
CS2220: Introduction to Computational Biology 

Unit 6: Essence of Sequence Comparison 

Wong Limsoon 

For written notes on this lecture, please read chapter 10 of The Practical Bioinformatician, ond chapter 2 and 5 

of Algorithms in Bioinformatics. 
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Plan  

• Dynamic Programming 

• String Comparison 

 

• Sequence Alignment 

– Pairwise Alignment 

• Needleman-Wunsch global alignment algorithm  

• Smith-Waterman local alignment algorithm 

• Scoring function 

– Multiple Alignment  

 

• Popular tools 

– FASTA, BLAST, Pattern Hunter 



What is Dynamic Programming 
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Knapsack problem 

 

• Each item that can go into the knapsack has a 

size and a benefit 

 

• The knapsack has a certain capacity  

 

• What should go into the knapsack to maximize 

the total benefit?  



5 

Copyright 2015 © Wong Limsoon 

Formulation of a solution 

• Intuitively, to fill a w pound knapsack, we must 

end off by adding some item. If we add item j, we 

end up with a knapsack k’ of size w  wj  to fill … 

 

 

 

 

• Where 

– wj and bj be weight and benefit for item j 

– g(w) is max benefit that can be gained from a w- 

pound knapsack 

 

Source: http://mat.gsia.cmu.edu/classes/dynamic/node6.html 

Why is g(w) 

optimal? 
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Example: Direct recursive evaluation 

65 

30 

65 30 

80 

g(5) 

g(4) g(3) g(2) 

65 80 30 

65 

g(2) g(0) g(1) 

g(0) g(0) 

30 

g(1) 

30 

g(0) 

65 

g(0) 

30 

g(1) 

30 

g(0) 

65 80 30 

g(3) g(1) g(2) 

g(0) 

30 

g(1) 

30 

g(0) 

30 

g(0) 

65 80 30 

g(2) g(0) g(1) 

30 

g(0) 

65 

g(0) 

30 

g(1) 

30 

g(0) 

160 160 160 

• g(1), g(2), … are computed many times 
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“Memoize” to avoid recomputation 

80 

80 

30 

30 

65 30 

80 

g(5) 

g(4) g(3) 

65 30 

65 
g(2) g(0) g(1) 

g(0) g(0) 

65 

160 160 

int s[]; s[0] := 0; 

g’(w) = if s[w] is defined 

     then return s[w]; 

     else {  

          s[w] := maxj{bj + g’(w – wj)}; 

          return s[w]; } 
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Remove recursion: Dynamic programming 

int s[]; s[0] := 0; 

g’(w) = if s[w] is defined 

     then return s[w]; 

     else {  

          s[w] := maxj{bj + g’(w – wj)}; 

          return s[w]; } 

int s[]; s[0] := 0; s[1] := 30; 

s[2] := 65; s[3] = 95; 

for i := 4 .. w do  

     s[i] := maxj{bj + s[i – wj]}; 

 return s[w];  

g(0) = 0  

g(1) = 30, item 3  

g(2) = max{65 + g(0) =65, 30 + g(1) = 60} = 65, item 1 

g(3) = max{65 + g(1) = 95, 80 + g(0) = 80, 30 + g(2) = 95} 

= 95, item 1/3  

g(4) = max{65 + g(2) = 130, 80 + g(1) = 110, 30 + g(3) = 

125} = 130, item 1 

g(5) = max{65 + g(3) = 160, 80 + g(2) = 145, 30 + g(4) = 

160} = 160, item 1/3 

80 

80 

30 

30 

65 30 

80 

g(5) 

g(4) g(3) 

65 30 

65 
g(2) g(0) g(1) 

g(0) g(0) 

65 

160 160 



Sequence Alignment 
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Why we compare sequences 

• The structure of a protein defines its function 

– In order for a protein to have a specific function, it 

must satisfy specific structural constraints 

 

• Protein evolves  amino acid seq changes  

protein structure changes  breaks those 

structural constraints  protein loses function 

 

• The more similar two proteins’ amino acid 

sequences are, the more likely they come from 

the same ancestor  the more likely they have 

the same structure and function 
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Earliest research in seq comparison 

• Doolittle et al. (Science, July 1983) searched for 

platelet-derived growth factor (PDGF) in his own 

DB. He found that PDGF is similar to v-sis 

oncogene 

 

 PDGF-2  1       SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34 

p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100 

Source: Ken Sung 
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Sequence alignment 

• Key aspect of seq 

comparison is seq 

alignment 

 

• A seq alignment 

maximizes the 

number of 

positions that are in 

agreement in two 

sequences 

Sequence U 

Sequence V 

mismatch 

match 

indel 
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Applications of sequence comparison 

• Infer protein function 

– When two protein look similar, we conjecture they 

come from the same ancestor and inherit the 

ancestor’s function 

• Find evolution distance between two species 

– Evolution modifies the DNA of species  

Similarity of their genome correlates with their 

evolutionary distance 

• Help genome assembly 

– Human genome project reconstructs the whole 

genome based on overlapping info of a huge 

amount of short DNA pieces 
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Sequence alignment: Poor example 

• Poor seq alignment shows few matched positions 

  The two proteins are not likely to be homologous 

No obvious match between  

Amicyanin and Ascorbate Oxidase 
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Sequence alignment: Good example 

• Good alignment usually has clusters of extensive 

matched positions 

  The two proteins are likely to be homologous 

good match between  

Amicyanin and unknown M. loti protein 
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h 

Alignment: 

Simple-minded probability & score 

• Define score S(A) by simple log likelihood as 

– S(A) = log(prob(A)) - [m log(s) + h log(s)], with 

log(p/s) = 1 

• Then S(A) = #matches -  #mismatches -  #indels 

Exercise: Derive  and   
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Global pairwise alignment: 

Problem definition 

 

• The problem of finding a global pairwise 

alignment is to find an alignment A so that S(A) is 

max among exponential number of possible 

alternatives 

 

• Given sequences U and V of lengths n and m, 

then number of possible alignments is given by 

– f(n, m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1) 

– f(n,n) ~ (1 + 2)2n+1 n-1/2 

 Exercise: Explain the  

recurrence above 
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Global pairwise alignment: 

Dynamic programming solution 

• Define an indel-similarity matrix s(.,.); e.g.,  

– s(x,x) = 2 

– s(x,y) = -, if x  y 

• Then 

This is the basic idea of the 

Needleman-Wunsch algorithm 

Exercise: What is the  

effect of a large  ? 
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Needleman-Wunsch algorithm (I) 

• Consider two strings S[1..n] and T[1..m] 

• Let V(i, j) be score of optimal alignment betw 

S[1..i] and T[1..j] 

 

• Basis: 

– V(0, 0) = 0 

– V(0, j) = V(0, j 1)    

• Insert j times 

– V(i, 0) = V(i  1, 0)    

• Delete i times 

Source: Ken Sung 
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Needleman-Wunsch algorithm (II) 

• Recurrence: For i>0, j>0 

 

  

 

 

• In the alignment, the last pair must be either 

match/mismatch, delete, insert 
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),1(

])[],[()1,1(
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jiV

jiV

jTiSsjiV

jiV

Match/mismatch 

Delete 

Insert 

Source: Ken Sung 

  xxx…xx      xxx…xx    xxx…x_ 

       |           |         | 

  xxx…yy      yyy…y_    yyy…yy 

Match/mismatch           Delete               Insert 
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Example (I) 

_ A G C A T G C 

_ 0 1  2  3  4  5  6  7 

A  1 

C  2 

A  3 

A  4 

T  5 

C  6 

C  7 

Source: Ken Sung 
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Example (II) 

_ A G C A T G C 

_ 0 1  2  3  4  5  6  7 

A  1 2 

C  2 

A  3 

A  4 

T  5 

C  6 

C  7 

Source: Ken Sung 
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Example (III) 

_ A G C A T G C 

_ 0 1  2  3  4  5  6  7 

A  1 2 1 

C  2 

A  3 

A  4 

T  5 

C  6 

C  7 

Source: Ken Sung 
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Example (IV) 

_ A G C A T G C 

_ 0  1  2  3  4  5  6  7 

A  1 2 1 0  1  2  3  4 

C  2 1 1 ? 

A  3 

A  4 

T  5 

C  6 

C  7 

3 2 

Exercise: Can you tell from these entries what  

Are the values of s(A,G), s(A,C), s(A,A), etc.? 

Source: Ken Sung 
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Example (V) 

_ A G C A T G C 

_ 0 1  2  3  4  5  6  7 

A  1 2 1 0  1  2  3 -4 

C  2 1 1 3 2 1 0 -1 

A  3 0 0 2 5 4 3 2 

A  4  1  1 1 4 4 3 2 

T  5  2  2 0 3 6 5 4 

C  6  3  3 0 2 5 5 7 

C  7  4  4  1 1 4 4 7 

Source: Ken Sung 

What is the 

alignment 

corresponding 

to this? 
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Pseudo codes 

Create the table V[0..n,0..m] and P[1..n,1..m]; 

V[0,0] = 0; 

For j=1 to m, set V[0,j] := v[0,j  1]   ; 

For i=1 to n, set V[i,0] := V[i  1,0]   ; 

For j=1 to m { 

 For i = 1 to n { 

  set V[i,j] := V[i,j  1]   ; 

  set P[i,j] := (0,  1); 

  if V[i,j] < V[i  1,j]   then 

   set V[i,j] := V[i  1,j]   ; 

   set P[i,j] := ( 1, 0); 

  if (V[i,j] < V[i  1, j  1] + s(S[i],T[j])) then 

   set V[i,j] := V[i  1, j  1] + s(S[i],T[j]); 

   set P[i,j] := ( 1,  1); 

 } 

} 

Backtracking P[n,m] to P[0,0] to find optimal alignment; 

Source: Ken Sung 



27 

Copyright 2015 © Wong Limsoon 

Analysis 

• We need to fill in all entries in the nm matrix 

• Each entry can be computed in O(1) time 

Time complexity = O(nm) 

Space complexity = O(nm) 

Source: Ken Sung 

Exercise: Write down the memoized version of  

Needleman-Wunsch. What is its time/space  

complexity? 
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Problem on speed 

• Aho, Hirschberg, Ullman 

1976 

– If we can only compare 

whether two symbols are 

equal or not, the string 

alignment problem can 

be solved in (nm) time 

 

• Hirschberg 1978 

– If symbols are ordered 

and can be compared, 

the string alignment 

problem can be solved in 

(n log n) time 

• Masek and Paterson 1980 

– Based on Four-Russian’s 

paradigm, the string 

alignment problem can 

be solved in O(nm/log2 

n) time 

 

• Let d be the total number 

of inserts and deletes. 

Thus 0  d  n+m. If d is 

smaller than n+m, can we 

get a better algorithm? 

Yes! 

 

Source: Ken Sung 



29 

Copyright 2015 © Wong Limsoon 

O(dn)-time algorithm 

• The alignment should be inside the 2d+1 band 

No need to fill-in the lower and upper triangle 

Time complexity: O(dn) 

2d+1 

Source: Ken Sung 
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Example 

• d=3 

A_CAATCC 

AGCA_TGC 

_ A G C A T G C 

_ 0 -1 -2 -3 

A -1 2 1 0 -1 

C -2 1 1 3 2 1 

A -3 0 0 2 5 4 3 

A -1 -1 1 4 4 3 2 

T -2 0 3 6 5 4 

C 0 2 5 5 7 

C 1 4 4 7 
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Recursive equation for O(dn)-time algo 

















0)1,1,(

0)1,,1(

])[],[(),1,1(

max),,(

difdjiv

difdjiv
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Exercise: Write down the base 

cases, the memoized version, and 

the non-recursive version. 
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Problem on space 

• Dynamic programming requires O(mn) space 

 

• When we compare two very long sequences, 

space may be the limiting factor 

 

• Can we solve the string alignment problem in 

linear space? 



33 

Copyright 2015 © Wong Limsoon 

Easy, if no need to recover alignment 

• When filling row 4, 

it depends only on 

row 3 

– No need to keep 

rows 1 and 2 

 

• I.e., we only need 

to keep two rows 

 

“Cost only” algo 

_ A G C A T G C 

_ 0 -1 -2 -3 -4 -5 -6 -7 

A -1 2 1 0 -1 -2 -3 -4 

C -2 1 1 3 2 1 0 -1 

A -3 0 0 2 5 4 3 2 

A -4 -1 -1 1 4 4 3 2 

T -5 -2 -2 0 3 6 5 4 

C -6 -3 -3 0 2 5 5 7 

C -7 -4 -4 -1 1 4 4 7 
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Recovering alignment in O(n+m) space 

• Use cost-only algo to find mid-point of alignment 

• Divide the problem into two halves 

• Recursively deduce alignments for the two halves 

n/2 n/2 n/2 

3n/4 

n/4 

mid-point 
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How to find mid-point 

• Do cost-only dynamic programming for 1st half  

– I.e., find V(S[1..n/2], T[1..j]) for all j 

 

• Do cost-only dynamic programming for 2nd half 

– i.e., find V(S[n/2+1..n], T[j+1..m]) for all j 

 

• Determine j which maximizes the sum above 

 ])..1[],..1[(])..1[],..1[(max

])..1[],..1[(

22
0

mjTnSVjTSV

mTnSV

nn

mj
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Example 
Step 1 Step 2 

Step 3 Step 4: Recursive on subproblems 
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Complexity analysis 

• Space 

– O(m) working memory for finding mid-point  

– Once mid-point is found, can free working 

memory  In each recursive call, we only 

need to store the alignment path 

– Alignment subpaths are disjoint  total 

space required is O(n+m) 
 

• Time?  This one is for you to think about  
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Global pairwise alignment: 

More Realistic Handling of Indels 

• In Nature, indels of several adjacent letters are 

not the sum of single indels, but the result of one 

event 

• So reformulate as follows: 
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Gap penalty 

• g(q): is the penalty of a gap of length q 

• Note g() is subadditive, i.e, g(p+q)  g(p) + g(q) 

 

• If g(k) =  + k, the gap penalty is called affine 

– A penalty () for initiating the gap 

– A penalty () for the length of the gap 

Source: Ken Sung 
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N-W algo w/ general gap penalty (I) 

 

• Global alignment of S[1..n] and T[1..m]: 

– Denote V(i, j) be the score for global alignment 

between S[1..i] and T[1..j] 

– Base cases: 

• V(0, 0) = 0 

• V(0, j) = g(j) 

• V(i, 0) = g(i) 

 

Source: Ken Sung 
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N-W algo w/ general gap penalty (II) 

 

• Recurrence for i>0 and j>0, 
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 Match/mismatch 

Insert T[k+1..j] 

Delete S[k+1..i] 

Source: Ken Sung 



42 

Copyright 2015 © Wong Limsoon 

Analysis 

• We need to fill in all entries in the nm table 

 

• Each entry can be computed in O(max{n, m}) time 

Time complexity = O(nm max{n, m}) 

Space complexity = O(nm) 

Source: Ken Sung 
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Variations of pairwise alignment 

• Fitting a “short’’ seq to a 

“long’’ seq 

 

 

 

 

 

• Indels at beginning and 

end are not penalized 

• Find “local” alignment 

 

 

 

 

 

 

• Find i, j, k, l, so that 

– S(A) is maximized, 

– A is alignment of ui…uj and 

vk…vl 

U 

V 

U 

V 
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Local alignment 

• Given two long DNAs, both of them contain the 

same gene or closely related gene  

– Can we identify the gene? 

 

• Local alignment problem: Given two strings 

S[1..n] and T[1..m], among all substrings of S and 

T, find substrings A of S and B of T whose global 

alignment has the highest score 

Source: Ken Sung 
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Brute-force solution 

• Algorithm: 

– For every substring A of S, for every substring B of 

T, compute the global alignment of A and B 

– Return the pair (A, B) with the highest score 

 

• Time: 

– There are n2 choices of A and m2 choices of B 

– Global alignment computable in O(nm) time 

– In total, time complexity = O(n3m3) 

• Can we do better? 

Source: Ken Sung 
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Some background 

• X is a suffix of S[1..n] if X=S[k..n] for some k1 

• X is a prefix of S[1..n] if X=S[1..k] for some kn 

 

• E.g. 

– Consider S[1..7] = ACCGATT 

– ACC is a prefix of S, GATT is a suffix of S 

– Empty string is both prefix and suffix of S 

Source: Ken Sung 

Which other string is both a prefix and suffix of S? 
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Dynamic programming for  

local alignment problem 

• Define V(i, j) be max score of global alignment of 

A and B over  

– all suffixes A of S[1..i] and  

– all suffixes B of T[1..j] 

 

• Then, score of local alignment is  

– maxi,j V(i ,j) 

Source: Ken Sung 
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Smith-Waterman algorithm 

• Basis:  

 

 V(i, 0) = V(0, j) = 0 

 

• Recursion for i>0 and j>0: 
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Match/mismatch 

Delete 

Insert 

Ignore initial segment 

Source: Ken Sung 
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Example (I) 
• Score for match = 2 

• Score for insert, delete, 

mismatch = 1 

_ C T C A T G C 

_ 0 0 0 0 0 0 0 0 

A 0 

C 0 

A 0 

A 0 

T 0 

C 0 

G 0 

Source: Ken Sung 
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Example (II) 

_ C T C A T G C 

_ 0 0 0 0 0 0 0 0 

A 0 0 0 0 2 1 0 0 

C 0 2 1 2 1 1 0 2 

A 0 0 1 1 4 3 2 1 

A 0 0 0 0 3 3 2 1 

T 0 0 ? 

C 

G 

1 2 2 

• Score for match = 2 

• Score for insert, delete, 
mismatch = 1 

Source: Ken Sung 
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Example (III) 

 

C_AT_G 

CAATCG 

_ C T C A T G C 

_ 0 0 0 0 0 0 0 0 

A 0 0 0 0 2 1 0 0 

C 0 2 1 2 1 1 0 2 

A 0 0 1 1 4 3 2 1 

A 0 0 0 0 3 3 2 1 

T 0 0 2 1 2 5 4 3 

C 0 2 1 4 3 4 4 6 

G 0 1 1 3 3 3 6 5 

Source: Ken Sung 

What is the 

other optimal 

local alignment? 

An optimal 

local alignment 

is 



52 

Copyright 2015 © Wong Limsoon 

Analysis 

• Need to fill in all entries in the nm matrix 

• Each entries can be computed in O(1) time 

• Finally, finding the entry with the max value 

Time complexity = ?? 

Space complexity = O(nm) 

Exercise: What is the time complexity? 

Source: Ken Sung 
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Recent photos 

 Limsoon & Temple Smith Ken & Michael Waterman 



Scoring Function 
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Scoring function for DNA 

• For DNA, since we only have 4 nucleotides, the 

score function is simple 

– BLAST matrix 

– Transition-transversion matrix: give mild penalty 

for replacing purine by purine. Similar for replacing 

pyrimadine by pyrimadine 

A C G T 

A 5 -4 -4 -4 

C -4 5 -4 -4 

G -4 -4 5 -4 

T -4 -4 -4 5 

A C G T 

A 1 -5 -1 -5 

C -5 1 -5 -1 

G -1 -5 1 -5 

T -5 -1 -5 1 

BLAST Matrix Transition-Transversion Matrix 
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Scoring function for Protein 

• Commonly, it is devised based on two criteria: 

– Chemical/physical similarity 

– Observed substitution frequencies 
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Scoring function for protein using 

physical/chemical properties 

• An amino acid is more likely to be substituted by 

another if they have similar property [Karlin & 

Ghandour, PNAS, 82:8597, 1985]  

 

• The score matrices can be derived based on 

hydrophobicity, charge, electronegativity, & size 

 

• E.g., give higher score for substituting nonpolar 

amino acid to another nonpolar amino acid 
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Scoring function for protein  

based on statistical model 

• Most often used approaches 

 

• Two popular matrices: 

– Point Accepted Mutation (PAM) matrix 

– BLOSUM 

 

• Both methods define the score as the log-odds 

ratio between the observed substitution rate and 

the actual substitution rate 
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Point Accepted Mutation (PAM) 

• PAM was developed by Dayhoff (1978) 

 

• A point mutation means substituting one residue 

by another 

– It is called an accepted point mutation if the 

mutation does not change the protein’s function or 

is not fatal 

 

• Two sequence S1 and S2 are said to be 1 PAM 

diverged if a series of accepted point mutations 

can convert S1 to S2 with an average of 1 

accepted point mutation per 100 residues 
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PAM matrix by example (I) 

• Ungapped alignment is constructed for high 

similarity amino acid sequences (usually >85%) 

 

• Below is a simplified gap-free global multiple 

alignment of some highly similar amino acid seqs 

– IACGCTAFK 

IGCGCTAFK 

LACGCTAFK 

IGCGCTGFK 

IGCGCTLFK 

LASGCTAFK 

LACACTAFK 
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PAM matrix by example (II) 

• Build the phylogenetic tree for the sequences 

IACGCTAFK 

IGCGCTAFK LACGCTAFK 

LACACTAFK LASGCTAFK IGCGCTLFK IGCGCTGFK 

AG IL 

AG AL CS GA 
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PAM-1 matrix 

• Oa,b and Ea,b are observed and expected freq 

– Oa,a = 99/100, as PAM-1 assumes 1 mutation per 100 

residues 

– For ab, Oa,b = Fa,b / (100 xy Fx,y) where Fa,b is freq 

of substituting a by b or b by a 

– Ea,b = fa * fb where fx is # of x divided by total residues 

 

• E.g., FA,G = 3, FA,L=1, fA = fG = 10/63, then OA,G = 

3/(100*2*6) = 0.0025, EA,G = (10/63)(10/63) = 0.0252, 

(A,G) = log (0.0025 / 0.0252) = log (0.09925) = -1.0034 

ba,

ba,

10
E

O
log),( ba
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PAM-n matrix 

• Let Ma,b = Oa,b / fa be prob that a is mutated to b 

• Mn(a,b) is prob that a is mutated to b after n mutations 

• PAM-n matrix is created by extrapolating PAM-1  

• PAM-n matrix is computed as follows. 

– At time t, suppose the residue is a 

– At time t+1, prob that it becomes j is M(a,b) 

– At time t+2, prob that it becomes j is M2(a,b) 

– … 

– At time t+n, prob that it becomes j is Mn(a,b) 

 (a,b) entry of PAM-n matrix is log(fa M
n(a,b)/fa fb) = 

log(Mn(a,b)/fb) 
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BLOSUM (BLOck SUbstition Matrix) 

• PAM did not work well for aligning evolutionarily 

divergent sequences since the matrix is 

generated by extrapolation 

  

• Henikoff and Henikoff (1992) proposed BLOSUM 

 

• Unlike PAM, BLOSUM matrix is constructed 

directly from the observed alignment (instead of 

extrapolation) 
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Generating conserved blocks 

• In BLOSUM, the input is the set of multiple 

alignments for nonredundant groups of protein 

families 

 

• Based on PROTOMAT, blocks of nongapped local 

aligments are derived 

 

• Each block represents a conserved region of a 

protein family 
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Extract frequencies from blocks 

•   
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BLOSUM Scoring function 

• For each pair of aligned residues a and b, the 

alignment score (a,b) = 1/ ln pab/(papb) 

– pab is prob that a and b are observed to align 

together 

– pa and pb are freq of residues a and b 

–  is a normalization constant 

 

• Example: pL=0.099, pA=0.074, pAL = 0.0044. With 

=0.347, (A,L) = -1.47 
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What is BLOSUM 62? 

• To reduce multiple contributions to amino acid 

pair freq from the most closely related members 

of a family, similar seqs are merged within block 

• BLOSUM p matrix is created by merging seqs 

with p% similarity 

 

• Example 

– AVAAA, AVAAA, AVAAA, AVLAA, VVAAL 

– First 4 seqs have 80% similarity. Similarity of last 

seq with the other 4 sequences is <62% 

– For BLOSUM 62, we group first 4 seqs and get 

AV[A0.75L0.25]AA, VVAAL. Then pAV = 1/5, pAL = 

(0.25 + 1)/5. 
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BLOSUM vs PAM 

• BLOSUM 80  PAM 1 

• BLOSUM 62  PAM 120 

• BLOSUM 45  PAM 250 

 

• BLOSUM 62 is the 

default matrix for 

BLAST 2.0 



Multiple Sequence Alignment 
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What is a domain 

• A domain is a component of a protein that is self-

stabilizing and folds independently of the rest of 

the protein chain 

– Not unique to protein products of one gene; can 

appear in a variety of proteins 

– Play key role in the biological function of proteins 

– Can be "swapped" by genetic engineering betw 

one protein and another to make chimeras 

 

• May be composed of one, more than one, or not 

any structural motifs (often corresponding to 

active sites) 
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Discovering domain and active sites 

• How do we find the domain and associated active 

sites in the protein above?  

>gi|475902|emb|CAA83657.1| protein-tyrosine-phosphatase alpha  

MDLWFFVLLLGSGLISVGATNVTTEPPTTVPTSTRIPTKAPTAAPDGGTTPRVSSLNVSSPMTTSAPASE  

PPTTTATSISPNATTASLNASTPGTSVPTSAPVAISLPPSATPSALLTALPSTEAEMTERNVSATVTTQE  

TSSASHNGNSDRRDETPIIAVMVALSSLLVIVFIIIVLYMLRFKKYKQAGSHSNSFRLPNGRTDDAEPQS  

MPLLARSPSTNRKYPPLPVDKLEEEINRRIGDDNKLFREEFNALPACPIQATCEAASKEENKEKNRYVNI  

LPYDHSRVHLTPVEGVPDSHYINTSFINSYQEKNKFIAAQGPKEETVNDFWRMIWEQNTATIVMVTNLKE  

RKECKCAQYWPDQGCWTYGNIRVSVEDVTVLVDYTVRKFCIQQVGDVTNKKPQRLVTQFHFTSWPDFGVP  

FTPIGMLKFLKKVKTCNPQYAGAIVVHCSAGVGRTGTFIVIDAMLDMMHAERKVDVYGFVSRIRAQRCQM  

VQTDMQYVFIYQALLEHYLYGDTELEVTSLEIHLQKIYNKVPGTSSNGLEEEFKKLTSIKIQNDKMRTGN  

LPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASFIDGYRRRTPTCQPRPVQHTIEDFWRMIWEWK  

SCSIVMLTELEERGQEKCAQYWPSDGSVSYGDINVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFH  

GWPEVGIPSDGKGMINIIAAVQKQQQQSGNHPMHCHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVK  

SLRLQRPHMVQTLEQYEFCYKVVQEYIDAFSDYANFK  
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Domain/active sites as emerging patterns 

• How to discover active site and/or domain? 

• If you are lucky, domain has already been 

modelled 

– BLAST,  

– HMMPFAM, … 

• If you are unlucky, domain not yet modelled 

– Find homologous seqs 

– Do multiple alignment of homologous seqs  

– Determine conserved positions 

 Emerging patterns relative to background 

 Candidate active sites and/or domains 
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In the course of evolution… 
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Multiple alignment: Example 

• Multiple seq alignment maximizes number of 

positions in agreement across several seqs 

• seqs belonging to same “family” usually have 

more conserved positions in a multiple seq 

alignment 

Conserved sites 
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Multiple alignment: Naïve approach 

• Let S(A) be the score of a multiple alignment A. 

The optimal multiple alignment A of sequences 

U1, …, Ur can be extracted from the following 

dynamic programming computation of Sm1,…,mr: 

 

 

 

 

 

• This requires O(2r) steps 

Exercise for the Brave:  

Propose a practical approximation 



Popular Tools for Sequence Comparison: 

FASTA, BLAST, Pattern Hunter 
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Scalability 

 

 

• Increasing # of sequenced 

genomes: yeast, human, 

rice, mouse, fly, … 

 

• S/w must be “linearly” 

scalable to large datasets 
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Database search 

• Consider a database D of genomic sequences (or 

protein sequences) 

 

• Given a query string Q, 

– Look for string S in D which is the closest match to 

the query string Q 

– Two meanings for closest match: 

• S and Q has a semi-global alignment (forgive the 

spaces at the two ends of Q) 

• S and Q have a local alignment 
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Goodness of a search algorithm 

• Sensitivity 

– Ability to detect “true positive” 

– Measured as the probability of finding the match 

given the query and the database sequence has 

only x% similarity 

 

• Specificity 

– Ability to reject “false positive” 

 

• A good search algorithm should be both sensitive 

and specific 
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Need heuristics for  

sequence comparison 
• Time complexity for 

optimal alignment is O(n2), 

where n is seq length 

 

  Given current size of seq 

databases, use of optimal 

algorithms is not practical 

for database search 

 

• Heuristic techniques:  

– BLAST 

– FASTA 

– Pattern Hunter 

– MUMmer, ... 

 

• Speed up: 

– 20 min (optimal 

alignment)  

– 2 min (FASTA)  

– 20 sec (BLAST) 

Exercise: Describe MUMer 
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Basic idea: Indexing & filtering 

• Good alignment includes short identical, or 

similar fragments 

 

  Break entire string into substrings, index the 

substrings 

 

  Search for matching short substrings and use as 

seed for further analysis 

 

  Extend to entire string find the most significant 

local alignment segment 
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BLAST in 3 steps 
Altschul et al, JMB 215:403-410, 1990 

• Similarity matching of 

words (3 aa’s, 11 bases)  

– No need identical words 

 

• If no words are similar, 

then no alignment 

– Won’t find matches for 

very short sequences  

• MSP: Highest scoring pair 

of segments of identical 

length. A segment pair is 

locally maximal if it cannot 

be improved by extending 

or shortening the 

segments 

• Find alignments w/ optimal 

max segment pair (MSP) 

score 

• Gaps not allowed 

• Homologous seqs will 

contain a MSP w/ a high 

score; others will be 

filtered out 
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BLAST in 3 steps 
Altschul et al, JMB 215:403-410, 1990 

Step 1 

• For the query, find the list of high scoring words 

of length w 

Image credit: Barton 
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BLAST in 3 steps 
Altschul et al, JMB 215:403-410, 1990 

Step 2 

• Compare word list to db & find exact matches 

Image credit: Barton 
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BLAST in 3 steps 
Altschul et al, JMB 215:403-410, 1990 

Step 3 

• For each word match, extend alignment in both 

directions to find alignment that score greater 

than a threshold s 

Image credit: Barton 
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Spaced seeds 

• 111010010100110111 is an example of a spaced seed model 
with 

– 11 required matches (weight=11) 

– 7 “don’t care” positions 

 

  GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT… 

  || ||||||||| ||||| || |||||   |||||| 

  GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT… 

         111010010100110111 

 
• 11111111111  is the BLAST seed model for comparing DNA 

seqs 
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Observations on spaced seeds 

• Seed models w/ different shapes can detect 

different homologies 

– the 3rd base in a codon “wobbles” so a seed like 

110110110… should be more sensitive when 

matching coding regions 

  Some models detect more homologies  

 More sensitive homology search 

– PatternHunter I 

  Use >1 seed models to hit more homologies 

– Approaching 100% sensitive homology search 

– PatternHunter II Exercise: Why does 

the 3rd base wobbles? 



89 

Copyright 2015 © Wong Limsoon 

CAA?A??A?C??TA?TGG? 

|||?|??|?|??||?|||? 

CAA?A??A?C??TA?TGG? 

111010010100110111 

 111010010100110111 
 

PatternHunter I 
Ma et al., Bioinformatics 18:440-445, 2002 

• BLAST’s seed usually 

uses more than one hits to 

detect one homology  

  Wasteful 

• Spaced seeds uses fewer 

hits to detect one 

homology  

  Efficient  

TTGACCTCACC? 

|||||||||||? 

TTGACCTCACC? 

11111111111 

 11111111111 

1/4 chances to have 2nd hit  

next to the 1st hit 1/46 chances to have 2nd hit 

next to the 1st hit 
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PatternHunter I 
Ma et al., Bioinformatics 18:440-445, 2002 

 

Proposition. The expected number of hits of a 

weight-W length-M model within a length-L region of 

similarity p is (L – M + 1) * pW 

 

 

Proof.   

For any fixed position, the prob of a hit is pW.  

There are L – M + 1 candidate positions.  

The proposition follows. 
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Implication 

• For L = 1017 

– BLAST seed expects 

(1017 – 11 + 1) * p11 = 

1007 * p11 hits 

– But ~1/4 of these overlap 

each other. So likely to 

have only ~750 * p11 

distinct hits 

– Our example spaced seed 

expects (1017 – 18 + 1) * 

p11 = 1000 * p11 hits 

– But only 1/46 of these 

overlap each other. So 

likely to have ~1000 * p11 

distinct hits 

Spaced  

seeds  

likely to 

 be more 

 sensitive 

& more  

efficient 
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Sensitivity of PatternHunter I 

Image credit: Li 
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Speed of PatternHunter I 

• Mouse Genome 

Consortium used 

PatternHunter to 

compare mouse 

genome & human 

genome 

 

• PatternHunter did the 

job in a 20 CPU-days ---

it would have taken 

BLAST 20 CPU-years!  

Nature, 420:520-522, 2002 
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How to increase sensitivity? 

• Ways to increase sensitivity: 

– “Optimal” seed 

– Reduce weight by 1 

– Increase number of spaced seeds by 1 

• Intuitively, for DNA seq, 

– Reducing weight by 1 will increase number of 

matches 4 folds 

– Doubling number of seeds will increase number of 

matches 2 folds 

• Is this really so? 

 



95 

Copyright 2015 © Wong Limsoon 

How to increase sensitivity? 

• Ways to increase 

sensitivity: 

– “Optimal” seed 

– Reduce weight by 1 

– Increase number of 

spaced seeds by 1 

• For L = 1017 & p = 50% 

– 1 weight-11 length-18 

model expects 1000/211 

hits 

– 2 weight-12 length-18 

models expect 2 * 

1000/212 = 1000/211 hits 

  When comparing 

regions w/ >50% 

similarity, using 2 weight-

12 spaced seeds 

together is more 

sensitive than using 1 

weight-11 spaced seed! 

Exercise: Proof this claim 
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PatternHunter II 
Li et al, GIW, 164-175, 2003 

• Idea 

– Select a group of spaced 

seed models 

– For each hit of each 

model, conduct extension 

to find a homology 

 

• Selecting optimal multiple 

seeds is NP-hard 

• Algorithm to select 

multiple spaced seeds 

– Let A be an empty set 

– Let s be the seed such 

that A ⋃ {s} has the 

highest hit probability 

– A = A ⋃ {s} 

– Repeat until |A| = K 

 

• Computing hit probability 

of multiple seeds is NP-

hard 

But see also Ilie & Ilie, “Multiple spaced seeds for homology 

search”, Bioinformatics, 23(22):2969-2977, 2007 
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One weight-12 

Two weight-12 

One weight-11 

Sensitivity of PatternHunter II 

• Solid curves: Multiple (1, 2, 

4, 8,16) weight-12 spaced 

seeds 

 

• Dashed curves: Optimal 

spaced seeds with weight 

= 11,10, 9, 8 

 

  “Double the seed 

number” gains better 

sensitivity than “decrease 

the weight by 1” 

 

se
n

si
ti

v
it

y
 

Image credit: Ma 
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Expts on real data 

• 30k mouse ESTs (25Mb) vs 4k human ESTs (3Mb)  

– downloaded from NCBI genbank 

– “low complexity” regions filtered out 

 

• SSearch (Smith-Waterman method) finds “all” 

pairs of ESTs with significant local alignments 

 

• Check how many percent of these pairs can be 

“found” by BLAST and different configurations of 

PatternHunter II 
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In fact, at 80%  

similarity, 100%  

sensitivity can  

be achieved  

using 40  

weight-9 seeds 

Results 

Image credit: Ma 
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Farewell to Supercomputer Age 

of sequence comparison! 

Image credit: Bioinformatics Solutions Inc 
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Concluding Remarks 
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What have we learned?  

• General methodology 

– Dynamic programming 

 

• Dynamic programming applications 

– Pairwise Alignment 

• Needleman-Wunsch global alignment algorithm  

• Smith-Waterman local alignment algorithm 

– Multiple Alignment  

 

• Important tactics 

– Indexing & filtering (BLAST) 

– Spaced seeds (Pattern Hunter) 



Any Question? 
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