For written notes on this lecture, please read chapter 19 of *The Practical Bioinformatician* and *Hawkins & Kihara*, *JBCB* 5(1):1-30, 2007

CS2220: Introduction to Computational Biology Unit 7: Sequence Homology Interpretation

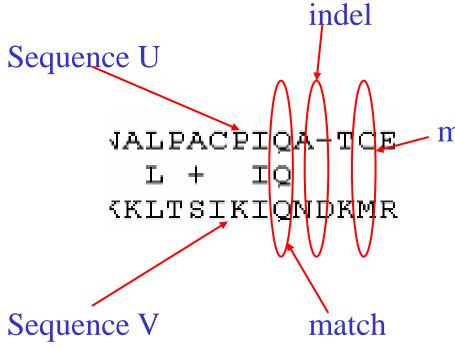
Wong Limsoon

National University of Singapore

Plan

- Recap of sequence alignment
- Guilt by association
- Active site/domain discovery
- What if no homology of known function is found?
 - Genome phylogenetic profiling
 - SVM-Pairwise
 - Protein-protein interactions
- Key mutation site discovery

Very Brief Recap of Sequence Comparison/Alignment


National University of Singapore

Motivations for seq comparison

- DNA is blue print for living organisms
- ⇒ Evolution is related to changes in DNA
- ⇒ By comparing DNA sequences we can infer evolutionary relationships between the sequences w/o knowledge of the evolutionary events themselves
- Foundation for inferring function, active site, and key mutations

Sequence alignment

Key aspect of seq comparison is seq alignment

mismatch

A seq alignment maximizes the number of positions that are in agreement in two sequences

Sequence alignment: Poor example

- Poor seq alignment shows few matched positions
- ⇒ The two proteins are not likely to be homologous

Alignment by FASTA of the sequences of amicyanin and domain 1 of ascorbate oxidase

Amicyanin MPHNVHFVAGVLGEAALKGPMMKKEQAYSLTFTEAGTYDYHCTPHPFMRGKVVVE
:..: .:::

Ascorbate Oxidase ILQRGTPWADGTASISQCAINPGETFFYNFTVDNPGTFFYHGHLGMQRSAGLYGSLI
70 80 90 100 110 120

No obvious match between Amicyanin and Ascorbate Oxidase

Sequence Alignment: Good examp

- Good alignment usually has clusters of extensive matched positions
- ⇒ The two proteins are likely to be homologous

```
>gi|13476732|ref|NP_108301.1| unknown protein [Mesorhizobium loti]
gi|14027493|dbj|BAB53762.1| unknown protein [Mesorhizobium loti]
    Length = 105

Score = 105 bits (262), Expect = 1e-22
Identities = 61/106 (57%), Positives = 73/106 (68%), Gaps = 1/106 (0%)

Query: 1 MKPGRLASIALAIIFLPMAVPAHAATIEITMENLVISPTEVSAKVGDTIRWVNKDVFAHT 60
    MK G L ++ MA PA AATIE+T++ LV SP V AKVGDTI WVN DV AHT
Sbjct: 1 MKAGALIRLSWLAALALMAAPAAAATIEVTIDKLVFSPATVEAKVGDTIEWVNNDVVAHT 60
```

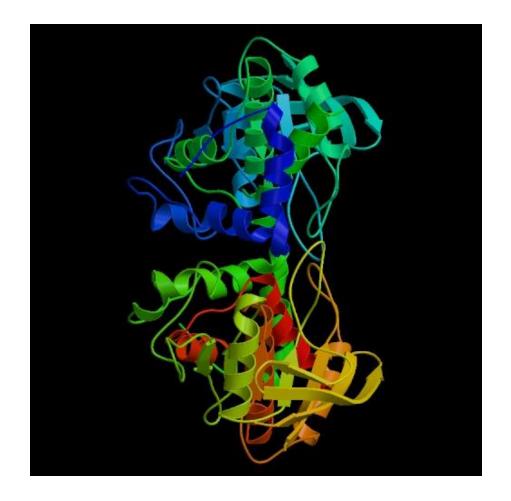
good match between Amicyanin and unknown M. loti protein

National University of Singapore

Multiple alignment: An example

- Multiple seq alignment maximizes number of positions in agreement across several seqs
- seqs belonging to same "family" usually have more conserved positions in a multiple seq alignment

```
gi|126467|
                FHFTSWPDFGVPFTPIGMLKFLKKVKACNP--OYAGAIVVHCSAGVGRTGTFVVIDAMLD
gi|2499753
                FHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIWVHCSAGAGRTGCYIVIDIMLD
qi|462550|
                YHYTQWPDMGVPEYALPVLTFVRRSSAARM--PETGPVIVHCSAGVGRTGTYIVIDSMLQ
                FHFTSWPDHGVPDTTDLLINFRYLVRDYMKOSPPESPII.VHCSAGVGRTGTFIAIDRLIY
gi|2499751
                FOFTAWPDHGVPEHPTPFLAFLRRVKTCNP--PDAGPMVVHCSAGVGRTGCFIVIDAMLE
qi|1709906
                LHFTSWPDFGVPFTPIGMLKFLKKVKTLNP--VHAGPIVVHCSAGVGRTGTFIVIDAMMA
gi|126471|
gi|548626|
                FHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIMLD
                FHFTGWPDHGVPYHATGLLGFVRQVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIMLD
gi|131570|
                FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY
qi|2144715
```

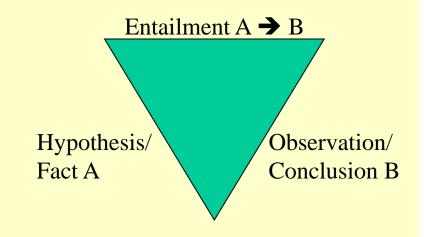

Application of Sequence Comparison: Guilt-by-Association

A protein is a ...

- A protein is a large complex molecule made up of one or more chains of amino acids
- Proteins perform a wide variety of activities in the cell

Function assignment to protein se

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR
YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
VT


 How do we attempt to assign a function to a new protein sequence?

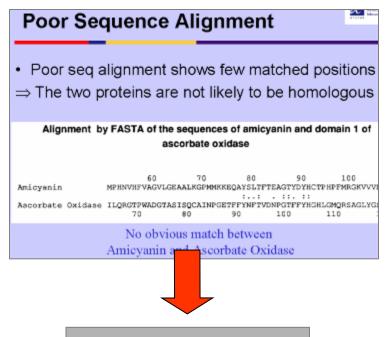
Invariant and abductive reasoning

- Function is determined by 3D struct of protein & environment protein is in
- Constraints imposed by 3D struct & environment give rise to "invariant" properties observed in proteins having the ancestor with that function

⇒ Abductive reasoning

 If those invariant properties are seen in a protein, then the protein is homolog of this protein

⇒ "Guilt by association"


Guilt by association

- Compare the target sequence T with sequences $S_1, ..., S_n$ of known function in a database
- Determine which ones amongst S₁, ..., S_n are the mostly likely homologs of T
- Then assign to T the same function as these homologs
- Finally, confirm with suitable wet experiments

Guilt by association

Compare *T* with seqs of known function in a db

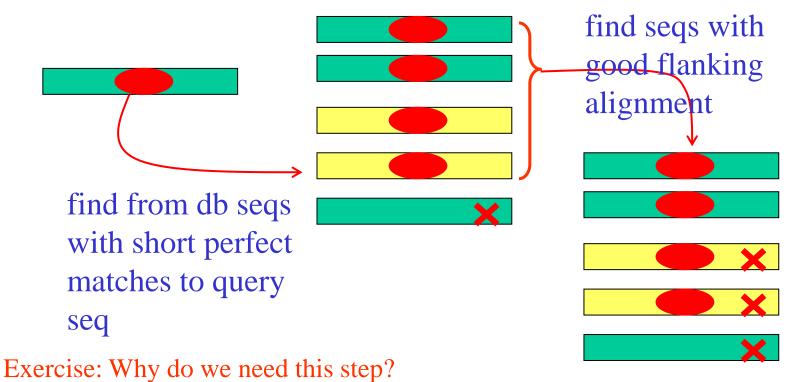
Discard this function as a candidate

Good Sequence Alignment

- Good alignment usually has clusters of extensive matched positions
- ⇒ The two proteins are likely to be homologous

```
| Score = 105 bits (262), Expect = 1e-22 | Identities = 61/106 (57%), Positives = 73/106 (68%), Gaps = 1/106 (0%) | | | | | |
| Query: | MKRURLASIALALIFLEMAVPAHAATIEITMENLVISPTEVSAKVUDTIEWVNKUVFAHT 60 | MK G L ++ MA PA AATIE+T++ LV SP V AKVUDTIEWVNKUVFAHT 60 |
| Good match between | Score | Score | Score | Score | Score | MK Galiels Manapaaaatiev Tidklyfspatyeakvudtiewvnkuvfaht 60 |
| Good match between | Amicyanin and u | Wn M. loti protein |
```

Assign to *T* same function as homologs


Confirm with suitable wet experiments

BLAST: How it works

Altschul et al., JMB, 215:403--410, 1990

 BLAST is one of the most popular tool for doing "guilt-by-association" sequence homology search

Homologs obtained by BLAST

```
Score
Sequences producing significant alignments:
                                                                   (bits) Value
                                                                          e - 177
qi|14193729|qb|AAK56109.1|AF332081 1 protein tyrosin phosph...
                                                                    62:
                                                                    621
                                                                          e - 177
qi|126467|sp|P18433|PTRA HUMAN Protein-tyrosine phosphatase...
                                                                    621
                                                                          e - 176
qi|4506303|ref|NP 002827.1| protein tyrosine phosphatase, r...
gi|227294|prf||1701300A protein Tyr phosphatase
                                                                    620
                                                                          e - 176
                                                                    621
qi|18450369|ref|NP 543030.1| protein tyrosine phosphatase, ...
                                                                          e - 176
                                                                    61:
qi|32067|emb|CAA37447.1| tyrosine phosphatase precursor [Ho...
                                                                          e - 176
qi|285113|pir||JC1285 protein-tyrosine-phosphatase (EC 3.1....
                                                                          e - 176
                                                                    619
                                                                    61: L
qi|6981446|ref|NP 036895.1| protein tyrosine phosphatase, r...
                                                                          e - 176
                                                                    61
                                                                          e - 174
gi|2098414|pdb|1YFO|A Chain A, Receptor Protein Tyrosine Ph...
                                                                    61 L
                                                                          e - 174
qi|32313|emb|CAA38662.1|
                          protein-tyrosine phosphatase [Homo...
qi|450583|qb|AAB04150.1|
                          protein tyrosine phosphatase >gi|4...
                                                                    605
                                                                          e - 172
                                                                    60-
qi|6679557|ref|NP 033006.1|
                                                                          e - 172
                             protein tyrosine phosphatase, r...
qi|483922|qb|AAA17990.1|
                          protein tyrosine phosphatase alpha
                                                                    599
                                                                          e - 170
```

• Thus our example sequence could be a protein tyrosine phosphatase α (PTP α)

Example alignment with PTP α

Score = 632 bits (1629), Expect = e-180

Identities = 294/302 (97%). Positives = 294/302 (97%) SPSTNRKYPPLPVDKLEEE INRRMADDNKLFREEFNALPACP IOATCEAAS Sbict: 202 SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR 261 Query: 61 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 120 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE Sbjct: 262 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 321 Ouery: 121 ONTATIVMVTNLKERKECKCAOYWPDOGCWTYGNVRVSVEDVTVLVDYTVRKFCIOOVGD 180 ONTATIVMVTNLKERKECKCAOYWPDOGCWTYGNVRVSVEDVTVLVDYTVRKFCIOOVGD Sbjct: 322 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD 381 Query: 181 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 240 VTNRKPORLITOFHFTSWPDFGVPFTPIGMLKFLKKVKACNPOYAGAIVVHCSAGVGRTG Sbjct: 382 VTNRKPORLITOFHFTSWPDFGVPFTPIGMLKFLKKVKACNPOYAGAIVVHCSAGVGRTG 441 Ouery: 241 TFVVIDAMLDMMHSERKVDVYGFVSRIRAORCOMVOTDMOYVFIYOALLEHYLYGDTELE 300

TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE

Sbjct: 442 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE 501

Guilt by association: Caveats

- Ensure that the effect of database size has been accounted for
- Ensure that the function of the homology is not derived via invalid "transitive assignment"
- Ensure that the target sequence has all the key features associated with the function, e.g., active site and/or domain

Law of large numbers

- Suppose you are in a room with 365 other people
- Q: What is the prob that a specific person in the room has the same birthday as you?
- A: 1/365 = 0.3%

- Q: What is the prob that there is a person in the room having the same birthday as you?
- A: $1 (364/365)^{365} = 63\%$
- Q: What is the prob that there are two persons in the room having the same birthday?
- A: 100%

Interpretation of P-value

- Seq. comparison progs, e.g. BLAST, often associate a P-value to each hit
- P-value is interpreted as prob that a random seq has an equally good alignment

- Suppose the P-value of an alignment is 10⁻⁶
- If database has 10⁷ seqs, then you expect 10⁷ * 10⁻⁶ = 10 seqs in it that give an equally good alignment
- ⇒ Need to correct for database size if your seq comparison prog does not do that!

Exercise: Name a commonly used method for correcting p-value for a situation like this

Note: $P = 1 - e^{-E}$

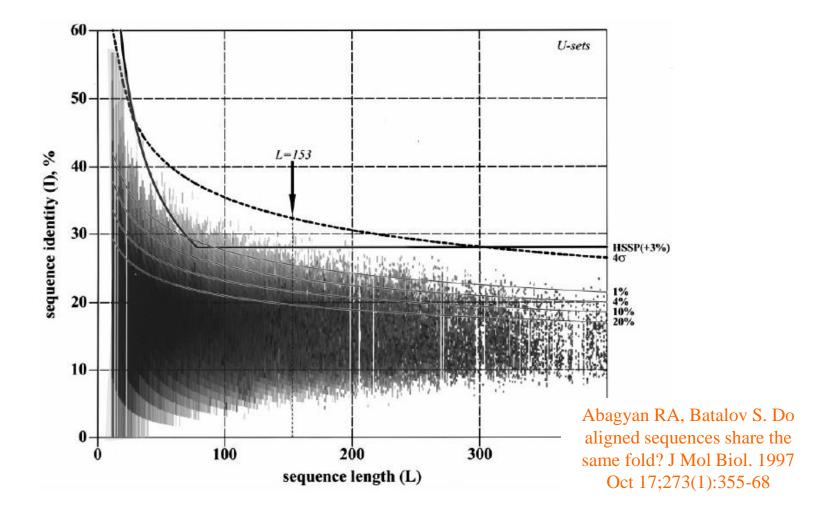
National University of Singapore

Lightning does strike twice!

- Roy Sullivan, a former park ranger from Virgina, was struck by lightning 7 times
 - 1942 (lost big-toe nail)
 - 1969 (lost eyebrows)
 - 1970 (left shoulder seared)
 - 1972 (hair set on fire)
 - 1973 (hair set on fire & legs seared)
 - 1976 (ankle injured)
 - 1977 (chest & stomach burned)

September 1983, he committed suicide

Cartoon: Ron Hipschman Data: David Hand

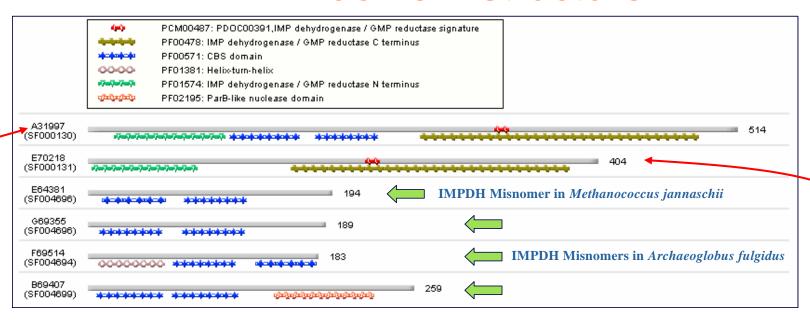


- One fourth of all residues in protein seqs occur in regions with biased amino acid composition
- Alignment of two such regions achieves high score purely due to segment composition
- ⇒ While it is worth noting that two proteins contain similar low complexity regions, they are best excluded when constructing alignments
- E.g., by default, BLAST employs the SEG algo to filter low complexity regions from proteins before executing a search

Source: NCBI

Effect of sequence length

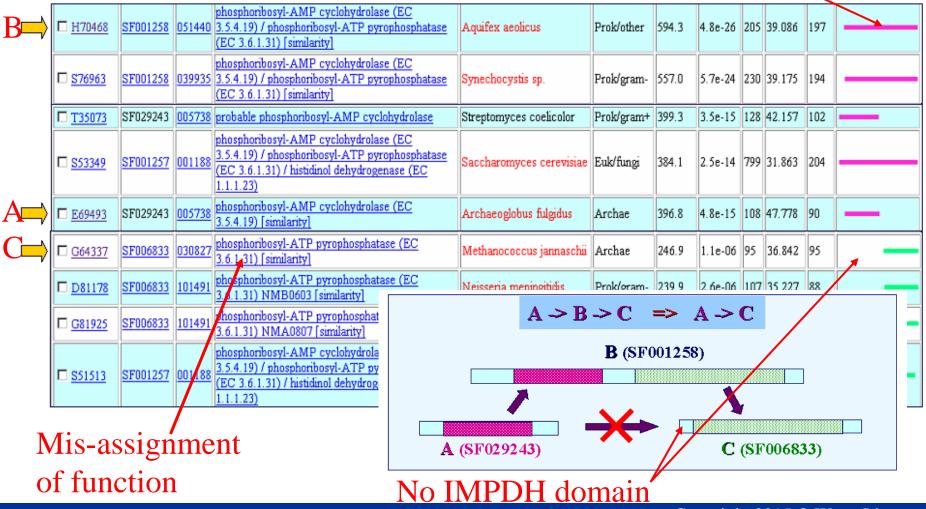
Examples of invalid function assignment: IMP dehydrogenases (IMPDH)



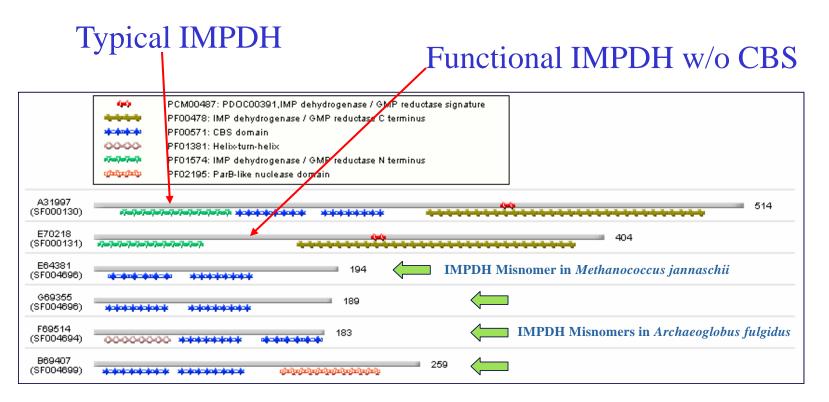
18 entries were found

ID	Organism	PIR	Swiss-Prot/TrEMBL	RefSeq/GenPept
NF00181857	Methanococcus jannaschii	E64381 conserved hypothetical protein MJ0653	Y653_METJA Hypothetical protein MJ0653	g <u>1592300</u> inosine-5'-monophosphate dehydrogenase (guaB) NP_247637 inosine-5'-monophosphate dehydrogenase (guaB)
NF00187788	Archaeoglobus fulgidus	G69355 MJ0653 homolog AF0847 ALT_NAMES: inosine-monophosphate dehydrogenase (guaB-1) homolog [misnomer]	O29411 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-1)	g2649754 inosine monophosphate dehydrogenase (guaB-1) NP 069681 inosine monophosphate dehydrogenase (guaB-1)
NF00188267	Archaeoglobus fulgidus	F69514 yhcV homolog 2 ALT_NAMES: inosine-monophosphate dehydrogenase (guaB-2) homolog [misnomer]	O28162 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-2)	g <u>2648410</u> inosine monophosphate dehydrogenase (guaB-2) <u>NP_070943</u> inosine monophosphate dehydrogenase (guaB-2)
NF00188697 Archae A partial list of IMPdehydrogenase misnomers ophosphate ive inophosphate ive inophosphate ive				
NF00197776	Thermo in CO		s remaining in so latabases	nophosphate d protein nonophosphate d protein
NF00414709	Methanothermobacter thermautotrophicus	ALT_NAMES: inosine-monophosphate dehydrogenase related protein V [misnomer]	O27294 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN V	onophosphate dehydrogenase related protein V NP_276354 inosine-5'-monophosphate dehydrogenase related protein V
NF00414811	Methanothermobacter thermautotrophicus	D69035 MJ1232 protein homolog MTH126 ALT_NAMES: inosine-5'-monophosphate dehydrogenase related protein VII [misnomer]	O26229 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN VII	g2621166 inosine-5'-monophosphate dehydrogenase related protein VII NP_275269 inosine-5'-monophosphate dehydrogenase related protein VII
NF00414837	Methanothermobacter thermautotrophicus	H69232 MJ1225-related protein MTH992 ALT_NAMES: inosine-5'-monophosphate dehydrogenase related protein IX [misnomer]	O27073 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN IX	g2622093 inosine-5'-monophosphate dehydrogenase related protein IX NP_276127 inosine-5'-monophosphate dehydrogenase related protein IX
NF00414969	Methanothermobacter thermautotrophicus	B69077 yhcV homolog 2 ALT_NAMES: inosine-monophosphate dehydrogenase related protein X [misnomer]	O27616 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN X	g <u>2622697</u> inosine-5 ¹ -monophosphate dehydrogenase related protein X <u>NP_276687</u> inosine-5 ¹ -monophosphate dehydrogenase related protein X

IMPDH domain structure



- Typical IMPDHs have 2 IMPDH domains that form the catalytic core and 2 CBS domains.
- A less common but functional IMPDH (E70218) lacks the CBS domains.
- Misnomers show similarity to the CBS domains

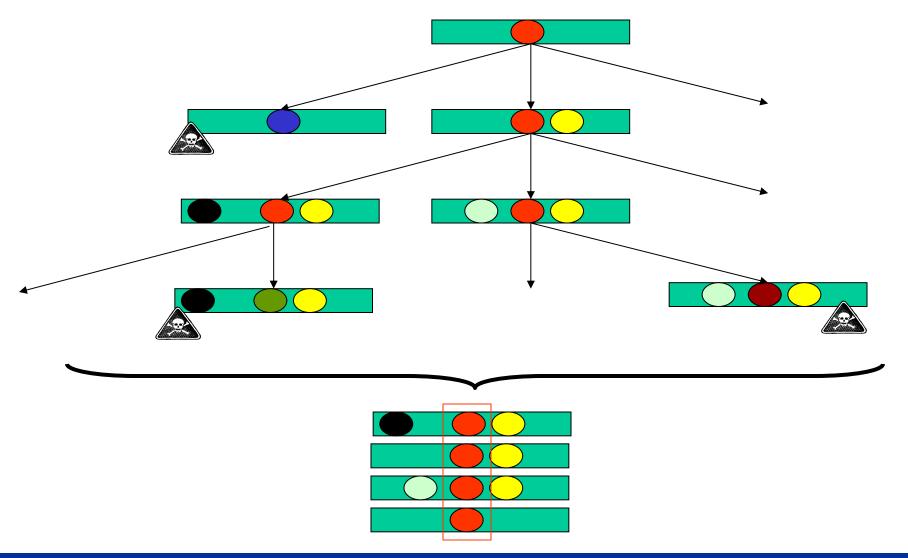

Invalid transitive assignment

Root of invalid transitive assignment.

Emerging pattern

- Most IMPDHs have 2 IMPDH and 2 CBS domains
- Some IMPDH (E70218) lacks CBS domains
- ⇒ IMPDH domain is the emerging pattern

Application of Sequence Comparison: Active Site/Domain Discovery


Discover active site and/or domai

- How to discover the active site and/or domain of a function in the first place?
 - Multiple alignment of homologous seqs
 - Determine conserved positions
 - ⇒ Emerging patterns relative to background
 - ⇒ Candidate active sites and/or domains
- Easier if sequences of distance homologs are used

Exercise: Why?

In the course of evolution...

Multiple alignment of PTPs

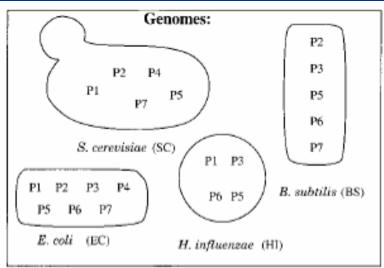
gi 126467	FHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTGTFVVIDAMLD
gi 2499753	FHFTGWPDHGVPYHATGLLSFIRRVKLSNPPSAGPIVVHCSAGAGRTGCYIVIDIMLD
gi 462550	YHYTQWPDMGVPEYALPVLTFVRRSSAARMPETGPVLVHCSAGVGRTGTYIVIDSMLQ
gi 2499751	FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY
gi 1709906	FQFTAWPDHGVPEHPTPFLAFLRRVKTCNPPDAGPMVVHCSAGVGRTGCFIVIDAMLE
gi 126471	LHFTSWPDFGVPFTPIGMLKFLKKVKTLNPVHAGPIVVHCSAGVGRTGTFIVIDAMMA
gi 548626	FHFTGWPDHGVPYHATGLLSFIRRVKLSNPPSAGPIVVHCSAGAGRTGCYIVIDIMLD
gi 131570	FHFTGWPDHGVPYHATGLLGFVRQVKSKSPPNAGPLVVHCSAGAGRTGCFIVIDIMLD
gi 2144715	FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY
	* *** *** . * ** **

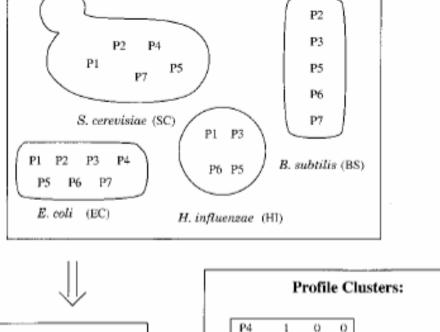
- Notice the PTPs agree with each other on some positions more than other positions
- These positions are more impt wrt PTPs
- Else they wouldn't be conserved by evolution
- ⇒ They are candidate active sites

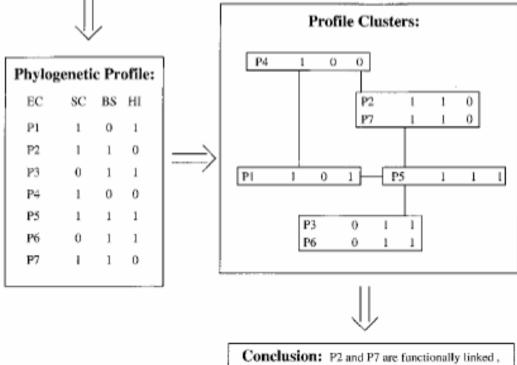
Guilt by Association: What if no homolog of known function is found?

What if there is no useful seq homolog? National Unit

- Guilt by other types of association!
 - Domain modeling (e.g., HMMPFAM)
 - ✓ Similarity of phylogenetic profiles
 - √ Similarity of dissimilarities (e.g., SVM-PAIRWISE)
 - Similarity of subcellular co-localization & other physico-chemico properties(e.g., PROTFUN)
 - Similarity of gene expression profiles
 - ✓ Similarity of protein-protein interaction partners
 - **–** ...
 - Fusion of multiple types of info


Phylogenetic profiling




Pellegrini et al., PNAS, 96:4285--4288, 1999

- Genes (and hence proteins) with identical patterns of occurrence across phyla tend to function together
- ⇒ Even if no homolog with known function is available, it is still possible to infer function of a protein

of Singapore

P3 and P6 are functionally linked

Phylogenetic profiling: How it works

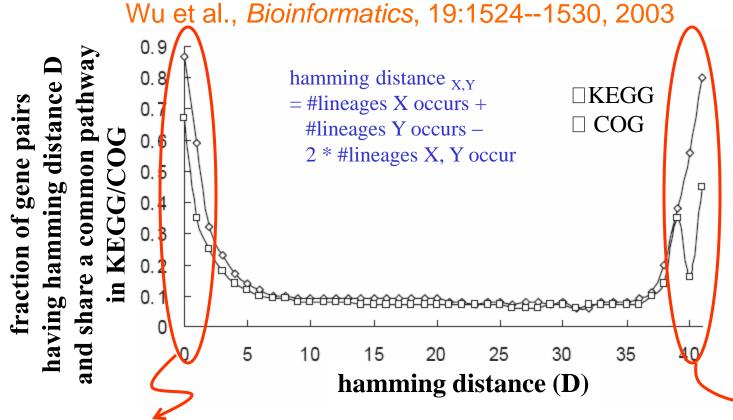
Phylogenetic profiling: P-value

The probability of observing by chance z occurrences of genes X and Y in a set of N lineages, given that X occurs in x lineages and Y in y lineages is

$$P(z|N, x, y) = \frac{w_z * \overline{w_z}}{W}$$

where

No. of ways to distribute
$$z$$
 co-occurrences over N lineage's
$$\overline{w_z} = \binom{N-z}{x-z} * \binom{N-x}{y-z}$$
No. of ways to distribute
$$W = \binom{N}{x} * \binom{N}{y} * \binom{N}{y}$$
No. of ways of distributing X and Y over X lineage's occurrences over the remaining X without restriction X without restriction X and X over X lineage's X over X lineage's X and X lineage's X and X lineage's X and X lineage's X lineage's


Phylogenetic profiles: Evidence

Pellegrini et al., PNAS, 96:4285--4288, 1999

Keyword	No. of non- homologous proteins in group	No. neighbors in keyword group	No. neighbors in random group
Ribosome	60	197	27
Transcription	36	17	10
tRNA synthase and ligase	26	11	5
Membrane proteins*	25	89	5
Flagellar	21	89	3
Iron, ferric, and ferritin	19	31	2
Galactose metabolism	18	31	2
Molybdoterin and Molybdenum,			
and molybdoterin	12	6	1
Hypothetical [†]	1,084	108,226	8,440

 E. coli proteins grouped based on similar keywords in SWISS-PROT have similar phylogenetic profiles Phylogenetic profiling: Evidence

 Proteins having low hamming distance (thus highly similar phylogenetic profiles) tend to share common pathways
 Exercise: Why do proteins having high

hamming distance also have this behaviour?

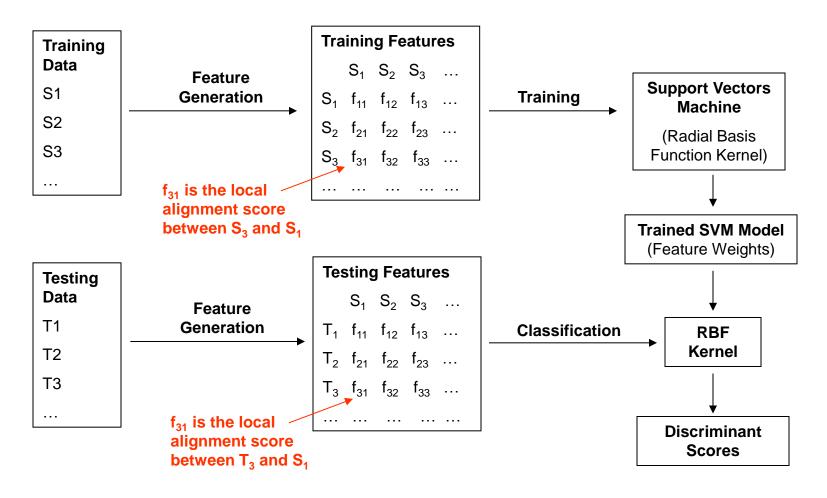
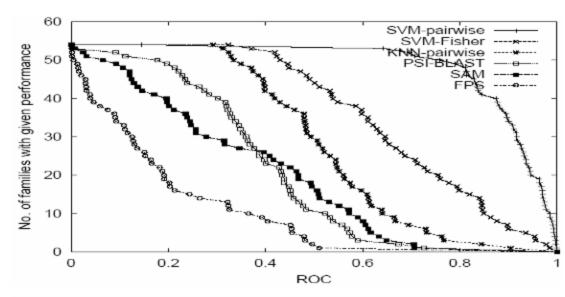
Guilt by association of dissimilarities

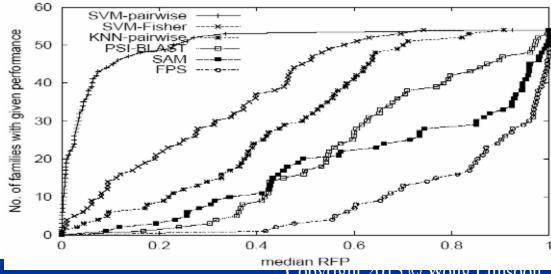
Differences of "unknown" to other fruits are same as "apple" to other fruits

an "apple"!

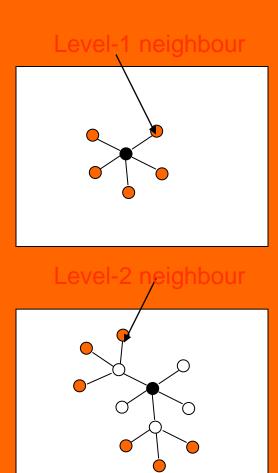
		Orange ₁	Banana ₁	
	Apple ₁	Color = red vs orange	Color = red vs yellow	
		Skin = smooth vs rough	Skin = smooth vs smooth	
^		Size = small vs small	Size = small vs small	
		Shape = round vs round	Shape = round vs oblong	
	Orange ₂	Color = orange vs orange	Color = orange vs yellow	
	27	Skin = rough vs rough	Skin = rough vs smooth	
		Size = small vs small	Size = small vs small	
)	Shape = round vs round	Shape = round vs oblong	
	Unknown ₁	Color = red vs orange	Color = red vs yellow	
7		Skin = smooth vs rough	Skin = smooth vs smooth	
		Size = small vs small	Size = small vs small	
		Shape = round vs round	Shape = round vs oblong	

SVM-Pairwise framework

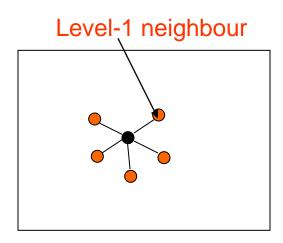

Image credit: Kenny Chua

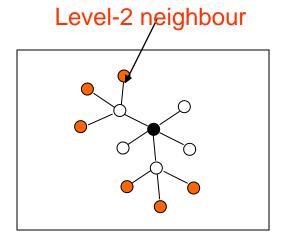
National University of Singapore


Performance of SVM-Pairwise

- Receiver Operating Characteristic (ROC)
 - The area under the curve derived from plotting true positives as a function of false positives for various thresholds.
- Rate of median False Positives (RFP)
 - The fraction of negative test examples with a score better or equals to the median of the scores of positive test examples.

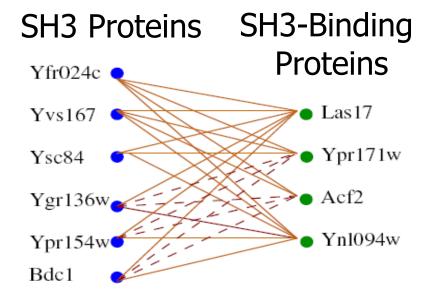
Protein Function Prediction from Protein Interactions

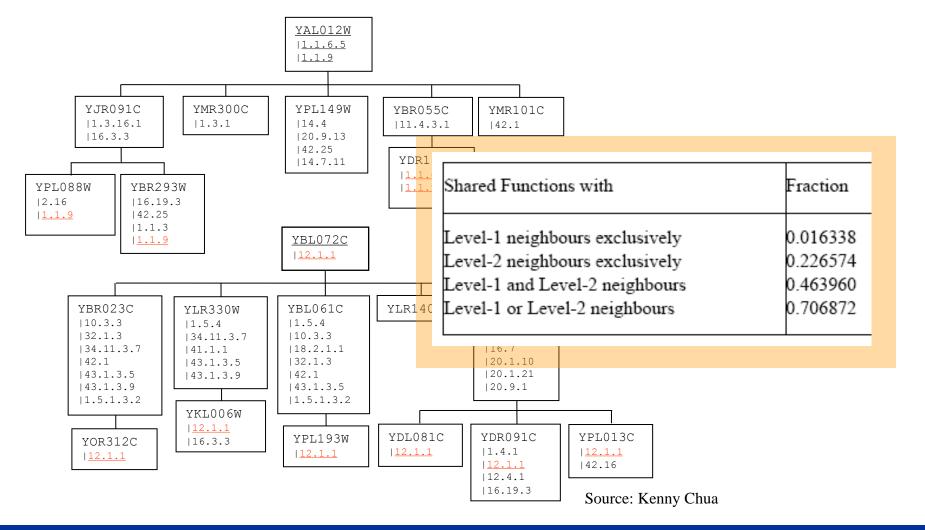

Functional association thru interaction



- Interaction partners of a protein are likely to share functions w/ it
- Proteins from the same pathways are likely to interact

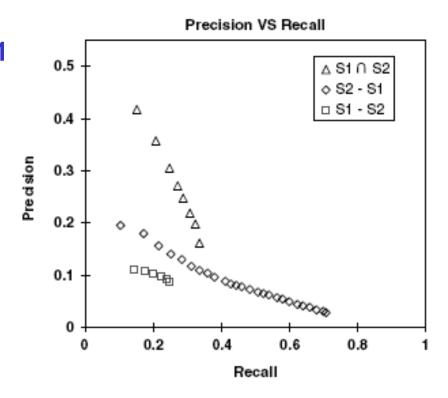
Indirect functional association


- Proteins that share interaction partners with a protein may also likely to share functions w/ it
- Proteins that have common biochemical, physical properties and/or subcellular localization are likely to bind to the same proteins


An illustrative case of indirect functional association?

- Is indirect functional association plausible?
- Is it found often in real interaction data?
- Can it be used to improve protein function prediction from protein interaction data?

Freq of indirect functional association



Prediction power by majority votin

- Remove overlaps in level-1 and level-2 neighbours to study predictive power of "level-1 only" and "level-2 only" neighbours
- Sensitivity vs Precision analysis

$$PR = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} m_{i}} \quad SN = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} n_{i}}$$

- n_i is no. of fn of protein i
- m_i is no. of fn predicted for protein i
- k_i is no. of fn predicted correctly for protein i

- ⇒ "level-2 only" neighbours performs better
- ⇒ L1 ∩ L2 neighbours has greatest prediction power

Functional similarity estimate: Czekanowski-Dice distance

Functional distance between two proteins (Brun et al, 2003)

$$D(u,v) = \frac{|N_u \Delta N_v|}{|N_u \cup N_v| + |N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- X Δ Y is symmetric diff betw two sets X and Y
- · Greater weight given to similarity

⇒ Similarity can be defined as

Is this a good measure if u and v have very diff number of neighbours?

$$S(u,v)=1-D(u,v)=\frac{2X}{2X+(Y+Z)}$$

Functional similarity estimate: National University FS-weighted measure

FS-weighted measure

$$S(u,v) = \frac{2|N_u \cap N_v|}{|N_u - N_v| + 2|N_u \cap N_v|} \times \frac{2|N_u \cap N_v|}{|N_v - N_u| + 2|N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- Greater weight given to similarity

⇒ Rewriting this as

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Correlation w/ functional similarity

Correlation betw functional similarity & estimates

Neighbours	CD-Distance	FS-Weight	
S_1 S_2 $S_1 \cup S_2$	0.471810 0.224705 0.224581	0.498745 0.298843 0.29629	(

 Equiv measure slightly better in correlation w/ similarity for L1 & L2 neighbours

Reliability of expt sources

- Diff Expt Sources have diff reliabilities
 - Assign reliability to an interaction based on its
 expt sources (Nabieva et al, 2004)
- Reliability betw u and v computed by:

$$r_{u,v} = 1 - \prod_{i \in E_{u,v}} (1 - r_i)$$

- r_i is reliability of expt source i,
- E_{u,v} is the set of expt sources in which interaction betw u and v is observed

Source	Reliability
Affinity Chromatography	0.823077
Affinity Precipitation	0.455904
Biochemical Assay	0.666667
Dosage Lethality	0.5
Purified Complex	0.891473
Reconstituted Complex	0.5
Synthetic Lethality	0.37386
Synthetic Rescue	1
Two Hybrid	0.265407

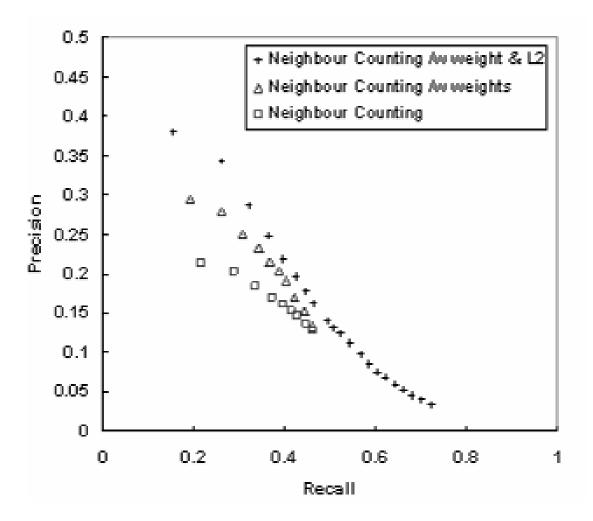
Functional similarity estimate: National of Singal FS-weighted measure with reliability

 Take reliability into consideration when computing FS-weighted measure:

$$S_{R}(u,v) = \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}}{\left(\sum_{w \in N_{u} - N_{v}} r_{u,w} \left(1 - r_{v,w}\right)\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}} \times \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}}{\left(\sum_{w \in N_{v} - N_{u}} r_{v,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}}$$

- N_k is the set of interacting partners of k
- r_{u,w} is reliability weight of interaction betw u and v
- ⇒ Rewriting

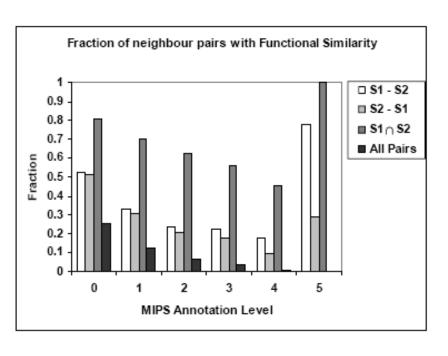
$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

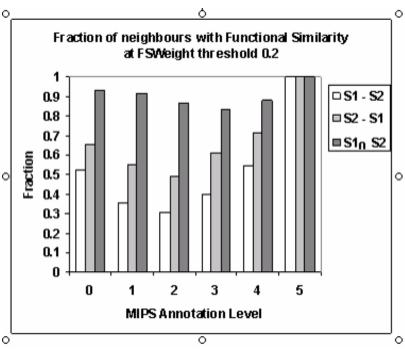


Integrating reliabilities

 Equiv measure shows improved correlation w/ functional similarity when reliability of interactions is considered:

Neighbours	CD-Distance	FS-Weight	FS-Weight R
S_1 S_2 $S_1 \cup S_2$	0.471810 0.224705 0.224581	0.298843	0.532596 0.375317 0.363025


Improvement to prediction power by majority voting



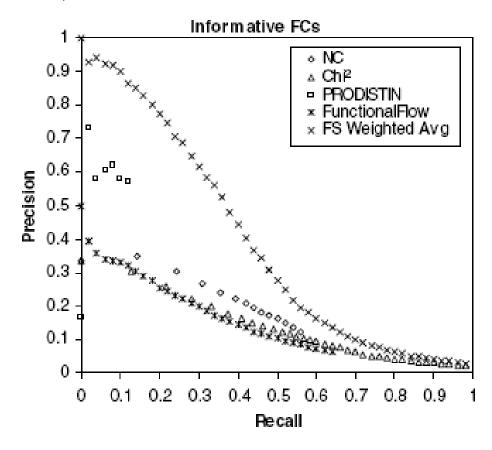
Considering only neighbours w/ FS weight > 0.2

of Singapore

Improvement to over-rep of functions in neighbours

Use L1 & L2 neighbours for prediction National of Singap

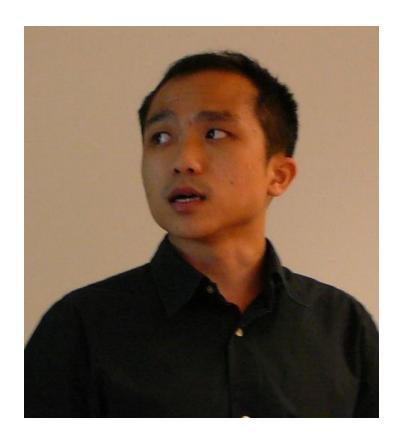
FS-weighted Average


$$f_{x}(u) = \frac{1}{Z} \left[\lambda r_{\text{int}} \pi_{x} + \sum_{v \in N_{u}} \left(S_{TR}(u, v) \delta(v, x) + \sum_{w \in N_{v}} S_{TR}(u, w) \delta(w, x) \right) \right]$$

- r_{int} is fraction of all interaction pairs sharing function
- λ is weight of contribution of background freq
- $\delta(k, x) = 1$ if k has function x, 0 otherwise
- N_k is the set of interacting partners of k
- π_x is freq of function x in the dataset

$$Z = 1 + \sum_{v \in N_u} \left(S_{TR}(u, v) + \sum_{w \in N_v} S_{TR}(u, w) \right)$$

Performance of FS-weighted averaging


 LOOCV comparison with Neighbour Counting, Chi-Square, PRODISTIN

About the inventor: Chua Hon Nia

Chua Hon Nian

- PhD, NUS, 2008
- Postdoc at Harvard& Univ of Toronto
- 49th hottest paper in Computer Science published in 2006
- Winner, DREAM2 challenge PPI subnetwork, 2007
- Now Data Scientist at Data Robot

Application of Sequence Comparison: Key Mutation Site Discovery

Identifying key mutation sites

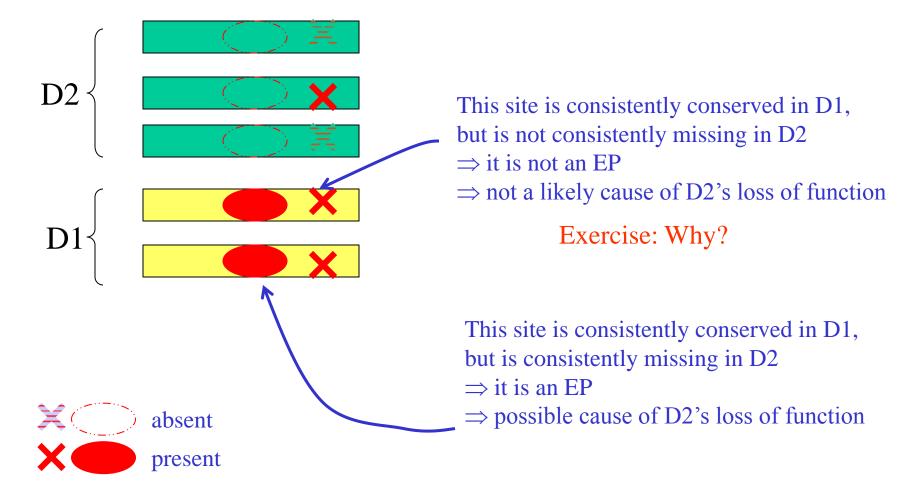
K.L.Lim et al., JBC, 273:28986--28993, 1998

Sequence from a typical PTP domain D2

>qi|00000|PTPA-D2

EEEFKKLTSIKIQNDKMRTGNLPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASF IDGYRQKDSYIASQGPLLHTIEDFWRMIWEWKSCSIVMLTELEERGQEKCAQYWPSDGLV SYGDITVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFHGWPEVGIPSDGKGMISII AAVQKQQQQSGNHPITVHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVKSLRLQRPH MVQTLEQYEFCYKVVQEYIDAFSDYANFK

- Some PTPs have 2 PTP domains
- PTP domain D1 has much more activity than PTP domain D2
- Why? And how do you figure that out?



- Collect example PTP D1 sequences
- Collect example PTP D2 sequences
- Make multiple alignment A1 of PTP D1
- Make multiple alignment A2 of PTP D2
- Are there positions conserved in A1 that are violated in A2?
 - These are candidate mutations that cause PTP activity to weaken
- Confirm by wet experiments

Emerging patterns of PTP D1 vs [

Key mutation site: PTP D1 vs D2

qi|00000|P QFHFHGWPEVGIPSDGKGMISIIAAVQKQQQQ-SGNHPITVHCSAGAGRTGTFCALSTVL QFHFTSWPDFGVPFTPIGMLKFLKKVKACNP--QYAGAIVVHCSAGVGRTGTFVVIDAML gi|126467| qi|2499753 OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML gi|462550| OYHYTOWPDMGVPEYALPVLTFVRRSSAARM--PETGPVLVHCSAGVGRTGTYIVIDSML qi|2499751 QFHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLI qi|1709906 QFQFTAWPDHGVPEHPTPFLAFLRRVKTCNP--PDAGPMVVHCSAGVGRTGCFIVIDAML qi|126471| OLHFTSWPDFGVPFTPIGMLKFLKKVKTLNP--VHAGPIVVHCSAGVGRTGTFIVIDAMM qi|548626| OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML gi|131570| OFHFTGWPDHGVPYHATGLLGFVROVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIML qi|2144715 QFHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLI ***** ****

- Positions marked by "!" and "?" are likely places responsible for reduced PTP activity
 - All PTP D1 agree on them
 - All PTP D2 disagree on them

Key mutation site: PTP D1 vs D2

gi|00000|P D2 gi|126467| gi|2499753 gi|462550| gi|2499751 gi|1709906 D1< gi|126471| gi|548626| gi|131570| gi|2144715 ? ! ?

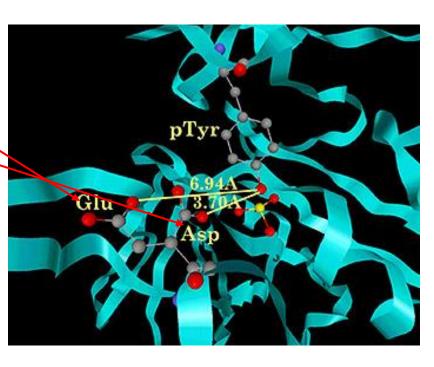
QFHFHGWPEVGIPSDGK(

QFHFTSWPDFGVPFTPI(

QFHFTGWPDHGVPYHAT(

QYHYTQWPDMGVPEYAL)

QFHFTSWPDHGVPEHPTI


QLHFTSWPDHGVPFTPI(

QFHFTGWPDHGVPYHAT(

QFHFTGWPDHGVPYHAT(

QFHFTSWPDHGVPDTTD)

* ** ** * *

 Positions marked by "!" are even more likely as 3D modeling predicts they induce large distortion to structure

Confirmation by mutagenesis

- What wet experiments are needed to confirm the prediction?
 - Mutate E → D in D2 and see if there is gain in PTP activity
 - Mutate D → E in D1 and see if there is loss in PTP activity

Exercise: Why do you need this 2-way expt?

About the inventor: Prasanna Kolatkar

Prasanna Kolatkar

- Research Fellow,BIC, NUS, 1997-1999
- Currently Senior
 Scientist at Qatar
 Biomedical
 Research Institute

Concluding Remarks

What have we learned?

- General methodologies & applications
 - Guilt by association for protein function inference
 - Invariants for active site discovery
 - Emerging patterns for mutation site discovery
- Important tactics
 - Genome phylogenetic profiling
 - SVM-Pairwise
 - Protein-protein interactions

Any Question?

Acknowledgements

 Some of the slides are based on slides given to me by Kenny Chua

References

- T.F.Smith & X.Zhang. "The challenges of genome sequence annotation or `The devil is in the details'", *Nature Biotech*, 15:1222--1223, 1997
- D. Devos & A. Valencia. "Intrinsic errors in genome annotation", *TIG*, 17:429--431, 2001
- K.L.Lim et al. "Interconversion of kinetic identities of the tandem catalytic domains of receptor-like protein tyrosine phosphatase PTP-alpha by two point mutations is synergist and substrate dependent", *JBC*, 273:28986--28993, 1998
- S.F.Altshcul et al. "Basic local alignment search tool", JMB, 215:403--410, 1990
- S.F.Altschul et al. "Gapped BLAST and PSI-BLAST: A new generation of protein database search programs", NAR, 25(17):3389--3402, 1997

References

- S.E.Brenner. "Errors in genome annotation", TIG, 15:132--133, 1999
- M. Pellegrini et al. "Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles", *PNAS*, 96:4285--4288, 1999
- J. Wu et al. "Identification of functional links between genes using phylogenetic profiles", *Bioinformatics*, 19:1524--1530, 2003
- L.J.Jensen et al. "Prediction of human protein function from post-translational modifications and localization features", *JMB*, 319:1257--1265, 2002
- C. Wu, W. Barker. "A Family Classification Approach to Functional Annotation of Proteins", *The Practical* Bioinformatician, Chapter 19, pages 401—416, WSPC, 2004

References

- H.N. Chua, W.-K. Sung. <u>A better gap penalty for pairwise SVM</u>. Proc. APBC05, pages 11-20
- Hon Nian Chua, Wing Kin Sung, Limsoon Wong. <u>Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions</u>. *Bioinformatics*, 22:1623-1630, 2006.
- T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote homologies. *JCB*, 7(1-2):95-114, 2000
- T. Hawkins and D. Kihara. Function prediction of uncharacterized proteins. *JBCB*, 5(1):1-30, 2007