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What is knowledge discovery? %% NUS

Jonathan’s blocks

.OA.

Jessica’s blocks

Whose block
AR

Jonathan’s rules : Blue or Circle
Jessica’s rules : All the rest
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What is knowledge discovery? 9%z

Question: Can you explain how?
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Key steps

Training data gathering

Feature generation

— k-grams, colour, texture, domain know-how, ...
Feature selection

— Entropy, y2, CFS, t-test, domain know-how...
Feature integration

— SVM, ANN, PCL, CART, C4.5, kNN, ...

Ome classifiers / machine learning methods
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What Is accuracy?

predicted |predicted
as positive |as negative
positive | TP EN
negative || kP TN

No. of correct predictions

Accuracy =
Y No. of predictions

TP+ TN
TP+ TN+ FP+FN
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Examples (Balanced population)®% sz

classifier TP TN FP FN Accuracy

A 25 25 25 25 50%
B 50 25 25 O /5%
C 25 50 0 25 /5%
D 37 37 13 13 74%

 Clearly, B, C, D are all better than A
 |s B better than C, D?
e |s C better than B, D?

e Is D better than B, C? Accuracy may not

tell the whole story
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		classifier		TP		TN		FP		FN		Accuracy

		A		25		25		25		25		50%

		B		50		25		25		0		75%

		C		25		50		0		25		75%

		D		37		37		13		13		74%






Examples (Unbalanced population ‘"3 NUS

classifier TP TN FP FN Accuracy

A 25 75 15 25 50%
B 0150 0 50 13%
C 50 0150 O 25%
D 30 100 50 20 65%

o Clearly, D is better than A

Exercise: What is B’s
* Is B better than A, C, D? Prediction strategy?

High accuracy Is meaningless if population is unbalanced
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		classifier		TP		TN		FP		FN		Accuracy

		A		25		75		75		25		50%

		B		0		150		0		50		75%

		C		50		0		150		0		25%

		D		30		100		50		20		65%
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What Is sensitivity (aka recall)? =~ =

predicted |predicted
as positive |as negative
positive | TP EN
negative || kP TN

No. of correct positive predictions
Sensitivity = —
wrt positives No. of positives

TP
TP +FN

Sometimes sensitivity wrt negatives is termed specificity

Exercise: Write down the formula for specificity
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What Is precision?

predicted |predicted
as positive |as negative
positive | TP EN
negative || kP TN

No. of correct positive predictions

Precision =

wrt positives No. of positives predictions
_ TP
- TP+FP
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classifier TP TN FP FN Accuracy Sensitivity Precision
A 25 75 75 25 50% 50% 25%
B 0150 0 50 5%
C 50 0150 O 25%
D 30 100 50 20 65% 60% 38%

« What are the sensitivity and precision of B and C?
 |s B better than A, C, D?

Exercise #1
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		classifier		TP		TN		FP		FN		Accuracy		Sensitivity		Precision

		A		25		75		75		25		50%		50%		25%

		B		0		150		0		50		75%

		C		50		0		150		0		25%

		D		30		100		50		20		65%		60%		38%
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Abstract model of a classifier E?EZﬁSiL‘i?:""'“’

« Given atest sample S

e Compute scores p(S), n(S)

 Predict S as negative if p(S)/ n(S) <t
 Predict S as positive if p(S)/n(S) >t

t 1s the decision threshold of the classifier

changing t affects the recall and precision,
and hence accuracy, of the classifier
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S P(S3) NiS) Actual Predicted Predicted

Class Class Class
Bt =3 B t=2

2 0.961252 0.038748 | P P P

3 0.435302 0.564698 N N N

6 0.691596 0.308404 P N P

7 0.180885 | 0.819115 | N N N

= 0.814909 0.185091 P P P

10 | 0.887220 0.112780 P P P
accuracy | t g 6/ 6
recall 3/ 4 4/ 4
precision| 3/ z 4/ 4

Recall that ...

* Predict S as negative if p(S) /n(S) < t
 Predict S as positive if p(S) /n(S) > t

CS2220, AY2018/19
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Precision-recall trade-off

A predicts better than <« In some apps, once

B if A has better recall you reach satisfactory
and precision than B precision, you

« There is a trade-off optimize for recall
between recall and  In some apps, once
precision you reach satisfactory

recall, you optimize
for precision

recall

precision
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Comparing prediction performanc NUS

« Accuracy is the obvious measure

— But it conveys the right intuition only when the
positive and negative populations are roughly
equal in size

 Recall and precision together form a better
measure

— But what do you do when A has better recall than
B and B has better precision than A?
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F-measure (Used In info extractio "-,?73 i US

« Take the harmonic mean of recall and precision

2 * recall * precision

= recall + precision (wrt positives)

classifier TP TN FP FN Accuracy F-measure

A 25 75 75 25 50%C_ - 33%

B 0150 0 50 75% ndeflned
C 50 0150 0O . 25%F o
D 30 100 50

Does not accord with intuition:
C predicts everything as +ve, but still rated better than A
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		classifier		TP		TN		FP		FN		Accuracy		F-measure

		A		25		75		75		25		50%		33%

		B		0		150		0		50		75%		undefined

		C		50		0		150		0		25%		40%

		D		30		100		50		20		65%		46%
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Adjusted accuracy Ef;':,;:'p‘;:;emtv

 Weigh by the importance of the classes

Adjusted accuracy = o * Sensitivity + [ * Specificity

where a+ =1
typically, o = =0.5

classifier TP TN FP FN Accuracy Adj Accuracy

A 25 15 75 25 50% 50%
B 0150 0 50 /5% 50%
C 50 0150 O 25% 50%
D 30 100 50 20 65% 63%
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		classifier		TP		TN		FP		FN		Accuracy		Adj Accuracy

		A		25		75		75		25		50%		50%

		B		0		150		0		50		75%		50%

		C		50		0		150		0		25%		50%

		D		30		100		50		20		65%		63%
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ROC curves s
« By changingt,wegeta « Then thelarger the area
range of sensitivities and under the ROC curve, the
specificities of a classifier better

Comparing ROC Curves

A predicts better than B if

—_—

A has better sensitivities 08
than B at most specificities ) Ef

o o
m

e Leads to ROC curve that
plots sensitivity vs. (1 —
specificity)

=
T

— _Wiarthless

e |
o

_ Good

sensitivit
_
(A ]

=
g

Excellent

III_..........
‘ 1 — specificity
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 You have a classifier. On atest set having 20%
+ve and 80% -ve cases, the classifier’s recall and
precision are both 80%

e Suppose you test it on a new test set having 80%
+ve and 20% -ve cases. What do you expect its
accuracy to be?

 You may assume that the +ve (resp. —ve) cases In
both test sets are equally sufficiently representative
of the +ve (resp. —ve) real-world population

« What lesson have you learned?

Exercise #2
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Construction of a classifier

Training 3
samples -- - Classifier

Test
Instance

e sl Prediction

CS2220, AY2018/19 Copyright 2018 © Wong Limsoon



Training Build o
samples< mmmmsmp- Classifier

Classifier

Estimate
Accuracy

 Why is this way of estimating accuracy wrong?

Exercise #3
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...the abstract model of a classifier

« Given atest sample S

e Compute scores p(S), n(S)
 Predict S as negative if p(S)/ n(S) <t
 Predict S as positive if p(S)/ n(S) >t

t 1s the decision threshold of the classifier
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K-nearest neighbour classifier (k- N D NUS

 Given a sample S, find the k observations S; in
the known data that are “closest” to it, and take
majority vote of their responses

« Assume S is well approximated by its neighbours

p(S)= X 1 nS)= 2 1

S, eN(S) N DP Si eN(S) » DM

where N,(S) Is the neighbourhood of S
defined by the k nearest samples to It.

Assume distance between samples is Euclidean distance for now

CS2220, AY2018/19 Copyright 2018 © Wong Limsoon
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lllustration of kNN (k=8)

Neighborhood

5 of class ©
3 of class 4

Yr-o0

Image credit: Zaki
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Estimate accuracy: Wrong way NUS

Training
samples\. -—P 1-NN

Accuracy

For sure k-NN (k = 1) has 100% accuracy (Why?)
In the “accuracy estimation” procedure above. Does
this accuracy generalize to new test instances?

CS2220, AY2018/19 Copyright 2018 © Wong Limsoon
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B &
Estimate accuracy: Right way NUS

Training 3
samples -- - Classifier

Testing
samples

- Predictions

- ACCUracy

Testing samples are NOT to be used
during “Build Classifier”
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 No fixed ratio between training and testing
samples; but typically 2:1 ratio

 Proportion of instances of different classes in
testing samples should be similar to proportion in
the real world, and preferably also to proportion
In the training samples

« What if there are insufficient samples to reserve
1/3 for testing?
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 Divide samples
into k roughly
equal parts

« Each part has
similar proportion
of samples from
different classes

e Use each partto
test other parts

 Total up accuracy
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How many fold? 9%
o If samples are divided ¢ Choose k so that
Into k parts, we call — the k-fold cross
this k-fold cross validation accuracy
validation does not change

much from k-1 fold

— each part within the k-
fold cross validation
has similar accuracy

Accuracy

e k=50r 10 are popular
choices for k

Size of training set

CS2220, AY2018/19 Copyright 2018 © Wong Limsoon
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Suppose a butcher weighs a steak with his thumb on the scale. That causes
an error in the measurement, but little has been left 1o chance. Take another
example. Suppose a drapery Storé uses d cloth tape measure which has streiched
from 36 inches to 37 inches in length. Every “yard” of cloth they sell to a
customer has an extra inch tacked onto it. This isn't a chance error, because it
always works for the customer. The butcher’s thumb and the stretched tape are
two examples of bias, or systematic eFror.

Bias affects all measurements the same way, pushing them in
the same direction. Chance errors change from measurement (0
measurement, sometimes up and sometimes down.

~ The basic equation has to be modified when each measurement is thrown off by
. bias as well as chance error:

individual measurement = exact vajue + bias + chance error.

If there is no bias in a measurement procedure, the long-run average of repeated
measurements should give the cxact value of the thing being measured: the

Source: Freedman et al., Statistics, Norton, 1998

CS2220, AY2018/19
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« Suppose classifiers C; and Let Y =f(X) be what C is
C, were trained on trying to predict
different sets S; and S, of

1000 samples each « The expected squared

error at a test instance X,

« Then C; and C, might have averaging over all such
different accuracy training samples, is
E[C(x) — f(x)]
« What is the expected = E[C(x) — E[C(X)]]*

accuracy of a classifier C E[C(x)] - f(x)]

trained this way?
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Proof of bias-variance decomposm g US

E [C(x) — f()]?
= E[C(x) - E[C(x)] + E [C(¥)] - f(x)]*
= E[(C() - E[C(X)])? + (E[C(X)] - f(x))* — 2 (C(x) — E[C(X)]) (E[C(x)] - f(X))]
= E[C(x) — E[C(X)]* + E [E[C(X)] - f(x)]* — 2 E (C(x) — E[C(X)]) (E[C(x)] — (X))
= E[C(x) — E[C(X)]I* + (E[C(x)] - f(x))* — 2 (E[C(x)] — E[C(X)]) (E[C(X)] - f(x))
= E[C(x) — E[C(X)]* + (E[C(X¥)] - (x))*

]

\Variance: Bias:

how much our how far is our ave
estimate C(x) will prediction E[C(X)]
vary across the from the truth

different training
sets
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Bias-variance trade-off

e In k-fold cross
validation,

— small k tends to
under estimate
accuracy (i.e., large
bias downwards)

Large k has smaller
bias, but can have
high variance

Accuracy

Size of training set

CS2220, AY2018/19 Copyright 2018 © Wong Limsoon
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« What is the logical basis of cross validation?
e Hint: Central limit theorem

« What /whose accuracy does it really estimate?

Exercise #4
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Recall kNN ...

-

2

-

D

E Neighborhood

©

2, 5 of class ©
3 of class 4

Y=o

. 2"d dimension

Image credit: Zaki
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e How much of each .
dimension is needed to .
cover a proportion r of a p-
dimensional sample
space?

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

ﬁ National University
of Singapore

TINUS
95

Calculate by e,(r) = rt* Why?
So, to cover 10% of a 15-D
space, need 85% of each

dimension!
_— ——r=0.01
” r=0.1
/
L
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Conseqguence of the curse

o Suppose the number of samples given to us in
the total sample space is fixed

e |Letthe dimension increase

 Then the distance of the k nearest neighbours of
any point increases

« Then the k nearest neighbours are less and less
useful for prediction, and can confuse the k-NN
classifier
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Tackling the curse

« Given asample space of p dimensions
 Itis possible that some dimensions are irrelevant

 Need to find ways to separate those dimensions
(aka features) that are relevant (aka signals) from
those that are irrelevant (aka noise)
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Signal selection (e.g., tstatlstlcs US

The t-stats of a signal is defined as

|1 — ol
Jo%/n1) + (o5/no)
9 .

where g7 is the variance of that signal
in class ¢, y; 1s the mean of that signal
in class ¢, and n; is the size of class 1.

t—

CS2220, AY2018/19 Copyright 2018 © Wong Limsoon



« How Is the t-statistic typically used?

« What are the assumptions required for this way of
using the t-statistic?

Exercise #6
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Self-fulfilling oracle 95 v
e Construct artificial  Evaluate accuracy by
dataset with 100 cross validation using
samples, each with the 20 selected
100,000 randomly features

generated features
and randomly

.  The resultin
assigned class labels J

accuracy can be ~90%

» Select 20 features  But the true accuracy

with the best t-h should be 50%, as the
statistics (or other data were derived
methods)

randomly
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What went wrong? §

e The 20 features were selected from whole dataset

 Information in the held-out testing samples has
thus been “leaked” to the training process

e The correct way is to re-select the 20 features at
each fold; better still, use a totally new set of
samples for testing
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| ADHESIVE

While dimensionality reduction is an important tool in machine

learning/data mining, we must always be aware that it can distort the
data in misleading ways.

Above is a two dimensional projection of an intrinsically three
dimensional world....



" HE ULTIMATE ALHESIVE

R
FE\* Sl

Original photographer unknown/
See also www.cs.gmu.edu/~jessica/DimReducDanger.htm
© Eamonn Keogh
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A cloud of points in 3D

Can be projected into 2D
XY or orYZ

In 2D we see
a triangle

[ —————— 17 DB e cee

a sgquare

In 2D XY we see
a circle

Screen dumps of a short video from
www.cs.gmu.edu/~jessica/DimReducDanger.htm




Concluding remarks
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What have we learned?

« Methodology of data mining

— Feature generation, feature selection, feature
Integration

e Evaluation of classifiers
— Accuracy, sensitivity, precision
— Cross validation

e Curse of dimensionality
— Feature selection concept
— Self-fulfilling oracle
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