
For written notes on this lecture, please read chapter 3 of The Practical Bioinformatician. Alternatively, please read

“Rule-Based Data Mining Methods for Classification Problems in Biomedical Domains”, a tutorial at PKDD04 by 

Jinyan Li and Limsoon Wong, September 2004. http://www.comp.nus.edu.sg/~wongls/talks/pkdd04/

CS2220: Introduction to Computational Biology

Unit 1b: Essence of Knowledge Discovery

Wong Limsoon
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Outline

• Overview of 

supervised learning

– Decision trees

• Decision tree 

ensembles

– Bagging

• Other methods

– K-nearest neighbour

– Support vector 

machines

– Naïve Bayes

– Hidden Markov 

models



Overview of supervised learning
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Supervised learning

• Also called classification

• Learn from past experience, and use the learned 

knowledge to classify new data

• Knowledge learned by intelligent algorithms

• Examples: 

– Clinical diagnosis for patients

– Cell type classification
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Data

• Classification application involves > 1 class of 

data. E.g., 

– Normal vs disease cells for a diagnosis problem

• Training data is a set of instances (samples, 

points, etc.) with known class labels

• Test data is a set of instances whose class labels 

are to be predicted
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Notations

• Training data

{x1, y1, x2, y2, …, xm, ym}

where xj are n-dimensional vectors 

and yj are from a discrete space Y. 

E.g., Y = {normal, disease}

• Test data

{u1, ?, u2, ?, …, uk, ? }
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Training data:  X Class labels Y

f(X)

A classifier, a mapping, a hypothesis

Test data:  U Predicted class labels

f(U)

Process
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x11 x12 x13 x14 …      x1n

x21 x22 x23 x24 …      x2n

x31 x32 x33 x34 …      x3n

………………………………….

xm1 xm2 xm3 xm4 …      xmn

n features (order of 1000)

m samples

class

P

N

P

N

gene1 gene2 gene3 gene4 …   genen

Relational representation
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Features (aka attributes)

• Categorical features

– color = {red, blue, green}

• Continuous or numerical features

– gene expression

– age

– blood pressure

• Discretization
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Example
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Biomedical

Financial

Government

Scientific

Decision trees

Emerging patterns

SVM

Neural networks

Classifiers (Medical Doctors)

Overall picture of 

supervised learning
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Recap: Evaluation of a classifier

• Performance on independent blind test data

– Blind test data properly represent real world

• K-fold cross validation

– Given a dataset, divide it into k even parts, k-1 of 

them are used for training, and the rest one part 

treated as test data

• LOOCV, a special case of K-fold cross validation

• Accuracy, error rate, false positive rate, false 

negative rate, sensitivity, specificity, precision
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Requirements of 

biomedical 

classification

• High accuracy, 

sensitivity, 

specificity, 

precision

• High 

comprehensibility
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Importance of rule-based methods

• Systematic selection of a small number of 

features used for the decision making

 Increase comprehensibility of the knowledge 

patterns

• C4.5 and CART are two commonly used rule 

induction algorithms---a.k.a. decision tree 

induction algorithms
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A B A

B A

x1

x2

x4

x3

> a1

> a2

Structure of decision trees

• If x1 > a1 &  x2 > a2, then it’s A class

• C4.5, CART, two of the most widely used

• Easy interpretation, but accuracy maybe unattractive

Leaf nodes

Internal nodes

Root node

B

A
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Elegance of decision trees

A

B

B A

A

Every path from root

to a leaf forms a 

decision rule
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CLS (Hunt et al. 1966)--- cost driven

ID3 (Quinlan, 1986) --- Information-driven

C4.5 (Quinlan, 1993) --- Gain ratio + Pruning ideas

CART (Breiman et al. 1984) --- Gini Index

Brief history of decision trees
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9 Play samples

5 Don’t

A total of 14.

A simple dataset
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2

outlook

windyhumidity

Play

Play

Play
Don’t

Don’t

sunny

overcast

rain

<= 75
> 75 false

true

2
4

3
3

A decision tree

• Construction of a tree is equiv to determination of 

root node of the tree and root nodes of its sub-trees

Exercise: What is the accuracy of this tree?
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Food for thought

• What is the accuracy of this decision tree?

Exercise #1
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No

An 

example

Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo

Outlook Temperature Humidity Wind    PlayTennis
Sunny        Hot            High    Weak       ?

Source: Anthony Tung
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Most discriminatory feature

• Every feature can be used to partition the training 

data

• If the partitions contain a pure class of training 

instances, then this feature is most 

discriminatory
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Example of partitions

• Categorical feature

– Number of partitions of the training data is equal to 

the number of values of this feature

• Numerical feature

– Two partitions
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Outlook Temp Humidity Windy class

Sunny 75 70 true Play

Sunny 80 90 true Don’t

Sunny 85 85 false Don’t

Sunny 72 95 true Don’t

Sunny 69 70 false Play

Overcast 72 90 true Play

Overcast 83 78 false Play

Overcast 64 65 true Play

Overcast 81 75 false Play

Rain 71 80 true Don’t

Rain 65 70 true Don’t

Rain 75 80 false Play

Rain 68 80 false Play

Rain 70 96 false Play

Instance #

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Categorical feature Numerical feature
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Total 14 training 

instances

1,2,3,4,5

P,D,D,D,P

6,7,8,9

P,P,P,P

10,11,12,13,14

D, D,  P,  P, P

Outlook =

sunny

Outlook = 

overcast

Outlook =

rain

A categorical feature is 

partitioned based on its 

number of possible values
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Total 14 training 

instances

5,8,11,13,14

P,P, D, P, P

1,2,3,4,6,7,9,10,12

P,D,D,D,P,P,P,D,P

Temperature

<= 70 

Temperature

> 70 

A numerical feature is 

generally partitioned by 

choosing a “cutting point”
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Decision tree construction

• Select the “best” feature as root node of the 

whole tree

• Partition dataset into subsets using this feature 

so that the subsets are as “pure” as possible

• After partition by this feature, select the best 

feature (wrt the subset of training data) as root 

node of this sub-tree

• Recursively, until the partitions become pure or 

almost pure
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Ask the class to 

pick root node 

and construct 

the tree 

recursively 

with them… 

How good is 

that tree?

Let’s construct a decision tree

Exercise #2
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Three measures 

to evaluate 

which feature is 

best

• Gini index

• Information gain

• Information gain 

ratio
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Gini index

• Gini index is the expected value of the ratio of the 

diff of two arbitrary specimens to the mean value 

of all specimens

• Closer to 1, feature is similar to “background 

distribution”. Closer to 0, feature is “unexpected”
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Gini index
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Gini index of “Outlook”

• gini(Sunny) = 1 – (2/5)2 – (3/5)2 = 0.48

• gini(Overcast) = 1 – (4/4)2 – (0/5)2 = 0

• gini(Rain) = 1 – (3/5)2 – (2/5)2 = 0.48

• gini(Outlook) = 5/14 * 0.48 + 4/14 * 0 + 5/14 * 0.48 = 0.34
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Characteristics of C4.5/CART trees

• Single coverage of training data (elegance)

• Divide-and-conquer splitting strategy

• Fragmentation problem  Locally reliable but 

globally insignificant rules

• Miss many globally significant rules; mislead 

system
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Example Use of 

Decision Tree Methods:

Proteomics 

Approaches to 

Biomarker Discovery

• In prostate and bladder 

cancers (Adam et al. 

Proteomics, 2001)

• In serum samples to 

detect breast cancer 

(Zhang et al. Clinical 

Chemistry, 2002)

• In serum samples to 

detect ovarian cancer 

(Petricoin et al. Lancet; 

Li & Rao, PAKDD 2004)



Decision tree ensembles
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• h1, h2, h3 are indep classifiers w/ accuracy = 60%

• C1, C2 are the only classes

• t is a test instance in C1

• h(t) = argmaxC{C1,C2} |{hj {h1, h2, h3} | hj(t) = C}|

• Then prob(h(t) = C1)

= prob(h1(t)=C1 & h2(t)=C1 & h3(t)=C1) +

prob(h1(t)=C1 & h2(t)=C1 & h3(t)=C2) +

prob(h1(t)=C1 & h2(t)=C2 & h3(t)=C1) +

prob(h1(t)=C2 & h2(t)=C1 & h3(t)=C1) 

= 60% * 60% * 60% + 60% * 60% * 40% +

60% * 40% * 60% + 40% * 60% * 60% = 64.8%

Motivating example
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Bagging

• Proposed by Breiman (1996)

• Also called Bootstrap aggregating

• Make use of randomness injected to training data
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Main ideas

50 p + 50 nOriginal training set

48 p + 52 n 49 p + 51 n 53 p + 47 n…
A base inducer such as C4.5

A committee H of classifiers:

h1 h2 ….                  hk

Draw 100 samples

with replacement
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Decision making by bagging

• What does this formula mean?

Exercise #3
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Bagging
Random 

Forest

AdaBoost.M1

Randomization 

Trees
CS4

Rules may 

not be correct 

when

applied to 

training data

Rules correct

Summary of ensemble classifiers

Exercise: Describe the decision tree 

ensemble classifiers not explained in this ppt



Other machine learning approaches
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Outline

• K-nearest neighbor (kNN)

• Support vector machines (SVM)

• Naïve Bayes

• Hidden Markov models (HMM)



K-nearest neighbours
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How kNN works

• Given a new case

• Find k “nearest” 

neighbours, i.e., k 

most similar points in 

the training data set 

• Assign new case to 

the same class to 

which most of these 

neighbours belong

• A common “distance” 

measure betw

samples x and y is

where f ranges over 

features of the 

samples

Exercise: What does the formula above mean?
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Neighborhood

5 of class

3 of class

=

Illustration of kNN (k=8)

Image credit: Zaki
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Some issues

• Simple to implement

• Must compare new case against all training cases

 May be slow during prediction

• No need to train 

• But need to design distance measure properly

 May need expert for this

• Can’t explain prediction outcome

 Can’t provide a model of the data
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Example Use of kNN

Ovarian cancer diagnosis based on 

SELDI proteomic data

• Li et al, Bioinformatics

20:1638-1640, 2004

• Use kNN to diagnose 

ovarian cancers using 

proteomic spectra

• Data set is from Petricoin 

et al., Lancet 359:572-577, 

2002



Support vector machines
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(a) Linear separation not possible w/o errors

(b) Better separation by nonlinear surfaces in input space

(c ) Nonlinear surface corr to linear surface in feature space. 

Map from input to feature space by “kernel” function 

 “Linear learning machine” + kernel function as classifier

Basic idea

Image credit: Zien
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• Hyperplane separating the x’s and o’s points is 

given by (W•X) + b = 0, with (W•X) = jW[j]*X[j]

 Decision function is llm(X) = sign((W•X) + b))

Linear learning machines



51

CS2220, AY17/18 Copyright 2017 © Wong Limsoon

• Solution is a linear combination of training points 

Xk with labels Yk

W = kk*Yk*Xk, 

with k > 0, and Yk = ±1

 llm(X) = sign(kk*Yk* (Xk•X) + b)

Linear learning machines

“data” appears only in dot product!
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• llm(X) = sign(kk*Yk* (Xk•X) + b)

• svm(X) = sign(kk*Yk* (Xk• X) + b)

 svm(X) = sign(kk*Yk* K(Xk,X) + b)

where K(Xk,X) = (Xk• X) 

Kernel function
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Kernel function

• svm(X) = sign(kk*Yk* K(Xk,X) + b)

 K(A,B) can be computed w/o computing 

• In fact replace it w/ lots of more “powerful” 

kernels besides (A • B). E.g.,

– K(A,B) = (A • B)d

– K(A,B) = exp(– || A B||2 / (2*)), ...
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How SVM works

• svm(X) = sign(kk*Yk* K(Xk,X) + b)

• To find k is a quadratic programming problem 

max: kk – 0.5 * k h k*h Yk*Yh*K(Xk,Xh)

subject to: kk*Yk=0

and for all k , C  k 0

• To find b, estimate by averaging

Yh – kk*Yk* K(Xh,Xk)

for all h 0
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Example Use of SVM: Recognition of 

protein translation initiation sites

• Zien et al., Bioinformatics 16:799-807, 2000

• Use SVM to recognize protein translation initiation sites from 

genomic sequences

• Raw data set is same as Liu & Wong, JBCB 1:139-168, 2003

TIS



Naïve Bayes
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Bayes theorem

• P(h) = prior prob that hypothesis h holds

• P(d|h) = prob of observing data d given h holds

• P(h|d) = posterior prob that h holds given 

observed data d
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• Let H be all possible classes. Given a test 

instance w/ feature vector {f1 = v1, …, fn = vn}, the 

most probable classification is given by

• Using Bayes Theorem, rewrites to

• Since denominator is independent of hj, this 

simplifies to

Bayesian approach
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Naïve Bayes

• But estimating P(f1=v1, …, fn=vn|hj) accurately may 

not be feasible unless training data set is large

• “Solved” by assuming f1, …, fn are conditionally 

independent of each other

• Then

where P(hj) and P(fi=vi|hj) can often be estimated 

reliably from typical training data set

Exercise: How do you estimate P(hj) and P(fj=vj|hj)?
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Source: Wikipedia
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Independence vs 

Conditional independence

• Independence: P(A,B) = P(A) * P(B)

• Conditional Independence: P(A,B|C) = P(A|C) * P(B|C)

• Indep does not imply conditional indep

– Consider tossing a fair coin twice 

• A is event of getting head in 1st toss

• B is event of getting head in 2nd toss

• C is event of getting exactly one head

– Then A={HT, HH}, B={HH, TH} and C={HT, TH}

– P(A,B|C) =P({HH}|C)=0

– P(A|C) = P(A,C)/P(C) =P({HT})/P(C)=(1/4)/(1/2) =1/2

– Similarly, P(B|C) =1/2 
Source: Choi Kwok Pui 
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Example Use of Bayesian: Design of screens

for macromolecular crystallization

• Hennessy et al., Acta Cryst

D56:817-827, 2000

• Xtallization of proteins 

requires search of expt 

settings to find right 

conditions for diffraction-

quality xtals

• BMCD is a db of known 

xtallization conditions

• Use Bayes to determine 

prob of success of a set of 

expt conditions based on 

BMCD



Hidden Markov models
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What is a HMM

• HMM is a stochastic generative 

model for seqs

• Defined by model parameters

– finite set of states S

– finite alphabet A

– transition prob matrix T

– emission prob matrix E

• Move from state to state as per T 

while emitting symbols as per  E

sk

s1

…

s2

a1
a2
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• In nth order HMM, T & E depend on all n previous 

states

• E.g., for 1st order HMM, given emissions X = x1, x2, 

…, & states S = s1, s2, …, the prob of this seq is

Order of a HMM
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• Given the model parameters, compute the 

probability of a particular output sequence. Solved 

by the forward algorithm

• Given the model parameters, find the most likely 

sequence of (hidden) states which could have 

generated a given output sequence. Solved by the 

Viterbi algorithm

• Given an output sequence, find the most likely set 

of state transition and output probabilities. Solved 

by the Baum-Welch algorithm

Using HMM

Exercise: Describe these algorithms



68

CS2220, AY17/18 Copyright 2017 © Wong Limsoon

Example: Dishonest casino

• Casino has two dices:

– Fair dice 

• P(i) = 1/6, i = 1..6

– Loaded dice

• P(i) = 1/10, i = 1..5

• P(i) = 1/2, i = 6

• Casino switches betw fair 

& loaded die with prob 1/2. 

Initially, dice is always fair

• Game:

– You bet $1

– You roll 

– Casino rolls 

– Highest number wins $2

• Question: Suppose we 

played 2 games, and the 

sequence of rolls was 1, 6, 

2, 6. Were we likely to have 

been cheated?
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“Visualization” of dishonest casino
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1, 6, 2, 6? 

We were probably cheated...

Fair
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Example Use of HMM: Protein families modelling

• Baldi et al., PNAS 91:1059-

1063, 1994

• HMM is used to model 

families of biological 

sequences, such as 

kinases, globins, & 

immunoglobulins

• Bateman et al., NAR 32:D138-

D141, 2004

• HMM is used to model 

6190 families of protein 

domains in Pfam



Concluding remarks…
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What have we learned?

• Decision trees

• Decision trees ensembles

– Bagging

• Other methods

– K-nearest neighbour

– Support vector machines

– Naïve Bayes

– Hidden Markov models



Any question?
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• http://www.cs.waikato.ac.nz/ml/weka

• Weka is a collection of machine learning 

algorithms for data mining tasks. The algorithms 

can either be applied directly to a dataset or 

called from your own Java code. Weka contains 

tools for data pre-processing, classification, 

regression, clustering, association rules, and 

visualization. 

Exercise: Download a copy of WEKA. What are the names 

of classifiers in WEKA that correspond to C4.5 and SVM?

http://www.cs.waikato.ac.nz/ml/weka
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