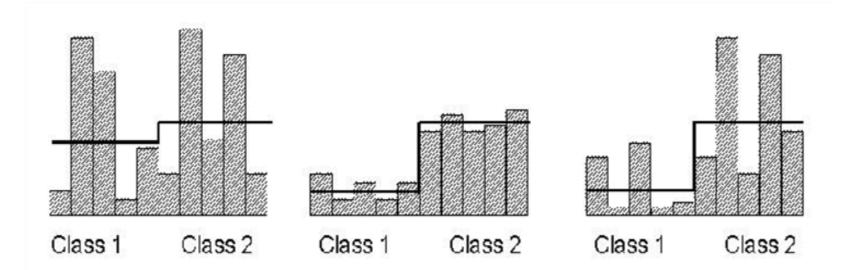
Feature Generation - Summary

Raw Data

An ATG segment – positive sample

> 206 +1_Index(56)

A feature vector --- upstream/downstream inframe 3 grams


Too Many Features

- For each value of k, there are 4^k * 3 * 2 k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 + 1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms

Signal Selection (Basic Idea)

- Choose a signal w/ low intra-class distance
- Choose a signal w/ high inter-class distance

Signal Selection (e.g., t-statistics)

The t-stats of a signal is defined as $t = \frac{|\mu_1 - \mu_2|}{t}$

$$\iota = \overline{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$

where σ_i^2 is the variance of that signal in class i, μ_i is the mean of that signal in class i, and n_i is the size of class i.

Signal Selection (e.g., MIT-correlation)

The MIT-correlation value of a signal is defined as

$$MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}$$

where σ_i is the standard deviation of that signal in class *i* and μ_i is the mean of that signal in class *i*.

Signal Selection (e.g., χ2)

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^2 = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, kthe number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

 Suppose you have a sample of 50 men and 50 women and the following weight distribution is observed:

	obs	exp	(obs – exp)²/exp
НМ	40	60*50/100=30	3.3
HW	20	60*50/100=30	3.3
LM	10	40*50/100=20	5.0
LW	30	40*50/100=20	5.0

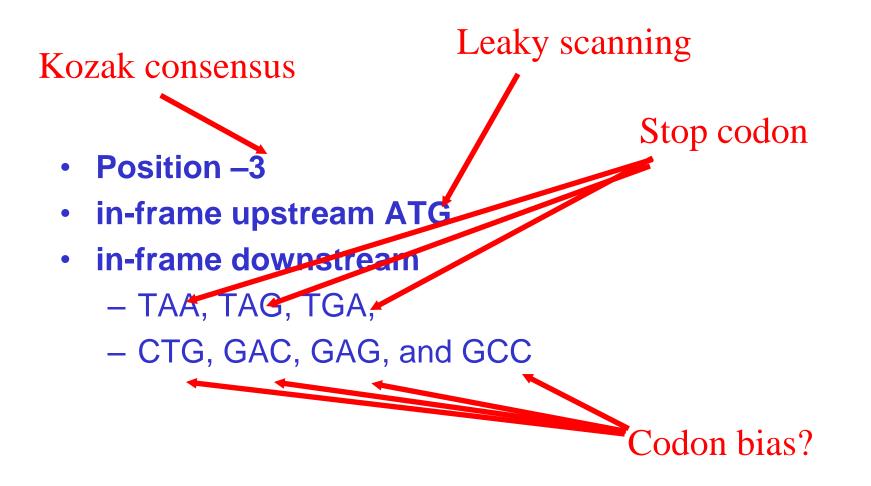
 $\chi 2=16.6$ P = 0.00004, df = 1 So weight and sex are not indep

 Is weight a good attribute for distinguishing men from women?

Signal Selection (e.g., CFS)

- Instead of scoring individual signals, how about scoring a group of signals as a whole?
- CFS
 - Correlation-based Feature Selection
 - A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?


Distributions of Two Example 3-Grams

Name: INFRAME_UPSTREAM_ATG Missing: 0 (0%) Distinct:	Type: Numeric 11 Unique: 1 (0%)	Name: INFRAM Missing: 0 (0%)	IE_UPSTREAM_CTT Distinct:		
Statistic	Value	Statistic		Value	(
Minimum	0	Minimum		0	
Maximum	10	Maximum		6	
Mean	0.585	Mean		0.419	
StdDev	0.874	StdDev		0.695	
Class: Class (Nom)	Visualize All	Class: Class (Nom)		~	Visualize All
$\chi 2 = 1$	672.97447)	$\chi 2 = 0$	
0	5 10	0		3	6

• Which is the better one?

Sample k-grams Selected by CFS for Recognizing TIS

Signal Integration

- kNN
 - Given a test sample, find the k training samples that are most similar to it. Let the majority class win
- SVM
 - Given a group of training samples from two classes, determine a separating plane that maximises the margin of error
- Naïve Bayes, ANN, C4.5, ...

Results (3-fold x-validation)

	predicted	predicted
	as positive	as negative
positive	TP	FN
negative	FP	TN

Exercise: What is TP/(TP+FP)?

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Improvement by Voting

• Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
Worst of 4	73.9%	86.1%	66.3%	85.7%

Improvement by Scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That's the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

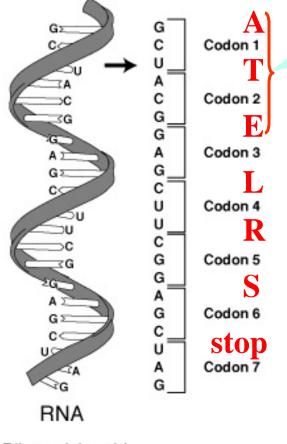
	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
NB+Scanning	87.3%	96.1%	87.9%	93.9%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%

Performance Comparisons

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

* result not directly comparable

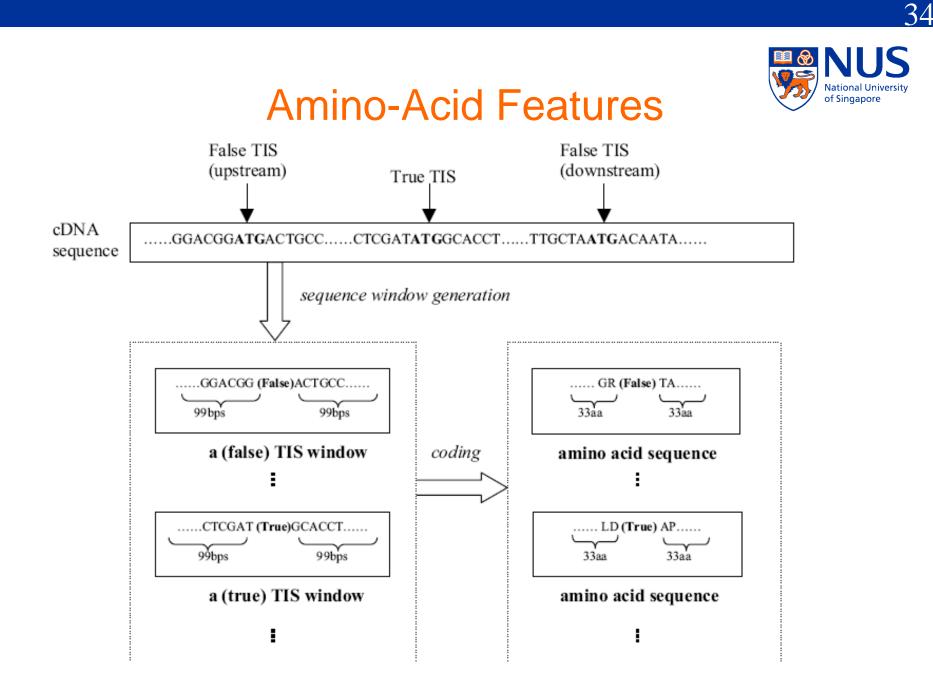
Technique Comparisons


- Pedersen&Nielsen [ISMB'97]
 - Neural network
 - No explicit features
- Zien [Bioinformatics'00]
 - SVM+kernel engineering
 - No explicit features
- Hatzigeorgiou [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

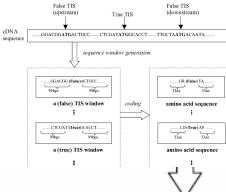
• Our approach

- Explicit feature generation
- Explicit feature selection
- Use any machine learning method w/o any form of complicated tuning
- Scanning rule is optional

mRNA->protein



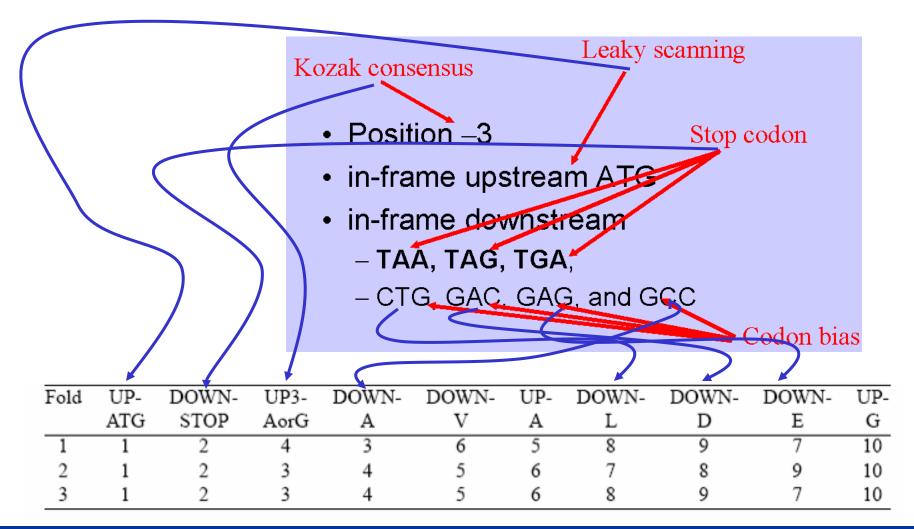
Ribonucleic acid


Exercise: List the first 10 amino acid in our example sequence

How about using k-grams from the translation?

First	U	С	Α	G	Last
U	Phe F	Ser S	Tyr 🗸	Суз	U
	Phe	Ser	Tyr	Суз	С
	Leu T.	Ser	Stop (Ochre)	Stop (Umber)	Α
	Leu	Ser	Stop (Amber)	Trp 🚺	G
С	Leu	Pro P	His H	Arg R	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gin 이	Arg	Α
	Leu	Pro	Gin	Arg	G
Α	Ile 🗕	Thr 📊	Asn N	Ser	U
	Ile 📥	Thr 📩	Asn	Ser	С
	lle	Thr	Lys K	Arg	Α
	Met M	Thr	Lys	Arg	G
G	Val V	Ala 🗛	Asp D	Gly G	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu 🖪	Gly	Α
	Val	Ala	Glu	Gly	G

Amino-Acid Features



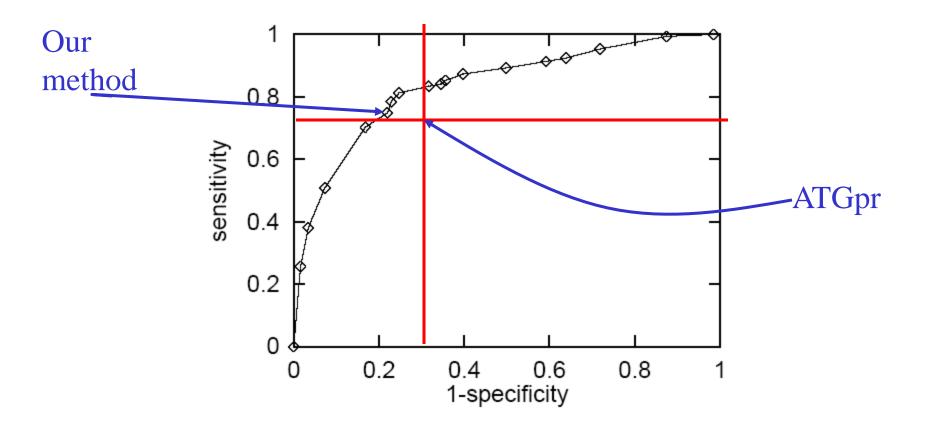
35

e space (total of 927 fe	atures + class lab	oel)
882 2-gram amino acid patterns	3 bio-know- ledge patterns	class label
UP-AA, UP-AR,, UP-NN, DOWN-AA, DOWN-AR ,, DOWN-NN (numeric type)	DOWN4-G UP3-AorG, UP-ATG (boolean type, Y or N)	True, False
Frequency as val	ues	
6, 2, 7, 0, 5,	N, N, N,	False
2, 0, 3, 10, 0,	Υ, Υ, Υ,	True
	882 2-gram amino acid patterns UP-AA, UP-AR,, UP-NN, DOWN-AA, DOWN-AR,, DOWN-AR,, DOWN-NN (numeric type) Frequency as val 6, 2, 7, 0, 5,	acid patternsledge patternsUP-AA, UP-AR,, UP-NN, DOWN-AA, DOWN-AR ,, DOWN-NN (numeric type)DOWN4-G UP3-AorG, UP-ATG (boolean type, Y or N)Frequency as values6, 2, 7, 0, 5,N, N, N,

Amino Acid K-grams Discovered (by entropy)

Independent Validation Sets

- A. Hatzigeorgiou:
 - 480 fully sequenced human cDNAs
 - 188 left after eliminating sequences similar to training set (Pedersen & Nielsen's)
 - 3.42% of ATGs are TIS
- Our own:
 - well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)



Validation Results (on Hatzigeorgious

Algorithm	Sensitivity	Specificity	Precision	Accuracy
SVMs(linear)	96.28%	89.15%	25.31%	89.42%
SVMs(quad)	94.14%	90.13%	26.70%	90.28%
Ensemble Trees	92.02%	92.71%	32.52%	92.68%
ot n c /1' - \	0.5.010/	00 5 10/	A 4 600 /	00.000/

 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's dataset

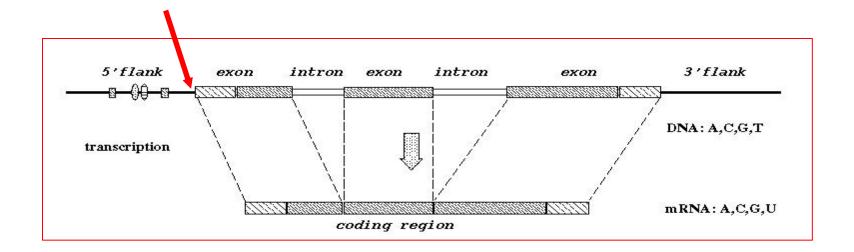
 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's 39

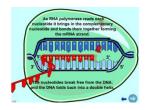
About the Inventor: Huiqing Liu

Huiqing Liu

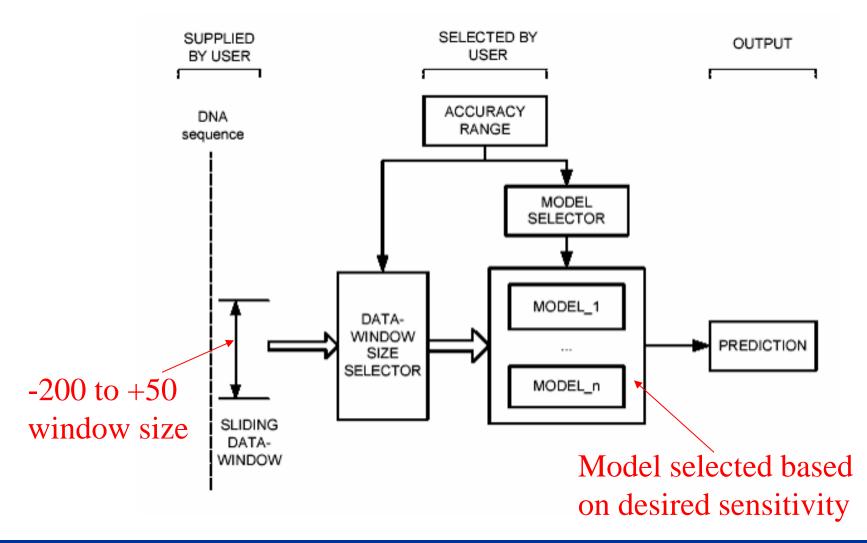
- PhD, NUS, 2004
- Currently Senior
 Scientist at Centocor
- Asian Innovation
 Gold Award 2003
- New Jersey Cancer Research Award for Scientific Excellence 2008

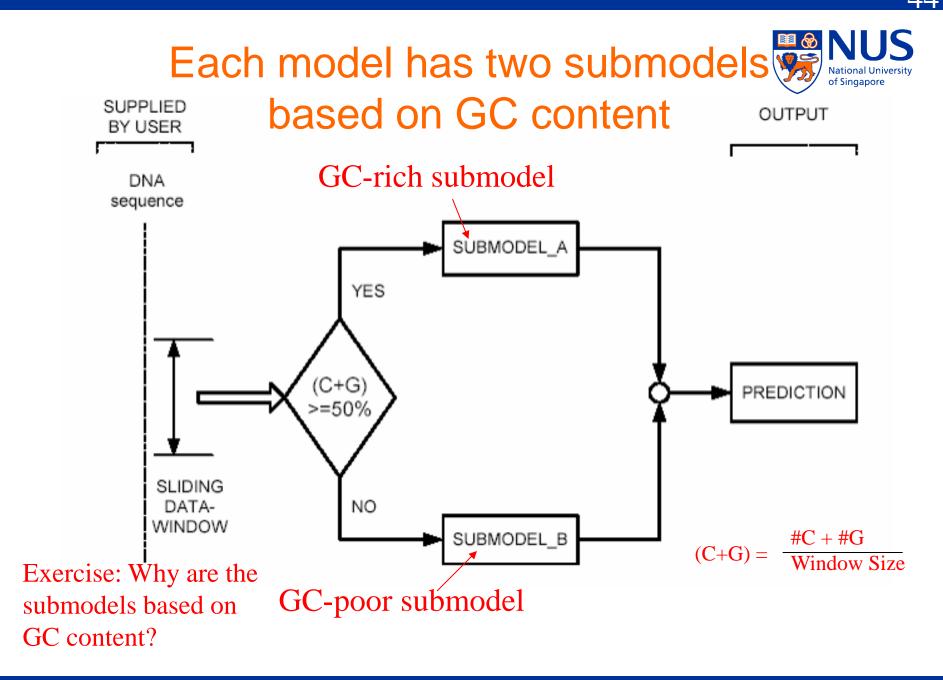
- Gallo Prize 2008


Recognition of Transcription Start Sites

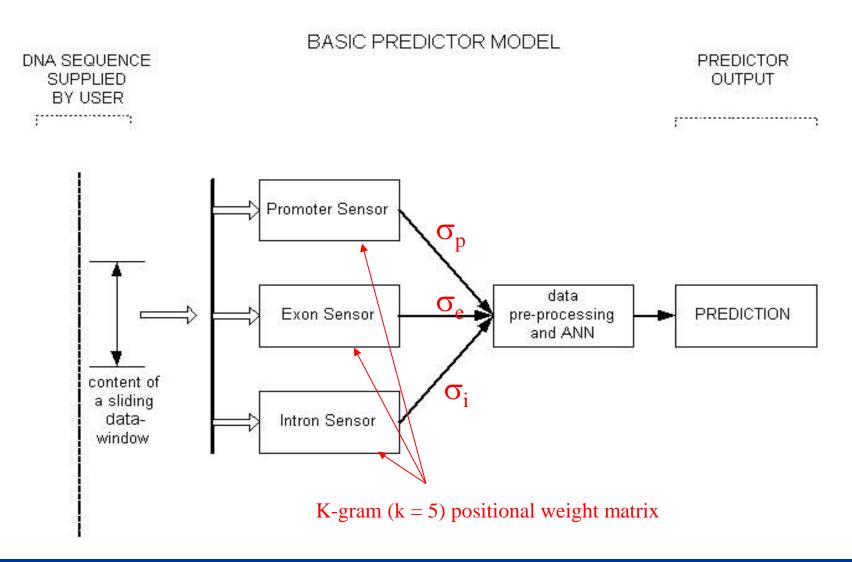

An introduction to the World's best TSS recognition system: A heavy tuning approach

Transcription Start Site




Copyright 2015 © Wong Limsoon

Structure of Dragon Promoter Finder



Copyright 2015 © Wong Limsoon

Data Analysis Within Submodel

Promoter, Exon, Intron Sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively Pentamer at ith

Window size
$$\left(\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}\right)$$
, $p_j^i \otimes f_{j,i} = \begin{cases} f_{j,i}, \text{ if } p_i = p_j^i \\ f_{j,i}, \text{ if } p_i = p_j^i \end{cases}$, $0, \text{ if } p_i \neq p_j^i$, $j^{\text{th pentamer at ith position in training window}}$

46

Just to make sure you know what I mean??.

- Give me 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG
- Then

1-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9	pos10
Α	3/3	0/3	0/3							
С	0/3	1/3	1/3		Exerc	ise: Fil	l in the	rest of t	he table	
G	0/3	2/3	0/3							
Т	0/3	0/3	2/3							

Just to make sure you know what I mean??.

- Give me 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG
- Then

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

2-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9
AA	0/3	0/3	0/3						
AC	1/3	0/3	0/3		Exerci	se: Fill	in the re	est of th	e table
TT	0/3	0/3	1/3				1/3		

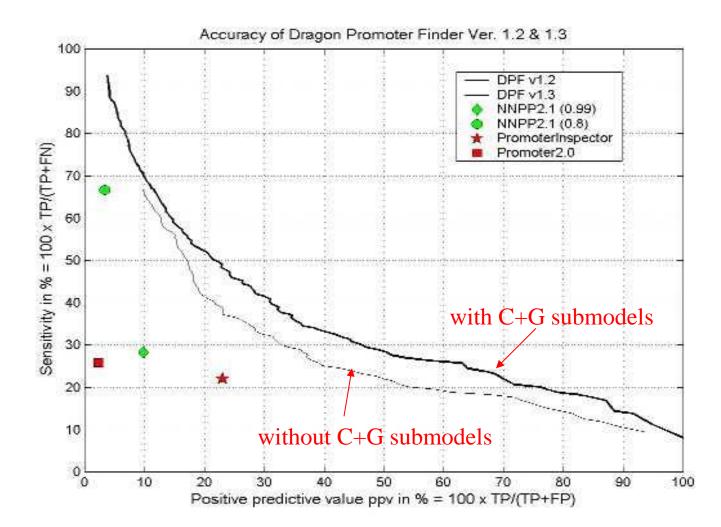
Data Preprocessing & ANN

Tuning parameters

$$s_{E} = sat(\sigma_{p} - \sigma_{e}, a_{e}, b_{e}),$$

$$s_{I} = sat(\sigma_{p} - \sigma_{i}, a_{i}, b_{i}),$$

$$s_{EI} = sat(\sigma_{e} - \sigma_{i}, a_{ei}, b_{ei}),$$


where the function sat is defined by

$$sat(x,a,b) = \begin{cases} a, if & x > a \\ x, if & b \le x \le a. \\ b, if & b > x \end{cases}$$

Simple feedforward ANN trained by the Bayesian regularisation method W Tuned tanh(net $\mathbf{S}_{\mathbf{E}}$ threshold SI SIF $tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$ net = $\sum s_i * w_i$

Accuracy Comparisons

Training Data Criteria & Preparation

- Contain both positive and negative sequences
- Sufficient diversity, resembling different transcription start mechanisms
- Sufficient diversity, resembling different nonpromoters
- Sanitized as much as possible

TSS taken from

- 793 vertebrate promoters from EPD
- -200 to +50 bp of TSS
- non-TSS taken from
 - GenBank,
 - 800 exons
 - 4000 introns,
 - 250 bp,
 - non-overlapping,
 - <50% identities</p>

Tuning Data Preparation

 To tune adjustable system parameters in Dragon, we need a separate tuning data set TSS taken from

- 20 full-length gene seqs with known TSS
- -200 to +50 bp of TSS
- no overlap with EPD
- Non-TSS taken from
 - 1600 human 3'UTR seqs
 - 500 human exons
 - 500 human introns
 - 250 bp
 - no overlap

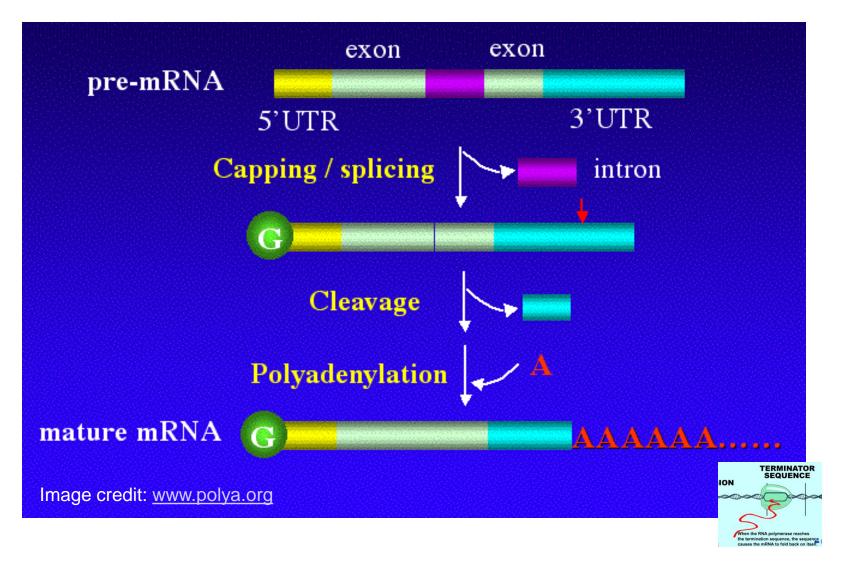
- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities

- 159 TSS from 147 human and human virus seqs
- cummulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.

About the Inventor: Vlad Bajic

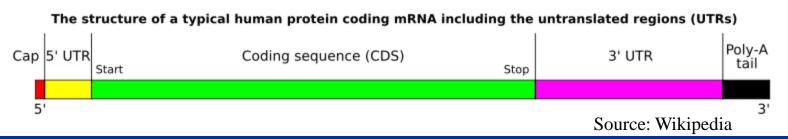
• Vladimir B. Bajic

- Principal Scientist,
 I²R, 2001-2006
- Currently Director & Professor,
 Computational
 Bioscience Research
 Center, KAUST

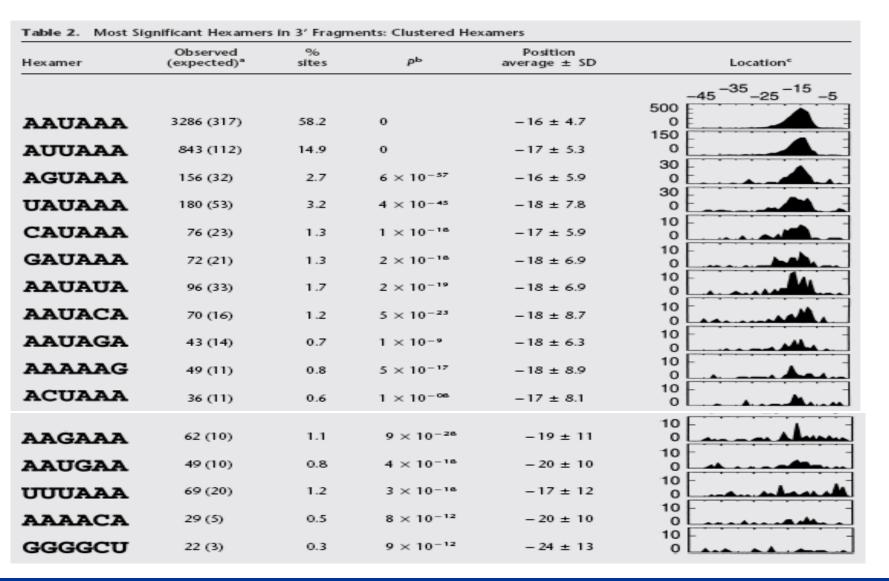

Recognition of Poly-A Signal Sites

A twist to the "feature generation, feature selection, feature integration" approach

Eukaryotic Pre-mRNA Processing


Copyright 2015 © Wong Limsoon

Polyadenylation in Eukaryotes


- Addition of poly(A) tail to RNA
 - Begins as transcription finishes
 - 3'-most segment of newly-made RNA is cleaved off
 - Poly(A) tail is then synthesized at 3' end

- Poly(A) tail is impt for nuclear export, translation & stability of mRNA
- Tail is shortened over time. When short enough, the mRNA is degraded

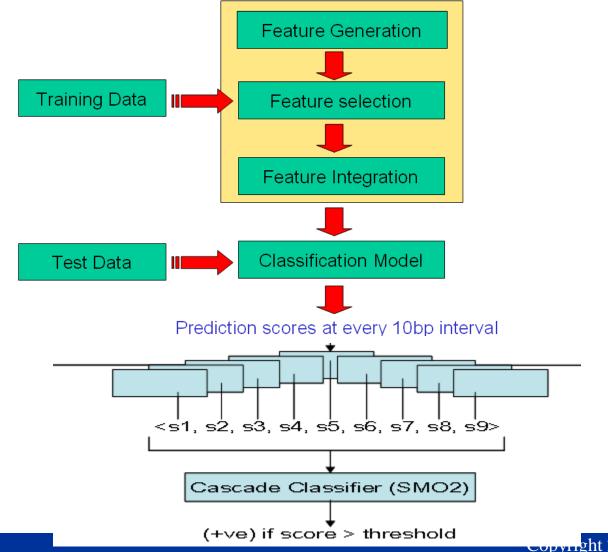
Copyright 2015 © Wong Limsoon

Poly-A Signals in Human (Gautheret et al., 20

58

National University of Singapore

Poly-A Signals in Arabidopsis



59

Table 2. Most Si	gnificant Hexamer	s in 3' Fragm	ents: Clustered He	xamers	
Hexamer	Observed (expected)*	% sites	рь	Position average ± SD	Location ^c
					-45 ⁻³⁵ -25 ⁻¹⁵ -5
AAUAAA	3286 (317)	58.2	0	-16 ± 4.7	150
AUUAAA	843 (112)	14.9	0	-17 ± 5.3	0
AGUAAA	156 (32)	2.7	6×10^{-57}	-16 ± 5.9	30
UAUAAA	180 (53)	3.2	4 × 10-45	-18 ± 7.8	30
CAUAAA	76 (23)	1.3	1×10^{-16}	-17 ± 5.9	
GAUAAA	72				10
AAUAUA	96 In	contra	ist to hun	ian, PAS ir	Arab is
AAUACA	70 6:				
	20 hi	ahlv da	egenerate	F σ only	10% of
AAUAGA	43 hi		U	. E.g., only	
AAUAGA AAAAAG			U	e. E.g., only s AAUAAA	
	43		U		
AAAAAG	43 49	A	rab PAS i	s AAUAAA	
AAAAAG ACUAAA	43 49 36 (11)	0.6	rab PAS i	S AAUAA -17 ± 8.1	
AAAAAG ACUAAA AAGAAA	43 49 36 (11) 62 (10)	0.6 1.1	$\frac{1 \times 10^{-\infty}}{9 \times 10^{-20}}$	S AAUAAA -17 ± 8.1 -19 ± 11	
AAAAAG ACUAAA AAGAAA AAUGAA	43 49 36 (11) 62 (10) 49 (10)	0.6 1.1 0.8	rab PAS i $1 \times 10^{-\infty}$ 9×10^{-28} 4×10^{-18}	S AAUAAA -17 ± 8.1 -19 ± 11 -20 ± 10	
AAAAAG ACUAAA AAGAAA AAUGAA UUUAAA	43 49 36 (11) 62 (10) 49 (10) 69 (20)	0.6 1.1 0.8 1.2	rab PAS i $1 \times 10^{-\infty}$ 9×10^{-28} 4×10^{-18} 3×10^{-18}	S AAUAAA -17 \pm 8.1 -19 \pm 11 -20 \pm 10 -17 \pm 12	

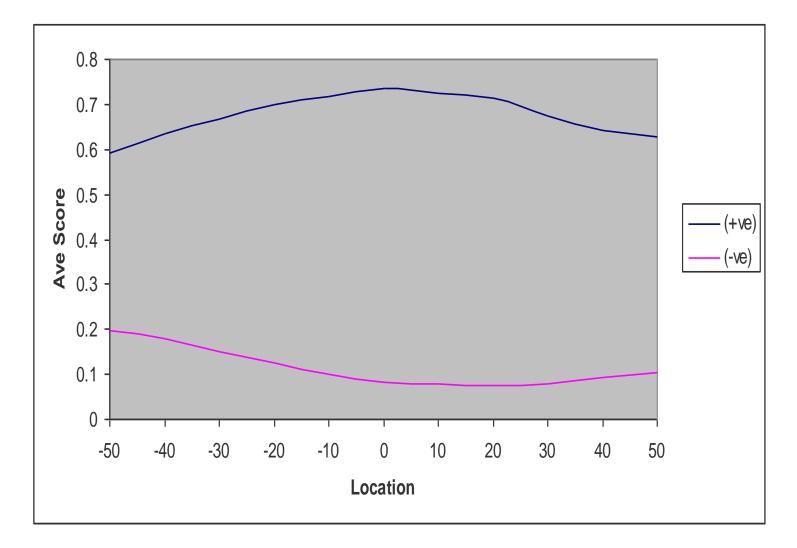
Approach on Arab PAS Sites (I)

Copyright 2015 © Wong Limsoon

Approach on Arab PAS Sites (II)

- Data collection
 - #1 from Hao Han, 811+ve seq (-200/+200)
 - #2 from Hao Han, 9742-ve seq (-200/+200)
 - #3 from Qingshun Li,
 - 6209 (+ve) seq (-300/+100)
 - 1581 (-ve) intron (-300/+100)
 - 1501 (-ve) coding (-300/+100)
 - 864 (-ve) 5'utr (-300/+100)

Feature generation


- 3-grams, compositional features (4U/1N. G/U*7, etc)
- Freq of features above in 3 diff windows: (-110/+5), (-35/+15), (-50/+30)
- Feature selection

- χ2

- Feature integration & Cascade
 - -SVM

Score Profile Relative to Candidate Site

Copyright 2015 © Wong Limsoon

Validation Results

SN_0	SMO 1		SMO 2		PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	90%	0.26	94%	0.24	95%	3.7
5'UTR	79%	0.42	85%	0.49	78%	5.5
Intron	64%	0.59	71%	0.67	63%	6.3

Table 2. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_10.

SN_10	SMO 1		SM	10 2	PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	94%	0.36	96%	0.31	96%	4
5'UTR	86%	0.53	89%	0.6	81%	5.7
Intron	73%	0.68	77%	0.77	67%	б.б

Table 3. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_30.

SN_30	SMO 1		SMO 2		PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	97%	0.44	97%	0.37	97%	4.3
5'UTR	90%	0.62	92%	0.67	84%	6.2
Intron	79%	0.75	83%	0.81	72%	6.8

About the Inventor: Koh Chuan Hock

Koh Chuan Hock

- BComp (CB), NUS, 2008
- PhD, NUS, 2012
- Currently Data
 Scientist at Indeed
 Inc, Japan

Concluding Remarks...

What have we learned?

- Gene feature recognition applications
 TIS, TSS, PAS
- General methodology
 - "Feature generation, feature selection, feature integration"
- Important tactics
 - Multiple models to optimize overall performance
 - Feature transformation (DNA \rightarrow amino acid)
 - Classifier cascades

Any Question?

Acknowledgements

• The slides for PAS site prediction are adapted from slides given to me by Koh Chuan Hock

References (TIS Recognition)

- A. G. Pedersen, H. Nielsen, "Neural network prediction of translation initiation sites in eukaryotes", *ISMB* 5:226--233, 1997
- A. Zien et al., "Engineering support vector machine kernels that recognize translation initiation sites", *Bioinformatics* 16:799--807, 2000
- A. G. Hatzigeorgiou, "Translation initiation start prediction in human cDNAs with high accuracy", *Bioinformatics* 18:343--350, 2002
- J. Li et al., "Techniques for Recognition of Translation Initiation Sites", *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004

References (TSS Recognition)

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003
- J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997
- M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB 297:599--606, 2000
- V. B. Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical Bioinformatician*, Chapter 7, pages 157—165, 2004

References (PAS Recognition)

- Q. Li et al., "Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures". *Plant Physiology*, 138:1457-1468, 2005
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences". *Gene*, 231:77-86, 1999
- M. Legendre, D. Gautheret, "Sequence determinants in human polyadenylation site selection". *BMC Genomics*, 4:7, 2003
- B. Tian et al., "Prediction of mRNA polyadenylation sites by support vector machine". *Bioinformatics*, 22:2320-2325, 2006
- C. H. Koh, L. Wong. "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences". *Proc. GIW 2007*, pages 73--82

References (Feature Selection)

- M. A. Hall, "Correlation-based feature selection machine learning", PhD thesis, Dept of Comp. Sci., Univ. of Waikato, New Zealand, 1998
- U. M. Fayyad, K. B. Irani, "Multi-interval discretization of continuous-valued attributes", *IJCAI* 13:1022-1027, 1993
- H. Liu, R. Sentiono, "Chi2: Feature selection and discretization of numeric attributes", *IEEE Intl. Conf. Tools with Artificial Intelligence* 7:338--391, 1995