
For written notes on this lecture, please read chapter 3 of The Practical Bioinformatician,

CS2220: Introduction to Computational Biology
Unit 1a: Essence of Knowledge Discovery

Wong Limsoon
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Jonathan’s rules : Blue or Circle
Jessica’s rules : All the rest

What is knowledge discovery?

Whose block 
is this?

Jonathan’s blocks

Jessica’s blocks
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What is knowledge discovery?

Question: Can you explain how?
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Key steps 

• Training data gathering
• Feature generation

– k-grams, colour, texture, domain know-how, ...
• Feature selection

– Entropy, χ2, CFS, t-test, domain know-how...
• Feature integration

– SVM, ANN, PCL, CART, C4.5, kNN, ...

Some classifiers / machine learning methods



What is accuracy?
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What is accuracy?

Accuracy =
No. of correct predictions

No. of predictions

=
TP + TN

TP + TN + FP + FN
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Examples (Balanced population)

• Clearly, B, C, D are all better than A
• Is B better than C, D?
• Is C better than B, D?
• Is D better than B, C?

classifier TP TN FP FN Accuracy
A 25 25 25 25 50%
B 50 25 25 0 75%
C 25 50 0 25 75%
D 37 37 13 13 74%

Accuracy may not
tell the whole story


Sheet1

		classifier		TP		TN		FP		FN		Accuracy

		A		25		25		25		25		50%

		B		50		25		25		0		75%

		C		25		50		0		25		75%

		D		37		37		13		13		74%
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Examples (Unbalanced population)

• Clearly, D is better than A
• Is B better than A, C, D?

classifier TP TN FP FN Accuracy
A 25 75 75 25 50%
B 0 150 0 50 75%
C 50 0 150 0 25%
D 30 100 50 20 65%

High accuracy is meaningless if population is unbalanced

Exercise: What is B’s 
Prediction strategy?


Sheet1

		classifier		TP		TN		FP		FN		Accuracy

		A		25		75		75		25		50%

		B		0		150		0		50		75%

		C		50		0		150		0		25%

		D		30		100		50		20		65%
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What is sensitivity (aka recall)?

Sensitivity =
No. of correct positive predictions

No. of positives

=
TP

TP + FN

wrt positives

Sometimes sensitivity wrt negatives is termed specificity
Exercise: Write down the formula for specificity
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What is precision?

Precision =
No. of correct positive predictions

No. of positives predictions

=
TP

TP + FP

wrt positives
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Unbalanced population revisited

• What are the sensitivity and precision of B and C?
• Is B better than A, C, D?

classifier TP TN FP FN Accuracy Sensitivity Precision
A 25 75 75 25 50% 50% 25%
B 0 150 0 50 75%
C 50 0 150 0 25%
D 30 100 50 20 65% 60% 38%

Exercise #1


Sheet1

		classifier		TP		TN		FP		FN		Accuracy		Sensitivity		Precision

		A		25		75		75		25		50%		50%		25%

		B		0		150		0		50		75%

		C		50		0		150		0		25%

		D		30		100		50		20		65%		60%		38%
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Abstract model of a classifier

• Given a test sample S
• Compute scores p(S), n(S)
• Predict S as negative if p(S) / n(S) < t
• Predict S as positive  if p(S) / n(S) ≥ t

t is the decision threshold of the classifier

changing t affects the recall and precision,
and hence accuracy, of the classifier
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Example

Recall that …
• Predict S as negative if p(S) / n(S) <  t
• Predict S as positive  if p(S) / n(S) ≥ t

5  / 6
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Precision-recall trade-off

• A predicts better than 
B if A has better recall 
and precision than B

• There is a trade-off 
between recall and 
precision

• In some apps, once 
you reach satisfactory 
precision, you 
optimize for recall

• In some apps, once 
you reach satisfactory 
recall, you optimize 
for precision

precision
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Comparing prediction performance

• Accuracy is the obvious measure
– But it conveys the right intuition only when the 

positive and negative populations are roughly 
equal in size

• Recall and precision together form a better 
measure
– But what do you do when A has better recall than 

B and B has better precision than A?
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F-measure (Used in info extraction)

• Take the harmonic mean of recall and precision

F =
2 * recall * precision

recall + precision (wrt positives)

classifier TP TN FP FN Accuracy F-measure
A 25 75 75 25 50% 33%
B 0 150 0 50 75% undefined
C 50 0 150 0 25% 40%
D 30 100 50 20 65% 46%

Does not accord with intuition:
C predicts everything as +ve, but still rated better than A


Sheet1

		classifier		TP		TN		FP		FN		Accuracy		F-measure

		A		25		75		75		25		50%		33%

		B		0		150		0		50		75%		undefined

		C		50		0		150		0		25%		40%

		D		30		100		50		20		65%		46%
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Adjusted accuracy

• Weigh by the importance of the classes

classifier TP TN FP FN Accuracy Adj Accuracy
A 25 75 75 25 50% 50%
B 0 150 0 50 75% 50%
C 50 0 150 0 25% 50%
D 30 100 50 20 65% 63%

Adjusted accuracy = α * Sensitivity β * Specificity+

where  α + β = 1
typically, α = β = 0.5


Sheet1

		classifier		TP		TN		FP		FN		Accuracy		Adj Accuracy

		A		25		75		75		25		50%		50%

		B		0		150		0		50		75%		50%

		C		50		0		150		0		25%		50%

		D		30		100		50		20		65%		63%
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ROC curves

• By changing t, we get a 
range of sensitivities and 
specificities of a classifier

• A predicts better than B if 
A has better sensitivities 
than B at most specificities

• Leads to ROC curve that 
plots sensitivity vs. (1 –
specificity)

• Then the larger the area 
under the ROC curve, the 
better

1 – specificity
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Food for thought

• You have a classifier. On a test set having 20% 
+ve and 80% -ve cases, the classifier’s recall and 
precision are both 80%

• Suppose you test it on a new test set having 80% 
+ve and 20% -ve cases. What do you expect its 
accuracy to be? 

• You may assume that the +ve (resp. –ve) cases in 
both test sets are equally sufficiently representative 
of the +ve (resp. –ve) real-world population

• What lesson have you learned? Exercise #2



What is cross validation?
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Construction of a classifier

Build ClassifierTraining
samples Classifier

Apply ClassifierTest
instance Prediction
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Estimate accuracy: Wrong way

• Why is this way of estimating accuracy wrong?

Apply 
Classifier Predictions

Build 
Classifier

Training
samples Classifier

Estimate
Accuracy Accuracy

Exercise #3
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Recall ...

• Given a test sample S
• Compute scores p(S), n(S)
• Predict S as negative if p(S) / n(S) < t
• Predict S as positive  if p(S) / n(S) ≥ t

t is the decision threshold of the classifier

…the abstract model of a classifier
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K-nearest neighbour classifier (k-NN)

• Given a sample S, find the k observations Si in 
the known data that are “closest” to it, and take 
majority vote of their responses

• Assume S is well approximated by its neighbours

p(S) = Σ 1
Si ∈Nk(S) ∩ DP

n(S) = Σ 1
Si ∈Nk(S) ∩ DN

where Nk(S) is the neighbourhood of S
defined by the k nearest samples to it.

Assume distance between samples is Euclidean distance for now
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Neighborhood

5 of class
3 of class

=

Illustration of kNN (k=8)

Image credit: Zaki
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Estimate accuracy: Wrong way

Apply 
1-NN Predictions

Build 
1-NN

Training
samples 1-NN

Estimate
Accuracy

100%
Accuracy

For sure k-NN (k = 1) has 100% accuracy (Why?)
in the “accuracy estimation” procedure above. Does
this accuracy generalize to new test instances?
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Estimate accuracy: Right way

Testing samples are NOT to be used 
during “Build Classifier”

Apply 
Classifier Predictions

Build 
Classifier

Training
samples Classifier

Estimate
Accuracy Accuracy

Testing
samples
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How many training and testing samples?

• No fixed ratio between training and testing 
samples; but typically 2:1 ratio

• Proportion of instances of different classes in 
testing samples should be similar to proportion in 
the real world, and preferably also to proportion 
in the training samples

• What if there are insufficient samples to reserve 
1/3 for testing?
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Cross validation

• Divide samples 
into k roughly 
equal parts 

• Each part has 
similar proportion 
of samples from 
different classes

• Use each part to 
test other parts

• Total up accuracy

2.Train 3.Train 4.Train 5.Train 1.Test 

2.Test 3.Train 4.Train 5.Train 1.Train 

2.Train 3.Test 4.Train 5.Train 1.Train 

2.Train 3.Train 4.Test 5.Train 1.Train 

2.Train 3.Train 4.Train 5.Test 1.Train 
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How many fold?

• If samples are divided 
into k parts, we call 
this k-fold cross 
validation

• Choose k so that 
– the k-fold cross 

validation accuracy 
does not change 
much from k-1 fold

– each part within the k-
fold cross validation 
has similar accuracy

• k = 5 or 10 are popular 
choices for k

Size of training set

A
cc

ur
ac

y 
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Bias and variance

Source: Freedman et al., Statistics, Norton, 1998
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Bias-variance decomposition

• Suppose classifiers Cj and 
Ck were trained on 
different sets Sj and Sk of 
1000 samples each

• Then Cj and Ck might have 
different accuracy

• What is the expected 
accuracy of a classifier C 
trained this way?

• Let Y = f(X) be what C is 
trying to predict

• The expected squared 
error at a test instance x, 
averaging over all such 
training samples, is 

E[C(x) – f(x)]2

= E[C(x) – E[C(x)]]2

+ [E[C(x)] – f(x)]2 

Variance: 
how much our 
estimate C(x) will
vary across the 
different training
sets

Bias:
how far is our ave 
prediction E[C(x)] 
from the truth
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Proof of bias-variance decomposition

• E [C(x) – f(x)]2

= E [C(x) – E[C(x)] + E [C(x)] – f(x)]2

= E [(C(x) – E[C(x)])2 + (E[C(x)] – f(x))2 – 2 (C(x) – E[C(x)]) (E[C(x)] – f(x))]
= E [C(x) – E[C(x)]]2 + E [E[C(x)] – f(x)]2 – 2 E (C(x) – E[C(x)]) (E[C(x)] – f(x))
= E [C(x) – E[C(x)]]2 + (E[C(x)] – f(x))2 – 2 (E[C(x)] – E[C(x)]) (E[C(x)] – f(x))
= E [C(x) – E[C(x)]]2 + (E[C(x)] – f(x))2

Variance: 
how much our 
estimate C(x) will
vary across the 
different training
sets

Bias:
how far is our ave 
prediction E[C(x)] 
from the truth
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Size of training set

A
cc

ur
ac

y 
Bias-variance trade-off

• In k-fold cross 
validation, 
– small k tends to 

under estimate 
accuracy (i.e., large 
bias downwards)

– Large k has smaller 
bias, but can have 
high variance
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Food for thought

• What is the logical basis of cross validation?
• Hint: Central limit theorem

• What / whose accuracy does it really estimate?

Exercise #4



Curse of dimensionality
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Neighborhood

5 of class
3 of class

=

Recall kNN …

Image credit: Zaki

1st
di

m
en

si
on

2nd dimension
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Curse of dimensionality

• How much of each 
dimension is needed to 
cover a proportion r of a p-
dimensional  sample 
space?

• Calculate by ep(r) = r1/p
. Why?

• So, to cover 10% of a 15-D 
space, need 85% of each 
dimension! 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

p=3 p=6 p=9 p=12 p=15

r=0.01
r=0.1

Exercise #5
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Consequence of the curse

• Suppose the number of samples given to us in 
the total sample space is fixed

• Let the dimension increase

• Then the distance of the k nearest neighbours of 
any point increases

• Then the k nearest neighbours are less and less 
useful for prediction, and can confuse the k-NN 
classifier



What is feature selection?
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Tackling the curse

• Given a sample space of p dimensions

• It is possible that some dimensions are irrelevant

• Need to find ways to separate those dimensions 
(aka features) that are relevant (aka signals) from 
those that are irrelevant (aka noise)
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Signal selection (Basic idea)

• Choose a feature w/ low intra-class distance
• Choose a feature w/ high inter-class distance
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Signal selection (e.g., t-statistics)



44

CS2220, AY2018/19 Copyright 2018 © Wong Limsoon

Food for thought

• How is the t-statistic typically used?

• What are the assumptions required for this way of 
using the t-statistic?

Exercise #6
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Self-fulfilling oracle

• Construct artificial 
dataset with 100 
samples, each with 
100,000 randomly 
generated features 
and randomly 
assigned class labels

• Select 20 features 
with the best t-
statistics (or other 
methods)

• Evaluate accuracy by 
cross validation using 
the 20 selected 
features

• The resulting 
accuracy can be ~90%

• But the true accuracy 
should be 50%, as the 
data were derived 
randomly
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What went wrong?

• The 20 features were selected from whole dataset

• Information in the held-out testing samples has 
thus been “leaked” to the training process

• The correct way is to re-select the 20 features at 
each fold; better still, use a totally new set of 
samples for testing



While dimensionality reduction is an important tool in machine 
learning/data mining, we must always be aware that it can distort the 
data in misleading ways.

Above is a two dimensional projection of an intrinsically three 
dimensional world….

© Eamonn Keogh



Original photographer unknown/
See also www.cs.gmu.edu/~jessica/DimReducDanger.htm                     

© Eamonn Keogh       



Screen dumps of a short video from 
www.cs.gmu.edu/~jessica/DimReducDanger.htm

A cloud of points in 3D

Can be projected into 2D
XY or XZ or YZ

In 2D XZ we see 
a triangle

In 2D YZ we see 
a square

In 2D XY we see 
a circle

© Eamonn Keogh



Concluding remarks
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What have we learned?

• Methodology of data mining
– Feature generation, feature selection, feature 

integration

• Evaluation of classifiers
– Accuracy, sensitivity, precision
– Cross validation

• Curse of dimensionality
– Feature selection concept
– Self-fulfilling oracle



Any questions?
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