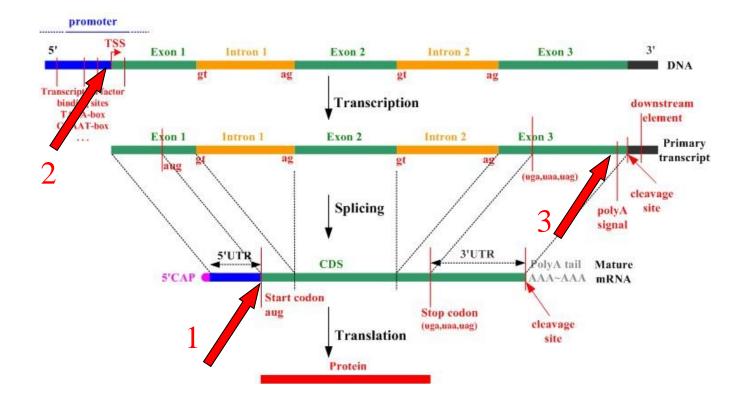
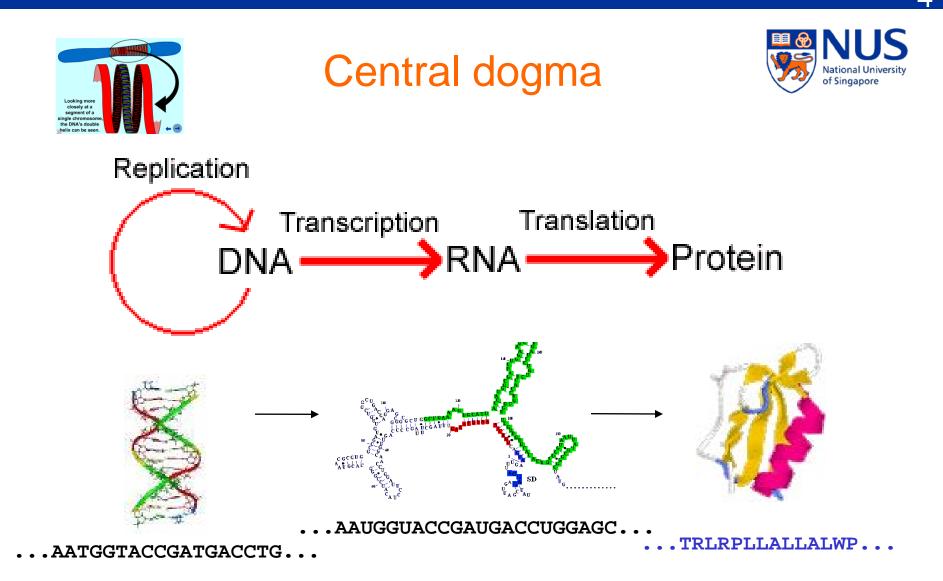
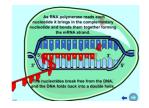
For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*, and Koh & Wong, "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences", *Proc GIW 2007*, pages 73--82


CS2220: Introduction to Computational Biology Unit 2: Gene Feature Recognition

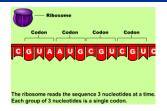
Wong Limsoon



Some relevant biology



Players in protein synthesis



Transcription

- Synthesize mRNA from one strand of DNA
 - An enzyme RNA polymerase temporarily separates doublestranded DNA
 - It begins transcription at transcription start site
 - $A \rightarrow A, C \rightarrow C, G \rightarrow G, \& T \rightarrow U$
 - Once RNA polymerase reaches transcription stop site, transcription stops

- Additional "steps" for Eukaryotes
 - Transcription produces pre-mRNA that contains both introns & exons
 - 5' cap & poly-A tail are added to pre-mRNA
 - RNA splicing removes introns & mRNA is made
 - mRNA are transported out of nucleus

Translation

- Synthesize protein from mRNA
- Each amino acid is encoded by consecutive seq of 3 nucleotides, called a codon
- The decoding table from codon to amino acid is called genetic code

- 4³=64 diff codons
- ⇒ Codons are not 1-to-1 corr to 20 amino acids
- All organisms use the same decoding table (except some mitochrondrial genes)
- Amino acids can be classified into 4 groups. A single-base change in a codon is usu insufficient to cause a codon to code for an amino acid in diff group

Genetic code

8

Start codon

– ATG (code for M)

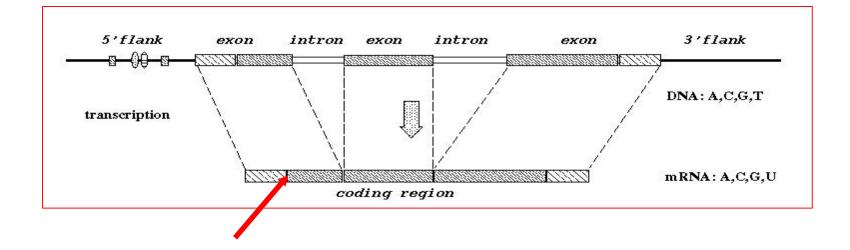
- Stop codon
 - -TAA
 - TAG
 - TGA

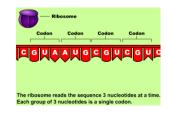
			Second Pos	sition of Codon			
		Т	С	А	G		
P	Т	TTT Phe [F] TTC Phe [F] TTA Leu [L]	TCT Ser [S] TCC Ser [S] TCA Ser [S]	TAT Tyr [Y] TAC Tyr [Y] TAA Ter [end]	TGT Cys [C] TGC Cys [C] TGA Ter [end]	T C A	
F i r s t P	с	TTG Leu [L] CTT Leu [L] CTC Leu [L] CTA Leu [L] CTG Leu [L]	TCG Ser [S] CCT Pro [P] CCC Pro [P] CCA Pro [P] CCG Pro [P]	TAG Ter [end] CAT His [H] CAC His [H] CAA Gin [Q] CAG Gin [Q]	TGG Trp [W] CGT Arg [R] CGC Arg [R] CGA Arg [R] CGG Arg [R]	G T C A G	Ĩ
o s i t i	A	ATT Ile [I] ATC Ile [I] ATA Ile [I] ATG Met [M]	ACT Thr [T] ACC Thr [T] ACA Thr [T] ACG Thr [T]	AAT Asn [N] AAC Asn [N] AAA Lys [K] AAG Lys [K]	AGT Ser [S] AGC Ser [S] AGA Arg [R] AGG Arg [R]	T C A G	
o n	G	GTT Val [V] GTC Val [V] GTA Val [V] GTG Val [V]	GCT Ala [A] GCC Ala [A] GCA Ala [A] GCG Ala [A]	GAT Asp [D] GAC Asp [D] GAA Glu [E] GAG Glu [E]	GGT Gly [G] GGC Gly [G] GGA Gly [G] GGG Gly [G]	T C A G	

Example

Example of computational translation - notice the indication of (alternative) start-codons:

```
VIRTUAL RIBOSOME
Translation table: Standard SGC0
>Seq1
Reading frame: 1
  M V L S A A D K G N V K A A W G K V G G H A A E Y G A E A L
5' ATGGTGCTGTCTGCCGCCGACAAGGGCAATGTCAAGGCCGCCTGGGGGCAAGGTTGGCGGCCACGCTGCAGAGTATGGCGCAGAGGCCCTG 90
 >>>...)))........................)))
  E R M F L S F P T T K T Y F P H F D L S H G S A Q V K G H G
.....)))......
  A K V A A A L T K A V E H L
                           D
                            DL
                               P
                                 G
                                   A
                                     L
                                       s
                                         Е
                                           L
                                            S D
                                               L
                                                   АН
5' GCGAAGGTGGCCGCCGCGCGCGACAAAGCGGTGGAACACCTGGACGACCTGCCCGGTGCCCTGTCTGAACTGAGTGACCTGCACGCTCAC 270
  K T. R
       v
         D
          PVNFKLL
                       SHSLLVTLASHL
                                            P
                                              - S
5' AAGCTGCGTGTGGACCCGGTCAACTTCAAGCTTCTGAGCCACTCCCTGCTGGTGACCCTGGCCTCCCACCTCCCCAGTGATTTCACCCCC 360
  AVHASLD
              Κ
                 LAN
                       VSTVLT
                F
                                 S
                                   K
5' GCGGTCCACGCCTCCCTGGACAAGTTCTTGGCCAACGTGAGCACCGTGCTGACCTCCAAATACCGTTAA 429
  ·····)))......)))
Annotation key:
>>> : START codon (strict)
))) : START codon (alternative)
*** : STOP
```


Translation initiation sites


An introduction to the World's simplest TIS recognition system

Translation initiation site

Copyright 2018 © Wong Limsoon

CS2220, AY2018/19

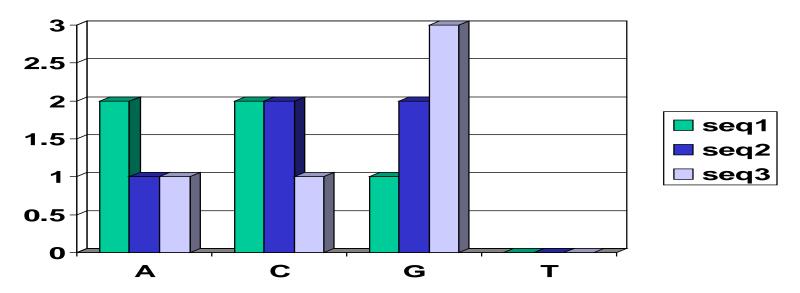
A sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC <u>ATG</u> GCTGAACACTGACTCCCAGCTGTG	80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC <u>ATG</u> GCTTTTGGCTGTCAGGGCAGCTGTA	160
GGAGGCAG <u>ATG</u> AGAAGAGGGAG <u>ATG</u> GCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
ieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

• What makes the second ATG the TIS?

- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ 2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

Training & testing data



- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts

Signal generation

- K-grams (ie., k consecutive letters)
 - $K = 1, 2, 3, 4, 5, \dots$
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame

299 HSU27655.1 CAT U27655 Homo sapiens80CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG80CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA160GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGGAAGGGGGCCTGGTGCCCGAGGA240CCTCTCCTGGCCAGGAGCTTCCCACGAGGACAAGACCTTCCACCCAACAAGGACTCCCCT240

- Window = ± 100 bases
- In-frame, downstream
 - GCT = 1, TTT = 1, ATG = 1...
- Any-frame, downstream
 - GCT = 3, TTT = 2, ATG = 2...
- In-frame, upstream
 - GCT = 2, TTT = 0, ATG = 0, ...

Exercise: Find the in-frame downstream ATG

Feature generation - Summary

Raw Data

An ATG segment – positive sample

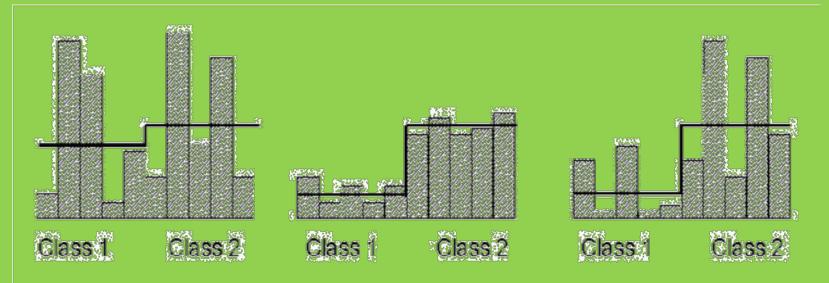
> 206 +1_Index(56)

A feature vector --- upstream/downstream inframe 3 grams

Too many features

- For each value of k, there are 4^k * 3 * 2 k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 + 1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms

Signal selection: Basic idea


Exercise #2

Copyrigh

10 wong Limsoon

19

- Choose a signal w/ low intra-class distance
- Choose a signal w/ high inter-class distance

 Which of these three features are best for distinguishing Class 1 from Class 2? Why?

The t-stats of a signal is defined as $t=\frac{|\mu_1-\mu_2|}{\sqrt{(\sigma_1^2/n_1)+(\sigma_2^2/n_2)}}$

where σ_i^2 is the variance of that signal in class i, μ_i is the mean of that signal in class i, and n_i is the size of class i.

The MIT-correlation value of a signal is defined as

$$MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}$$

where σ_i is the standard deviation of that signal in class *i* and μ_i is the mean of that signal in class *i*.

Signal selection: $\chi 2$

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^{2}}{E_{ij}},$$

where m is the number of intervals, kthe number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

Example

 Suppose you have a sample of 50 men and 50 women and the following weight distribution is observed:

	obs	exp	(obs – exp)²/exp	
НМ	40	60*50/100=30	3.3	
нพ	20	60*50/100=30	3.3	
LM	10	40*50/100=20	5.0	
LW	30	40*50/100=20	5.0	

 $\chi 2=16.6$ P = 0.00004, df = 1 So weight and sex are not indep

10 Wong Limsoon

Copyrigh

 Is weight a good attribute for distinguishing men from women?
 Exercise #3

Signal selection: CFS

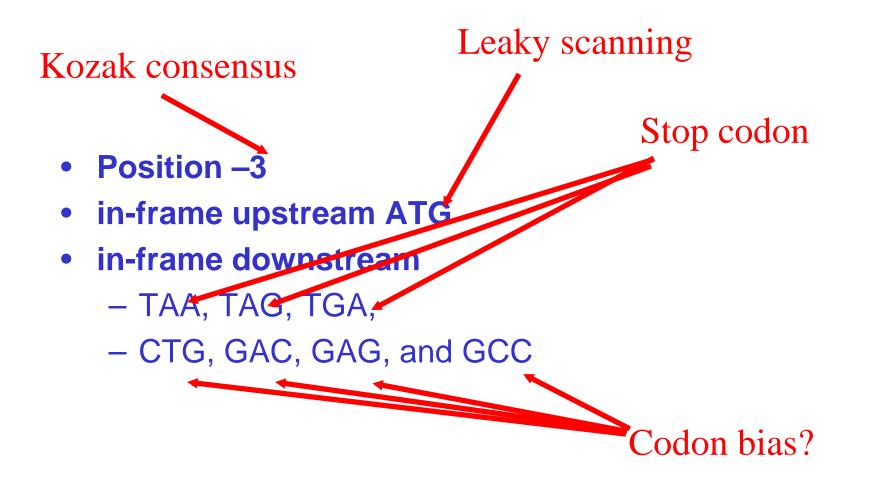
- Instead of scoring individual signals, how about scoring a group of signals as a whole?
- CFS
 - Correlation-based Feature Selection
 - A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other
- What is the main challenge in implementing CFS?

Exercise #4

10 wong Limsoon

Copyrigh

25


Distributions of two 3-grams

Name: INFRAME_UPSTREAM_ATG Type: Numeric Missing: 0 (0%) Distinct: 11 Unique: 1 (0%)	Name: INFRAME_UPSTREAM_CTT Type: Numeric Missing: 0 (0%) Distinct: 7 Unique: 1 (0%)
Statistic Value	Statistic Value
Minimum 0	Minimum 0
Maximum 10	Maximum 6
Mean 0.585	Mean 0.419
StdDev 0.874	StdDev 0.695
Class: Class (Nom) Visualize All	Class: Class (Nom) Visualize All
$\chi 2 = 1672.97447$	$\chi 2 = 0$
0 5 10	

• Which is the better one? Why?

Sample k-grams selected by CFS for recognizing TIS

Signal integration

• kNN

 Given a test sample, find the k training samples that are most similar to it. Let the majority class win

• SVM

 Given a group of training samples from two classes, determine a separating plane that maximises the margin of error

• Naïve Bayes, ANN, C4.5, ...

Results: 3-fold x-validation

	predicted	predicted
	as positive	as negative
positive	TP	FN
negative	FP	TN

Exercise: What is TP/(TP+FP)?

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Improvement by voting

29

• Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
Worst of 4	73.9%	86.1%	66.3%	85.7%

Improvement by scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That's the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
NB+Scanning	87.3%	96.1%	87.9%	93.9%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%

Performance comparison

3

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

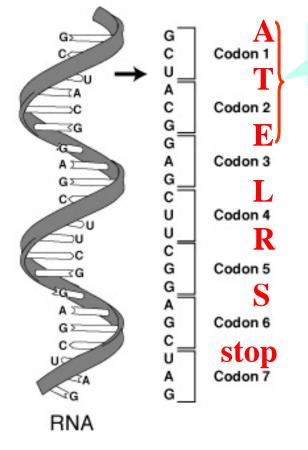
* result not directly comparable

CS2220, AY2018/19

Copyright 2018 © Wong Limsoon

Technique comparison

- Pedersen&Nielsen [ISMB'97]
 - Neural network
 - No explicit features
- Zien [Bioinformatics'00]
 - SVM+kernel engineering
 - No explicit features
- Hatzigeorgiou [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

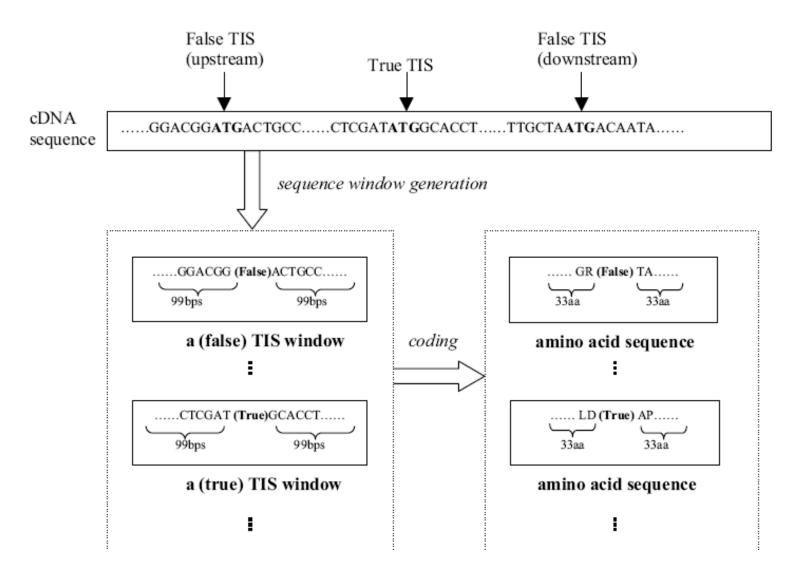

• Our approach

- Explicit feature generation
- Explicit feature selection
- Use any machine learning method w/o any form of complicated tuning
- Scanning rule is optional

mRNA->protein

33

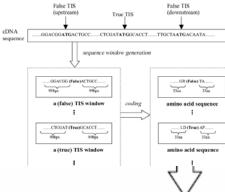
Ribonucleic acid


CS2220, AY2018/19

Exercise: List the first 10 amino acid in our example sequence

How about using k-grams from the translation?

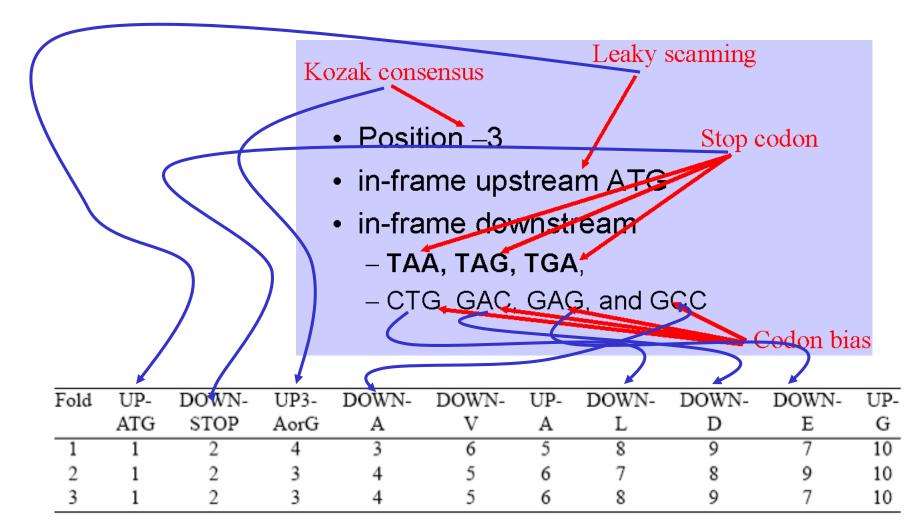
First	U	С	A	G	Last
U	Phe F	Ser 5	Tyr 🗸	Cys C	U
	Phe	Ser	Tyr	Cys	С
	Leu	Ser	Stop (Ochre)	Stop (Umber)	Α
	Leu	Ser	Stop (Amber)	Trp W	G
С	Leu	Pro P	His H	Arg R	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gin 이	Arg	Α
	Leu	Pro	Gln	Arg	G
Α	Ile 🗕	Thr 🛖	Asn N	Ser	U
	Ile 📕	Thr	Asn	Ser	С
	Ile	Thr	Lys K	Arg	Α
	Met M	Thr	Lys	Arg	G
G	Val V	Ala A	Asp D	Gly G	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu 🖪	Gly	Α
	Val	Ala	Glu	Gly	G


Amino-acid features

34

of Singapore

Amino-acid features



	*		
e space (total of 927 fe	atures + class lab	oel)	
882 2-gram amino acid patterns	3 bio-know- ledge patterns	class label	
UP-AA, UP-AR,, UP-NN, DOWN-AA, DOWN-AR ,,DOWN4-G UP3-AorG, UP-ATG (boolean type, Y or N)		True, False	
Frequency as val	ues		
6, 2, 7, 0, 5,	N, N, N,	False	
ł	ł	ł	
2, 0, 3, 10, 0,	Υ, Υ, Υ,	True	
ł	I	I	
	882 2-gram amino acid patterns UP-AA, UP-AR,, UP-NN, DOWN-AA, DOWN-AR,, DOWN-AR,, DOWN-NN (numeric type) Frequency as val 6, 2, 7, 0, 5,	acid patternsledge patternsUP-AA, UP-AR,, UP-NN, DOWN-AA, DOWN-AR ,, DOWN-NN (numeric type)DOWN4-G UP3-AorG, UP-ATG (boolean type, Y or N)Frequency as values6, 2, 7, 0, 5,N, N, N,	

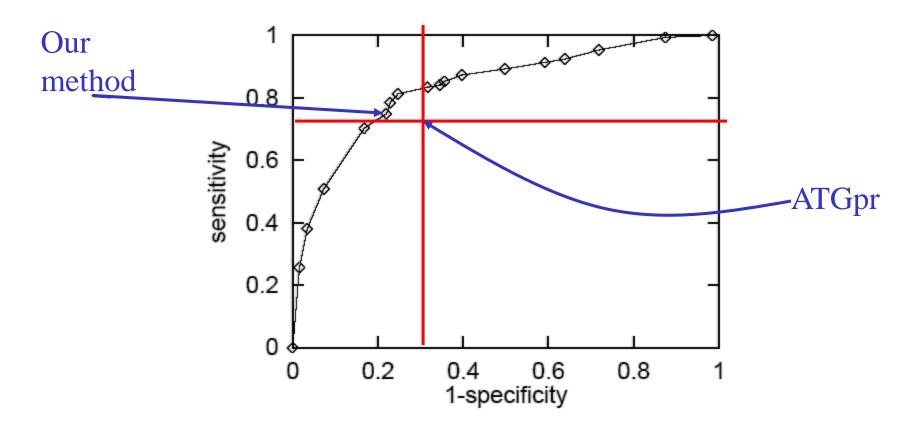
Amino acid K-grams discovered by entropy

36

CS2220, AY2018/19

Copyright 2018 © Wong Limsoon

Independent validation sets


- A. Hatzigeorgiou:
 - 480 fully sequenced human cDNAs
 - 188 left after eliminating sequences similar to training set (Pedersen & Nielsen's)
 - 3.42% of ATGs are TIS
- Our own:
 - Well-characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

Algorithm	Sensitivity	Specificity	Precision	Accuracy
SVMs(linear)	96.28%	89.15%	25.31%	89.42%
SVMs(quad)	94.14%	90.13%	26.70%	90.28%
Ensemble Trees	92.02%	92.71%	32.52%	92.68%
AT 75 4 /1 1	AF A4A/	00 F 107	A 1 2007	AA AAA/

 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's dataset

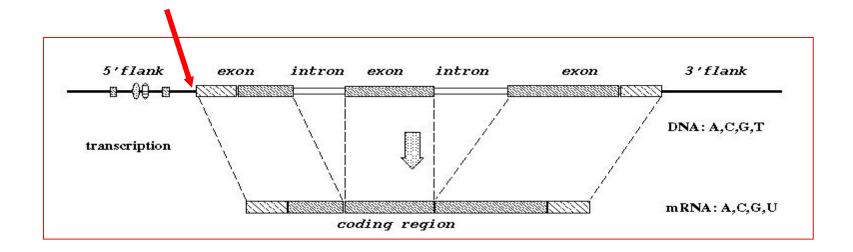
• Using top 100 features selected by entropy and trained on Pedersen & Nielsen's

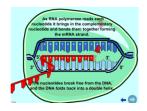
About the inventor: Huiqing Liu

• Huiqing Liu

- PhD, NUS, 2004
- Currently PI at Incyte
- Asian Innovation
 Gold Award 2003
- New Jersey Cancer Research Award for Scientific Excellence 2008
- Gallo Prize 2008

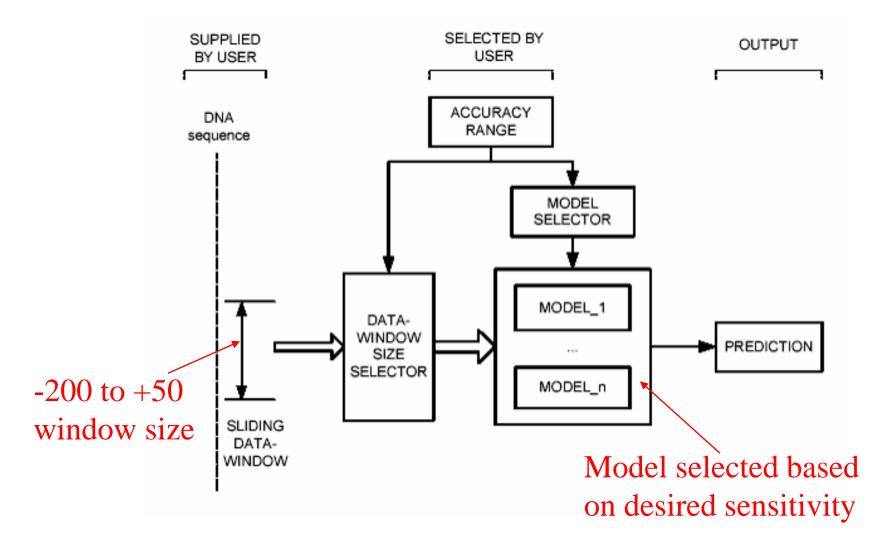
Recognition of Transcription Start Sites

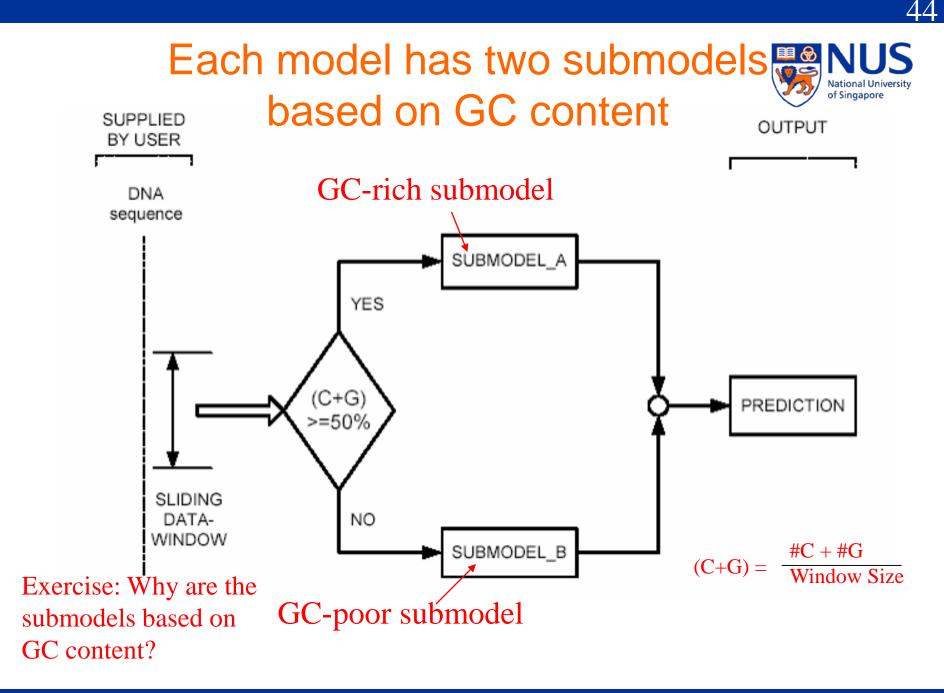

An introduction to the World's best TSS recognition system: A heavy tuning approach



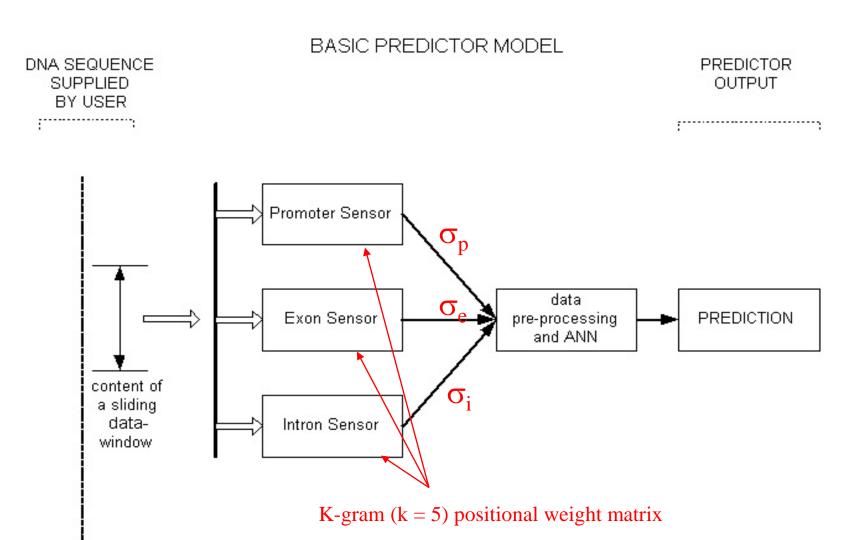
42

Transcription start site

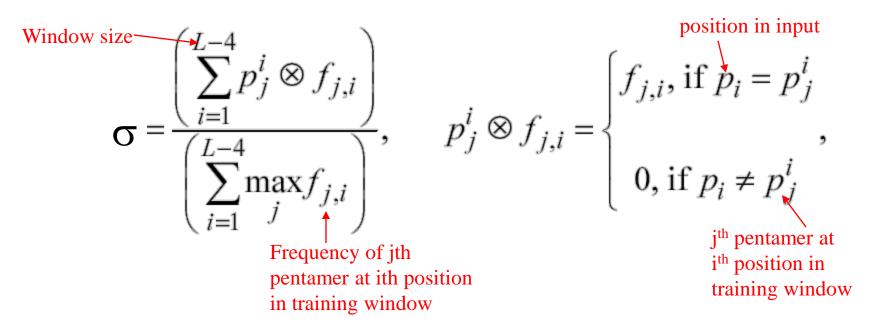



CS2220, AY2018/19

Copyright 2018 © Wong Limsoon



Copyright 2018 © Wong Limsoon



CS2220, AY2018/19

Copyright 2018 © Wong Limsoon

Promoter, exon, intron sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively

- Given 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG
- Then

1-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9	pos10
Α	3/3	0/3	0/3							
С	0/3	1/3	1/3		Exerc	ise: Fil	l in the	rest of t	he table	•
G	0/3	2/3	0/3							
Т	0/3	0/3	2/3				,		Ever	ise #5

10 Wong Limsoon

Copyrigh

Just to make sure you know what I mean strong

- Given 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG

• Then

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

Copyrigh

10 Wong Limsoon

2-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9
AA	0/3	0/3	0/3						
AC	1/3	0/3	0/3		Exerci	se: Fill	in the re	est of th	e table
TT	0/3	0/3	1/3				1/3		
						_		Exe	rcise #6

49

Data preprocessing & ANN

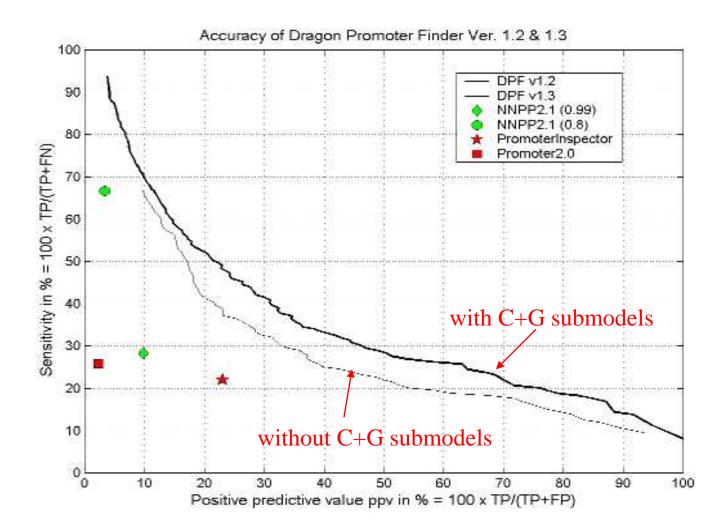
Tuning parameters

$$s_{E} = sat(\sigma_{p} - \sigma_{e}, a_{e}, b_{e}),$$

$$s_{I} = sat(\sigma_{p} - \sigma_{i}, a_{i}, b_{i}),$$

$$s_{EI} = sat(\sigma_{e} - \sigma_{i}, a_{ei}, b_{ei}),$$

where the function *sat* is defined by


$$sat(x,a,b) = \begin{cases} a, if & x > a \\ x, if & b \le x \le a. \\ b, if & b > x \end{cases}$$

Simple feedforward ANN trained by the Bayesian regularisation method W Tuned tanh(net $\mathbf{S}_{\mathbf{E}}$ threshold SI SIF $tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$ $net = \sum s_i * w_i$

Accuracy comparison

50

Copyright 2018 © Wong Limsoon

Training data criteria & preparatio

- Contain both positive and negative sequences
- Sufficient diversity, resembling different transcription start mechanisms
- Sufficient diversity, resembling different nonpromoters
- Sanitized as much as possible

TSS taken from

- 793 vertebrate promoters from EPD
- -200 to +50 bp of TSS
- non-TSS taken from
 - GenBank,
 - 800 exons
 - 4000 introns,
 - 250 bp,
 - non-overlapping,
 - <50% identities</p>

Tuning data preparation

• To tune adjustable system parameters in Dragon, we need a separate tuning data set TSS taken from

- 20 full-length gene seqs with known TSS
- -200 to +50 bp of TSS
- no overlap with EPD
- Non-TSS taken from
 - 1600 human 3'UTR seqs
 - 500 human exons
 - 500 human introns
 - 250 bp
 - no overlap

Testing data criteria & preparation Mational University of Singapore

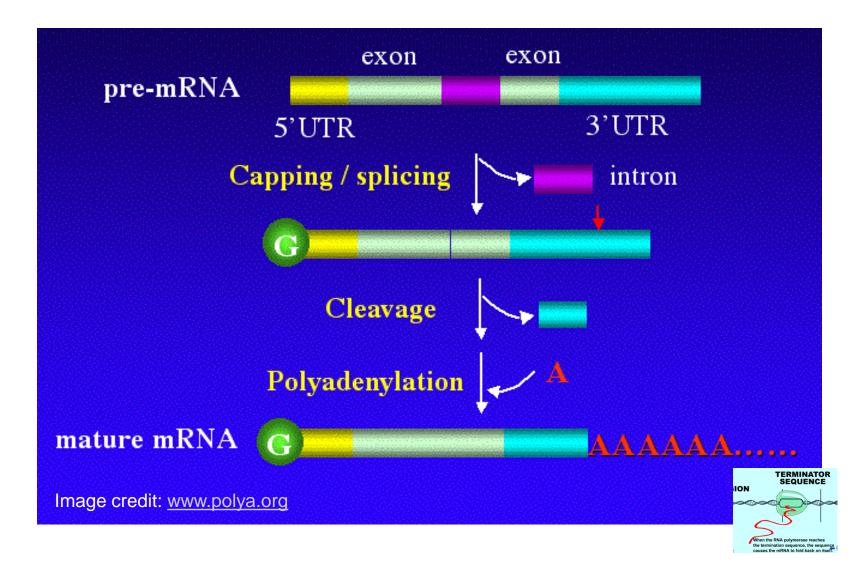
- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities

- 159 TSS from 147 human and human virus seqs
- cummulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.

About the inventor: Vlad Bajic

• Vladimir B. Bajic

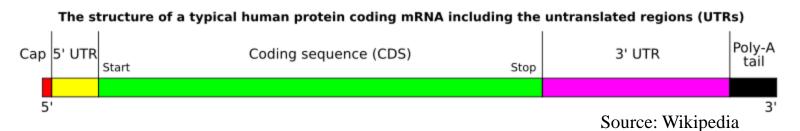
- Principal Scientist,
 I²R, 2001-2006
- Currently Director & Professor,
 Computational
 Bioscience Research
 Center, KAUST



Recognition of Poly-A signal sites

A twist to the "feature generation, feature selection, feature integration" approach

CS2220, AY2018/19


Copyright 2018 © Wong Limsoon

Polyadenylation in eukaryotes

- Addition of poly(A) tail to RNA
 - Begins as transcription finishes
 - 3'-most segment of newly-made RNA is cleaved off
 - Poly(A) tail is then synthesized at 3' end

- Poly(A) tail is impt for nuclear export, translation & stability of mRNA
- Tail is shortened over time. When short enough, the mRNA is degraded

Copyright 2018 © Wong Limsoon

Poly-A signals in human (Gautheret et al., 200 NUS

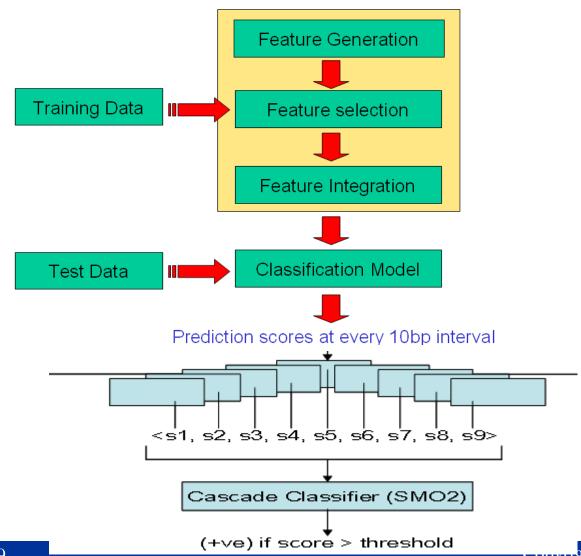
lexamer	Observed (expected)*	% sites	PP	Position average ± SD	Location ^c
					-45 ⁻³⁵ -25 ⁻¹⁵ -5
AAUAAA	3286 (317)	58.2	0	-16 ± 4.7	500
AUUAAA	843 (112)	14.9	0	-17 ± 5.3	150
AGUAAA	156 (32)	2.7	6×10^{-57}	-16 ± 5.9	
JAUAAA	180 (53)	3.2	4 × 10-45	-18 ± 7.8	30
CAUAAA	76 (23)	1.3	1×10^{-16}	-17 ± 5.9	10
GAUAAA	72 (21)	1.3	2×10^{-16}	-18 ± 6.9	10
AUAUA	96 (33)	1.7	2×10^{-19}	-18 ± 6.9	
AAUACA	70 (16)	1.2	5×10^{-23}	-18 ± 8.7	10
AAUAGA	43 (14)	0.7	1×10^{-9}	-18 ± 6.3	10
AAAAAG	49 (11)	0.8	5×10^{-17}	-18 ± 8.9	
ACUAAA	36 (11)	0.6	$1 \times 10^{-\infty}$	-17 ± 8.1	10
AGAAA	62 (10)	1.1	9×10^{-26}	-19 ± 11	
AUGAA	49 (10)	0.8	4×10^{-16}	-20 ± 10	
JUUAAA	69 (20)	1.2	3 × 10-18	-17 ± 12	
AAAACA	29 (5)	0.5	8×10^{-12}	-20 ± 10	10
GGGGCU	22 (3)	0.3	9×10^{-12}	-24 ± 13	

Copyright 2018 © Wong Limsoon

58

of Singapore

Poly-A signals in Arabidopsis



59

Table 2. Most Si	gnificant Hexamers	s in 3' Fragm	ents: Clustered He	xamers	
Hexamer	Observed (expected)*	% sites	рь	Position average ± SD	Location
					-45 ⁻³⁵ -25 ⁻¹⁵ -5
AAUAAA	3286 (317)	58.2	0	-16 ± 4.7	0
AUUAAA	843 (112)	14.9	0	-17 ± 5.3	0 E
AGUAAA	156 (32)	2.7	6×10^{-57}	-16 ± 5.9	30
UAUAAA	180 (53)	3.2	4×10^{-45}	-18 ± 7.8	30
CAUAAA	76 (23)	1.3	1×10^{-16}	-17 ± 5.9	
GAUAAA	72				10
AAUAUA	96 <mark>In</mark>	contra	ist to hun	1an, PAS ir	Arab is
AAUACA	_				
	70	ohlv da	egenerate	Ε σ only	10% of
AAUAGA	⁷⁰ hig		U	. E.g., only	
AAUAGA AAAAAG			U	e. E.g., only s AAUAAA	
	43		U		
AAAAAG	43 49	A	rab PAS i	s AAUAAA	
AAAAAG ACUAAA	43 49 36 (11)	0.6	rab PAS i	S AAUAA -17 ± 8.1	
AAAAAG ACUAAA AAGAAA	43 49 36 (11) 62 (10)	0.6	$\frac{1 \times 10^{-\infty}}{9 \times 10^{-20}}$	S AAUAA -17 ± 8.1 -19 ± 11	
AAAAAG ACUAAA AAGAAA AAUGAA	43 49 36 (11) 62 (10) 49 (10)	0.6 1.1 0.8	$\begin{array}{c} \textbf{rab PAS i} \\ 1 \times 10^{-\infty} \\ 9 \times 10^{-28} \\ 4 \times 10^{-18} \end{array}$	S AAUAA -17 ± 8.1 -19 ± 11 -20 ± 10	
AAAAAG ACUAAA AAGAAA AAUGAA UUUAAA	43 49 36 (11) 62 (10) 49 (10) 69 (20)	0.6 1.1 0.8 1.2	rab PAS i $1 \times 10^{-\infty}$ 9×10^{-28} 4×10^{-18} 3×10^{-18}	S AAUAA -17 ± 8.1 -19 ± 11 -20 ± 10 -17 ± 12	

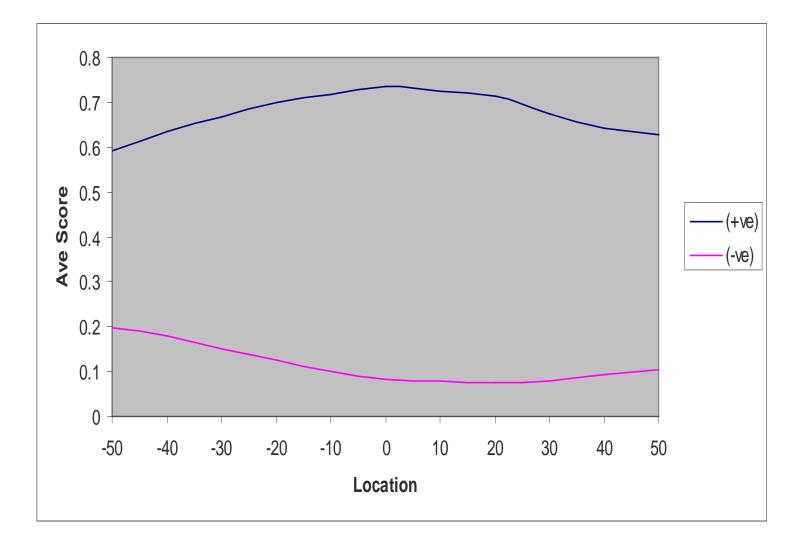
Copyright 2018 © Wong Limsoon

CS2220, AY2018/19

Copyright 2018 © Wong Limsoon

Approach on Arab PAS sites (II)

- Data collection
 - #1 from Hao Han, 811
 +ve seq (-200/+200)
 - #2 from Hao Han, 9742-ve seq (-200/+200)
 - #3 from Qingshun Li,
 - 6209 (+ve) seq (-300/+100)
 - 1581 (-ve) intron (-300/+100)
 - 1501 (-ve) coding (-300/+100)
 - 864 (-ve) 5'utr (-300/+100)


• Feature generation

- 3-grams, compositional features (4U/1N. G/U*7, etc)
- Freq of features above in 3 diff windows: (-110/+5), (-35/+15), (-50/+30)
- Feature selection

- χ2

- Feature integration & Cascade
 - SVM

CS2220, AY2018/19

Copyright 2018 © Wong Limsoon

63

Validation results

	-	-			_	
SN_0	SM	10 1	SM	10 2	PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	90%	0.26	94%	0.24	95%	3.7
5'UTR	79%	0.42	85%	0.49	78%	5.5
Intron	64%	0.59	71%	0.67	63%	6.3

Table 2. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_10.

SN_10	SM	10 1	SM	10 2	PASS 1.0		
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold	
Sequences							
CDS	94%	0.36	96%	0.31	96%	4	
5'UTR	86%	0.53	89%	0.6	81%	5.7	
Intron	73%	0.68	77%	0.77	67%	6.6	


Table 3. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_30.

SN_30	SMO 1		SMO 2		PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	97%	0.44	97%	0.37	97%	4.3
5'UTR	90%	0.62	92%	0.67	84%	6.2
Intron	79%	0.75	83%	0.81	72%	6.8

About the inventor: Koh Chuan Ho

Koh Chuan Hock

- BComp (CB), NUS, 2008
- PhD, NUS, 2012
- Currently Data
 Scientist at Indeed
 Inc, Japan

Concluding remarks...

66

What have we learned?

- Gene feature recognition applications

 TIS, TSS, PAS
- General methodology
 - "Feature generation, feature selection, feature integration"
- Important tactics
 - Multiple models to optimize overall performance
 - Feature transformation (DNA \rightarrow amino acid)
 - Classifier cascades

Any question?

Acknowledgements

68

• The slides for PAS site prediction are adapted from slides given to me by Koh Chuan Hock

References (TIS recognition)

- A. G. Pedersen, H. Nielsen, "Neural network prediction of translation initiation sites in eukaryotes", *ISMB* 5:226--233, 1997
- A. Zien et al., "Engineering support vector machine kernels that recognize translation initiation sites", *Bioinformatics* 16:799--807, 2000
- A. G. Hatzigeorgiou, "Translation initiation start prediction in human cDNAs with high accuracy", *Bioinformatics* 18:343--350, 2002
- J. Li et al., "Techniques for Recognition of Translation Initiation Sites", *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004

References (TSS recognition)

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003
- J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997
- M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB 297:599--606, 2000
- V. B. Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical Bioinformatician*, Chapter 7, pages 157—165, 2004

References (PAS recognition)

- Q. Li et al., "Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures". *Plant Physiology*, 138:1457-1468, 2005
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences". *Gene*, 231:77-86, 1999
- M. Legendre, D. Gautheret, "Sequence determinants in human polyadenylation site selection". *BMC Genomics*, 4:7, 2003
- B. Tian et al., "Prediction of mRNA polyadenylation sites by support vector machine". *Bioinformatics*, 22:2320-2325, 2006
- C. H. Koh, L. Wong. "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences". *Proc. GIW 2007*, pages 73--82

References (Feature selection)

- U. M. Fayyad, K. B. Irani, "Multi-interval discretization of continuous-valued attributes", *IJCAI* 13:1022-1027, 1993
- H. Liu, R. Sentiono, "Chi2: Feature selection and discretization of numeric attributes", *IEEE Intl. Conf. Tools with Artificial Intelligence* 7:338--391, 1995