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Evolution

 DNA encodes blue print of life
* Living things pass DNA info to their children
 Due to mutations, DNA is changed a little bit

« After a long time, different species would evolve

* Phylogenetics studies genetic relationship
between different species
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* Phylogeny: Reconstruction

Phylogeny

of evolutionary history of a
set of species

Usually, it is a leaf-labeled il
tree where the internal Dx. C
nodes refer the

hypothetical ancestors and:

the leaves are labeled by

the species

Edges of the tree represent a4
the evolutionary
relationships

First Notebook on Transmutation of
Species, 1837,
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Phylogeny: Example
* By looking at extent of conserved positions in the

“multiple seq alignment” of different groups of
seqs, infer when they last shared an ancestor

= Construct “family tree” or phylogeny

orangutan gorilla chimpanzee

s
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Applications

* Understanding history of life

 Understanding rapidly mutating
viruses (like HIV)

* Predict protein/RNA struct

Do multiple seq alignment

« Explain gene expression
« Explain and predict ligands
 Design enhanced organisms

* Design drug
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Example application: Flu vaccine® sz

* Influenza is a fast evolving virus

* Phylogenetic analyses of human influenza A
(subtype H3) virus can be used to make
predictions about the evolutionary course of
future human influenza strains

 The predicted strains of flu virus is included in
the vaccine prepared each year to protect against
the upcoming influenza season

R. M. Bush et al. Predicting the evolution of human influenza A. Science, 286:1921-1925, 1999
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Caution

 Genomes of most organisms have complex origin

— Some parts of the genome are passed by vertical
descent thru normal reproductive cycle

— Some parts may have arisen by horizontal xfer of
genetic material thru a virus, symbiosis, efc.

— When a particular gene is being subjected to
phylogenetic analysis, the evolutionary history of
that gene may not coincide with the evolutionary
history of another gene

— Try to use molecules that carry a great deal of
evolutionary history, like mitochondrial DNA, and
ribosomal RNA
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Rooted and unrooted tree

 Normally, the * Rooted tree can be

reconstructed tree is reconstructed by
unrooted since estimating systematic biologists
the root is difficult based on using outgroup

— Outgroup is a species
which is clearly less
related with all other
species in the phylogeny

\/
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How does outgroup work? NUS

* More similar to outgroup |z bservations

iSpec|e5 | 1z a4 |i}utgr-:uup |
M (13 ' t” :
— ore ancien Character state| 2 2 a2 & 2
[chars g
[b] Phylogenetic inference
2 4 1 3 Crdtgqroup
a' ! a a
'hx - g 7

* More diff from outgroup

— More “recent”, because
more time to evolve

o
"'H‘H\.__
// H'H
a7 3

Image credit: Mark Ridley
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Choosing outgroup

« Outgroup seq should be closely related to rest of
seqs, but there should also be significantly more
diff betw outgroup and rest of seqgs

« Outgroup that is too distant may lead to incorrect
tree because of more random & complex nature
of diff betw outgroup and rest of seqs

* In choosing outgroup, one assumes that the
evolutionary history of the gene is same as rest
of seqs. If this assumption is incorrect (e.g.,
horizontal gene xfer has occurred), an incorrect
analysis could result
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Brute-force phylogeny reConStrUCtl“ﬁ“°ga;’t”j”§

« How?
— Enumerate all trees
— Compute evolutionary likelihood
— Select best tree

« Complexity?

— E(n) = # of edges of a tree w/ n leaves
- Adding a leaf creates 2 new edges
« E(n)=E(n-1) +2 =2n-1

— T(n) = # of rooted trees w/ n leaves
* A new leaf can be attached at any edge
* T(n) = T(n-1)*E(n—-1) = T(n—1)*(2n - 3) = 1*3*5*...*(2n-3)
- E.g., T(20) = ~10?
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More practical approaches ¥ sz
« Maximum parsimony « Maximum likelihood
— Minimize # of — Maximize likelihood

mutations of mutations
— Require more

’ Dista.\n.ce- understanding of

— Mlnlmlge evolutionary models
evolutionary — Involve exponential #
distance of steps

— OK for large # of seqgs —Limited to small

—Commonly used number of seqs

—\We consider only this
one here!
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Maximum parsimony

* Find tree with minimal character-state changes to
explain data

Source: Yechiam Yemini
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« What are the characteristic of maximum
parsimony?

* Is maximum parsimony more likely to over or

under estimate the evolutionary change that has
occurred?

CS2220,AY2019/20 Copyright 2019 © Wong Limsoon



20
TINUS
95

National University
of Singapore

When to use which method?

Choose QObtain is there F'arsinjmny or
2 maximum
set of msa . strong man
related (Chapter 5) sequence |
sequences! similarity?3 methods

| [

is there clearly yes et
rmgnizab!a |stance
[ » methods \

seguence
. -I ;! ?4

o

Y

Analyze how

Try maximum likelihood methods, focu_s on well data
regions of localized similarity or analysis may |———®" g nnort
not be feasible® prediction®

Source: D.W.Mount, Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Press, 2004
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Allan Wilson

 “Molecular clock”: Dating by genetic
mutations
— Deduced in 1960s that proto- a
hominids evolved 5m yrs ago,
contrary to the 25m yrs believed by
anthropologists I
— In 1980s, his findings became more ‘
widely accepted

* Molecular approach to understand ol
evolution

— Concluded in 1980s that modern
man evolved from “African Eve” |

— 20 yrs to convince palaeontologists, ‘
but when they did, it married their
science with that of genetics
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About mitochondrial Eve

 Human mitochondrial DNA (mtDNA)
— Circular double-stranded consisting of ~16k bp
— Everyone inherits the mtDNA from his/her mother

— The pointwise mutation substitution rates of
MtDNA is ~10 times faster than nuclear DNA

— Every cell has lots of mtDNAs
— No recombination

— We all inherit our mtDNA from the mother of
humans (Eve!)
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BB &
Genetics helps find origin of hume NUS

- Statistical analysis of mtDNAs from placental
tissue of 147 women of different races & regions

— Wilson’s group and others construct phylogenetic
tree assuming constant molecular clock

— The tree implies that the common ancestor of
modern human appear ~143,000 years ago

L. Vigilant et al. African populations and the evolution of human mitochondrial DNA.
Science, 253:1503-1507, 1991.

R. L. Cann et al. Mitochondrial DNA and human evolution. Nature, 325:31-36, 1987.
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Y-chromosome Adam

Y chromosome is unique to males and it can help to
find the father of humans

— Mutation rate of Y chromosome not as fast as mtDNA
—Need more samples to study Y-chromosome evolution

« Y chromosome of 1,062 males from 22 different
geographic areas were analyzed

— 167 haplotypes identified

— Common ancestor of the 167 haplotypes estimated to
appear ~60,000 years ago

Underhill et al. Y chromosome sequence variation and the history of human
populations. Nature Genetic, 26:358-361, 2000
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Image credit: Newsweek

2
e

Eve appeared
~143,000 years ago

Adam appeared
~60,000 years ago

Can Adam & Eve
appear in different
time? How?
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Distance-based
phylogeny-reconstruction methods
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Distance between species

* In character-based methods, we try to minimize #
of mutations

 Species which look similar should be
evolutionary more related

— Define distance betw two species to be # of
mutations needed to change one species to
another

« Try to construct a phylogeny based on distance
info among species

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



« Consider two species with these DNA fragments:
— Species i: (A, C, G, C, T)
— Species j: (C,C, A, C, T)

« 2 mismatches, so can estimate distance to be 2

 Looks reasonable, as 2 mismatches can be
thought of as 2 mutations

 However, this fails to capture “multiple”
mutations on the same site

* In practice, need to apply some corrective
distance transformation
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K NUS
Distance-based methods: Specificat®zz

* Input: Distance matrix M satisfying constraints
— M should satisfy metric space properties
— M is an additive metric
— M is ultrametric (optional)
* Output: Tree of degree 3 that is consistent with M

a b c d e
a | 0 |88 |14]14 )
b | 8o 2]14]14
c| 8201414 4
d |14 [1a]1a] 0 [ 10 1 5
e | 14 [14] 14 [ 10| 0 3 b ¢ d e
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Metric space

A distance metric M which satisfies

— Symmetry
M; = M > 0
— Self identity
M. =0
— Triangular inequality
M; + My = My
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Additive metric

Let S be a set of species

Let M be distance matrix for S

If there is a tree T where

— every edge has a positive weight and every leaf is
labeled by a distinct species in S; and

— forevery i, j € S, M; = the sum of the edge weights
along the path fromitoj

Then M is called an additive metric

The corresponding tree T is called additive tree

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



- _ =R NUS

Additive metric example = 9%
a b c d e
0 11 10 9 15
11 0 3 12 18
10 3 0 11 17
9 12 11 0 8
15 | 18 | 17 | 8 0

 Don’t know the root! We can only build an
unrooted phylogeny

Copyright 2019 © Wong Limsoon
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Why additive metric? 85 e

* Distance captures actual # of mutations between
a pair of species

« If (1) the correct tree for a set of species is known
and (2) we get the exact # of mutations for each
edge, the distance (the # of mutations) betw two
species i and j should be the sum of the edge
weights along the path fromitoj

— Additive metric seems reasonable

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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 For any two species i and j, define M; to be the
Hamming distance betw species i and j

— Example: Assume # of characters m=5

* Is Hamming distance additive?

CS2220,AY2019/20 Copyright 2019 © Wong Limsoon



Properties of additive metric 98/ sz

« Buneman’s 4-point condition

M is additive if and only if
for every four species in S,
we can label them i, j, k, | such that

M +M; =M, + M, >M;+ M,

 Based on the 4-point condition, we can check
whether a matrix M is additive
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Proof

Figure 8.3: Buneman’s 4-Point Condition

My + My
= (My + My, + Myp) + (M + My, + My)
_'.‘lllrz'_r + _‘lllrjl_r + _'ql-lryli; —l— :l._l!ryf, ‘l‘ gﬂ'fiﬂy

My + My
= I:;‘l-lr_iil- + ﬂ'_ﬂrry + ;rll'fii;- :| + (;ﬂl'fgl- + _'qlf-_ry + Jlfy,[ :|
My + My + My, + My + 2M,,

My + My
e _-"ll.fiil- -+ _1II_1-3 -+ .'rll-fky + *.‘l"lr?'[

So it can be easily verified that: M + My = My + M = My + M.

(=) Will not present here. [
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Peter Buneman

JOURNAL OF COMBINATORIAL THEORY (B) 17, 48-50 (1974)

A Note on the Metric Properties of Trees*
PETER BUNEMAN™

Communicared by Frank Harary
Received February 21, 1973

By checking the possible configurations of paths which can connect
four points x, y, z,  in a tree, it can be seen that the graphical distance [1]
must satisfy the inequality:

d(x, z) + d(y, t),
d(x, 1) + d(y, 2).

We shall refer to this condition as the four-point condition: it is stronger
than the triangle inequality (put z = ) and is equivalent to saying that of
the three sums d(x, y) + d(z, t), d(x, z) +d(y, ), and d(x, 1)} + d(y, z)
two are equal and not less than the third. The four-point condition is also
a sufficient condition for a graph to be a tree in the following sense.

d(x, y) + d(z, 1) < max

THEOREM 1. A graph is a tree iff it is connected, contains no triangles,
and has graphical distance satisfving the four-point condition.
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b 11 0 3 12 18
C 10 3 0 11 17

* Pick any 4 species
* Is 4-point condition (M., + Mj| =M, + IVljk 2 Mij *
M, ) satisfied?
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Ultrametric

« Assume M is additive. That is, there exists a tree
T such that

— the distance between any two species | and |
equals the sum of the edge weights along the path
fromitoj

* If we can further identify a root such that the path
length from the root of T to every leaf is identical,
then M is called an ultrametric

A tree T that satisfies ultrametric is an ultrametric
tree

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Ultrametric example

d 14 14 14 0 10

* Every path from root to leaf has the same length!
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Properties of ultrametric

 Ultrametric is an additive metric
= It satisfies 4-point condition

« Additional property: Buneman’s 3-point condition
M is ultrametric if and only if
for every three species in S,
we can label them i, j, k such that

M= M, > M;;

 Based on the 3-point condition, we can check
whether a matrix M is ultrametric or not

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Proof

.. x=common ancestor of a,b.c

v = common ancestor of ab [

i ]
Figure 8.4: Ultrametric Tree
From the above formulas.and by Property 3 of an Ultrametric tree. There is

ﬁfm — _'ql{jk = 2% [:ﬂfz'y + ﬂ.!fyr :| - Qﬂfz'y — ﬂ.!fiy + ﬂ.!ij — ;"lt'fz'j

proven!
(=) Exercise. u
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a b C d e
a 0 8 8 14 | 14
b 8 0 2 14 | 14
c 8 2 0 14 | 14
d 14 | 14 | 14 0 10
e 14 | 14 | 14 | 10 0

* Pick any 3 species
» Is 3-point condition (M; = M, > M;;) satisified?

CS2220,AY2019/20 Copyright 2019 © Wong Limsoon




Constant molecular clock

 Constant molecular clock is an assumption in
biology

— |t states that # of accepted mutations in any time
interval is proportional to the length of that interval

—=All species evolved at equal rate from a common
ancestor

« Ultrametric tree states that distance from root to
all species are the same. Thus, its correctness is
based the constant molecular clock assumption

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



 Let M be a distance matrix for a set of species S

— If M is ultrametric, can we reconstruct the
corresponding ultrametric tree T in polynomial
time?

— If M is additive, can we have a polynomial time
algorithm to recover the corresponding additive
tree T7?

— If M is not exactly additive, can we find the nearest
additive tree T?

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



* Input:
An ultrametric matrix M for a set of species S

* Problem:
Reconstruct the phylogenetic tree T for S

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Unweighted Pair Group I\/IethodNU
With Arithmetic Mean (UPGMA)

 Consider ultrametric tree T. If a subset of species
S forms a subtree of T, we call it a cluster

* ldea:
— Every species forms a cluster

— lteratively connect two nearest clusters, until one
cluster is left

g

f2

ROOT -

fi
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Definition - Height

* For a node u, define height(u) be path length from
u to any of its descendent leaf. (Since T is
ultrametric, every path should have the same
length!)

 Letiand jbe descendent leaves of u in two
different subtrees. To ensure that distance from
the root to both i and j are the same, height(u) =

i/ ]

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Distance betw two clusters 9%z
* For any two clusters C, and C, of T
— Define
e e M,
dist(C,,C,) = Zccusec

| Cl | | | Cz |
— Note that dist(C,, C,) =M, forallie C;andje C,  Why?

— Let u be lowest common ancestor of i and |.
dist(C,, C,) = 2 * height(u)!

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Observation

* For any non-intersecting clusters C,,C,, D,

> M,
ieCy.jeD o

dist(C,.D) =

| ¢ | D]
dist(C,.D) = ZEC:J‘E-DME
2 -
| Cz | '|D |
> M,
dist(C,w C,,D) ="——"22"
GG |- D
— Z:.EC'_JED MJ +Z:’EC:JED MJ
GG D]
|G || D|dist(C,, D)+ | C, || D| dist(C,. D)
| ¢ G, | D]
_| €, | dist(C,. D)+ | C, | dist(C,. D)
C,uC, |
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Algorithm

e Given n x n ultrametric distance matrix M

 Initialize set Z to consist of n initial singleton
clusters {1}, {2}, ..., {n}

 Forall {i}, {j} € Z, initialize dist({i}, {j}) = M;;
« Repeat n-1 times
— Determine cluster A, B € Z where dist(A, B) is min
— Define a new clusterC=A U B
- Z:=Z-{A, B}u{C}
— Define new node ¢ and let ¢ be parent of A and B.
Also, define height(c) = dist(A, B)/2

— Forall D e Z—{C}, define dist(D, C) = dist(C, D) =
(|A| dist(A, D) + |B| dist(B, D)) / (|A[ + [B])

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



M a|b|c|d]|e
a| | 0| 8|8 14|14
b |8 | 0|2 14 14
c| 8|2 |0 14 14
d |14 /14 |14 | 0 | 10
e (14,14 /14|10 | O

CS2220, AY2019/20

W National University

Example
@ @0 060 O 5%6 @ o
abcde > abecde

Height=1
M| a|bc|d]| e
a 8 |14 | 14
bc| 8| 0 14| 14
d |14 |14 | 0 | 10
e 14|14 /10| O

Copyright 2019 © Wong Limsoon




B & N U
Example 85 e

M|  a|bc| d]| e
a|o0|8|14]14

bc| 8 | 0 |14 | 14
@ ﬁ @ O
d 14|14 | 0 |10 a b c d e

e (14114 10| 0 Height=1

\

CS2220, AY2019/20 YITZ o wong Limsoon



B & N U
Example 85 e

| a,b,c | d e
7 a,b,c |de a,b,c 0 14 | 14

abc| 0 |14 T 14 0 10
de | 14 | O e | 14 |10] 0
St

Qo @
abocde abcde

Height=5 Height=4
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I EE————————————...
=N U
Example 85 e

M |abc|de
abc| 0 |14
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Example B oo
M|a | b|lc|d]|e
al| 0| 8|8 14|14
b |8  0]2]14 /14 @ @0 00 voo
c 1 81 21 01]14/14| abcde > abcde
d 14|14 14| 0 | 10 Height=1
e | 14 0
\}
/ﬂ < Ih A < Ih L
abocde ab c abcde
Height=7 Hen_:]ht—S Height=4
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 What is the time complexity of UPGMA?

« Can it be modified to run in quadratic time?

CS2220,AY2019/20 Copyright 2019 © Wong Limsoon



Additive-tree reconstruction

of Singapore

 Suppose M is an additive metric. We show an

algorithm which reconstructs the additive tree in
O(n?) time

- For any two species i and j, the additive tree is
just an edge with weight M;

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



Additive tree for 3 species

 For any three species i, j, k, we can find their
center c as follows. (* Call this 3-star method *)

— Let d,, be the length of the path from x to y

— Constraints on c:
* M =dic +dg
* My =d +dg
* M;=d. +d;
— By solving the three equations, we have K
* di.= (M + M, — M,,)/2
* di. = (M; + M, — M;,)/2
* dy. = (My + My — M;)/2 C

* Note: The resulting tree is unique!

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



« Given four species h, i, j, k, we want to recover
the additive tree

 For species |, j, k, we get the additive tree using
the 3-star method

* To include h into the tree, we need to introduce
one more internal node ¢’ "

« ¢’ splits either (i, c), (J, c) or (k, c)

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



Additive tree for 4 species (ll) 95 e

 To check whether ¢’ splits (k, c), we apply 3-star

method for species i, k, h

- Ifd,.. <d,., then ¢’ splits (k, c) ¢

K
---h

A

]

 Otherwise, use the same approach to check

whether ¢’ splits (i, ¢) or (j, c)

* Note: ¢’ can only split exactly one edge.

additive tree for 4 species is unique

Thus, the

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



Additive tree for k species 95/

* Inductively, assume we know how to recover the
additive tree for k-1 species

 To recover the additive tree for k species,

— Build the additive tree T for the first k-1 species.
Then, insert the last species to T°

— The last species should split one of the edge in T’

— For every edge in T', we check (using 3-star
method) whether the last species splits it

* Note:
— The time required is O(k-1)
— Also, the tree is unique!

Copyright 2019 © Wong Limsoon

CS2220, AY2019/20



Time complexity

* In summary, to recover an additive tree with n
species, the time is

O(1+2+ ...+ n)=0(n?

* Note: The resulting additive tree for M is unique!

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Example

al|/blc|d]|e
1110 | 9 |15
11/ 0| 3 |12 |18
10| 3 |0 11|17
9 (1211 0 | 8
15/18 (17, 8 | 0

d
11 9 ) . )
b
a > a2t > aiéél - =
b b

oo |loc|lo | =
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 If M is not an additive metric, we can find the
nearly additive tree using the following methods

— Least Squares Method

— Fitch-Margoliash method
— Neighbor-Joining Method
— Loo-metric

* | will show you just the formulation of one of
these...

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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L east-squares method

* Input: a metric M for a set of species S

« Definition: For any tree T for the set of species S,
let D be its corresponding distance matrix. We

define
SSO(T) = Zz

i=l j#i Jr

_MU)

 Aim: Find a tree T which minimizes SSQ(T). Such
tree is known as Least Squares Tree

 This problem is NP-hard

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



Can tree reconstruction methods
infer the correct tree? (1)

- Experimentally, bacteriophage T7 was
propagated and split sequentially in the presence
of a mutagen, where each lineage was tracked

* Five different phylogenetic methods were used
independently, and each one chose the correct
tree, out of 135,135 possible phylogenetic trees

D. M. Hillis et al. Experimental phylogenetics: generation of a known phylogeny.
Science, 255(5044):589-592, 1992
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Can tree reconstruction methods

infer the correct tree? (ll)

 In 1998, researchers used 111 modern HIV-1
(AIDS virus) sequences in a phylogenetic
analysis to predict the nucleotide sequence of the
viral ancestor of which they were all descendants

 The predicted ancestor sequence closely
matched, with high statistical probability, an
actual ancestral HIV sequence found in an HIV-1
seropositive African plasma sample collected and
archived in the Belgian Congo in 1959

T. Zhu et al. An African HIV-1 sequence from 1959 and implications for the origin of the
epidemic. Nature, 391: 594-597, 1998
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S/w for constructing % NUS
phylogenetic trees '

e Felsenstein's PHYLIP

— Large # of methods, including maximum likelihood,
maximum parsimony and neighbor joining

— Command-line mode only

— It is the most widely used program suite
— Source code is available

— Free of charge

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon


http://evolution.genetics.washington.edu/phylip.html

S/w for visualizing W NUS
phylogenetic tree
* Treeview
— A simple program for displaying phylogenies.

— http://taxonomy.zoology.gla.ac.uk/rod/treeview.ht
ml

File Edit Stwle Tree Window Help

I el O SR

| 4
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Assessing robustness of
a reconstructed phylogenetic tree
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Cautionary note

« UPGMA'’s simple-minded clustering may lead to
substantial errors

Real tree UPGMA
.5
2.5 i 1
2 W UlVIW|X
Vv U
9 W 24| 6
20 X 3211410
U X 3 3

Source: Yechiam Yemini
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Bootstrapping

« A statistical technique to increase robustness

e Scenario:
— Given sample S & result R(S) computed from S

* Bootstrapping:
— Resample S, to get S;
— Evaluate R(S');
— Evaluate match of R(S) with the values R(S")

Credit: yechiam Yemini
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Bootstrapping in phylogenetic tre

« S = columns of sequences of size n; R(S)=tree

« S’ =Sample n random columns of S with possible
repetitions

« Compute phylogenetic tree R(S’)
 Use {R(S’)} to compute likelihood of branches of R(S)

lyr IRNA TCTCAACGTAACACTTTACAGCGGCG- - COTCATTTGATATGATGC-GCCCCOGCTTCCCGATAAGLS
rrn D1 GATCAALAAAATACTTIGTGCAARAALA « s TTGGGATCCCTATAATGCLGCCTCCGT | GAGALGAL AL

rrn X1 ATGCATTTTTCCGCTTGTETTCCTGA-GCCGACTCCCTATAATGCGCCTCCATCGACACGGCGGAT
rrn (DXE), CCTGAAATTCAGGGTTGACTCTGAAA» » GAGGAAAGCGTAATATAC-GCCACCTCGCCACAGTGAGC
rem C1 CTCCAATTTTTCTATTGLCGGCCTCCG - - CAGAACTCCCTATAATCCCCCTCCATCCACACGGCGGAT
rrn A TTTTAAATTTCCTCTTGTCAGGCCGG - - AATAACTCCCTATAATGCCCCACCACTGACACGGAACAL
ren A2 GCAAAAATAAATGCTIGACTCTGTAG. « CGGGAAGGCGTATTATGC-ACACCLCGCGLCCGOTCAGAL
APR TAACACCGTGCGTGTTGACTATTTTACCTCTGGCGGTGATAATGG  TTGCATGTACTAAGGAGST
AP TATCTCTGGCGCGTGTTGACATAAATA-CCACTGGCGGTGATACTGA - « GCACATCAGCAGGACGCAL
T7 A3 GTGAAACAAAACGGTTGACAACATGA AGTAAACACGGTACGATGT - ACCACATGAAACGACAGTGA
17 A1 TATCAAAAAGAGTATTGACTTARAGT »CTAACCTATAGGATACTTA-CAGCCATCGAGAGGGACACLS
Ti AZ ACGAAAAACAGGTATTGACAACATCGAAGTAACATGCAGTAAGATAC-AAATCOGCTAGCTAACACTAS
fd VI GATACAAATCTCCGTTGTACTTTGTT» « TCGCGCTTGGTATAATCG-CTGGGGGTCAAAGATCAGTS

a5 10 + T

Credit: yechiam Yemini
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Phylogenetic tree comparison

National University
of Singapore

TINUS
95




Why tree comparison?

« We learn a number of methods to reconstruct
phylogeny for the same set of species

« Different phylogenies are resulted using
— Different data (different segments of genomes)

— Different model (Cavender-Farris-Neyman model,
Jukes-Cantor Model)

— Different reconstruction algorithms

 Tree comparison helps us to gain information
from multiple trees

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Two types of comparisons

« Similarity measurement

— Find common structure among given trees
« Maximum Agreement Subtree

* Dissimilarity measurement

— Determine differences among given trees
* Robinson-Foulds distance
* Nearest-neighbor interchange
« Subtree transfer distance

* |In this lecture, we discuss the first method

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Restricted subtree

e Considertree T

Evolution
information
of Xy, X5, X

Evolution
information of X,
Xy, X5, X4, X
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=)
Agreement subtree NUS
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 Giventwotrees T,and T,

 Agreement subtree of T, and T, is the common
info agreed by both trees

— Since it is agreed by both trees, the evolution of
the agreement subtree is more reliable

 Maximum agreement subtree problem

— Find the agreement subtree with largest possible
number of leaves

— Such agreement subtree is called the maximum
agreement subtree

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



MAST for rooted trees

 MAST of two degree-d rooted trees T, and T, with
n leaves can be computed in

O(\/g nlog( %)) time
- But the algo for the above is complicated

« So here we show you a O(n?)-time algorithm
which computes the maximum agreement
subtree of two binary trees with n leaves

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



Notations

* For any two binary rooted trees T, and T,, let
MAST(T,, T,) be number of leaves in the
maximum agreement subtree

* Foratree T and a node u, T" is the subtree of T
rooted at u

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Base cases

 ForanyleafxinT,andyinT,,
ﬁﬁx=y

MAST (x, y) = maxs .
0 otherwise

* ForanynodeuinT,andvinT,,

MAST(T",A) =0, MAST(A,T)) =0

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Recurrence (I)

MAST(T",T,) =

(MAST(T, T, )+ MAST(T",T,")
MAST(T",T,") + MAST(T",T,")
MAST(T",T,’

)
MAST(T;",T,")
MAST(T",T,)
\MAST(T,",T,")

max <

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



MAST(

max <

T;u , T2V) —
(MAST(

MAST(
MAST(T"
MAST(T
MAST(T"

MAST(T}"

Recurrence (ll)

National University

T°.T,)+MAST(T,T,")
ﬂ“,Tzd>+MAST<ﬂ”,T;>

Mﬂ i

[

All the species in
“agreement” are in right
subtree of v

CS2220, AY2019/20
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MAST(

max <

Recurrence (lll)

T;u , T2V) —
MAST(T",T,°) + MAST(T,"
MAST(T", T;’) + MAST(T"

MAST(T",T

All the species in
“agreement” are in left
subtree of v

d
T,")
T,")

1 9
MAST(Tb
MAST(T", T, ) &
MAST(T",T

National University

CS2220, AY2019/20
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MAST(

max <

7—114 , T2V) —
(MAST(
MAST(T,

MAST(T"
MAST(T,
MAST(T"
MAST(T}"

Recurrence (V) 95 e

T°,T,)+MAST(T',T,")
“,Td)+MAST(Tb,TC)

“ﬁ A

[

All the species in

“agreement” are in right

subtree of u

CS2220, AY2019/20

Copyright 2019 © Wong Limsoon




MAST(

max <

T;u , T2V) —
(MAST(

MAST(

MAST(T'
MAST(T"
MAST(T,"

T") S

[

All the species in
“agreement” are in left
subtree of u

CS2220, AY2019/20

Recurrence (V) 95 e

T°.T,)+MAST(T,T,")
T°,T,") + MAST(T,,T,")
MAST(T“

Y
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MAST(T",T,") =

(MAST(
MAST(
MAST(T"
MAST(T"
MAST(T"
MAST(T;"

max <

Recurrence (VI)

National University

T°,T,)+ MAST(T,",T,")
Tla,Tzd)+MAST(T1b,T2") &

ey

Exercise: What does this
case correspond to?

CS2220, AY2019/20
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Recurrence (VIl)

MAST(T",T,) =
(MAST(T®,T,") + MAST(T",T,") <
MAST(TI“,Tzd) + MAST(T,",T,)
MAST (T

max <
MAST(T'
MAST(T"
MAST(T,"

[ Exercise: What does this

case correspond to?
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Time complexity

* Suppose T, and T, are rooted phylogenies for n
species

 We have to compute MAST(T,Y, T,") for every u in
T,andvinT,

 Thus, we need to fill in n? entries
« Each entry can be computed in O(1) time
 In total, the time complexity is O(n?)

provided you have a
dynamic programming
version of MAST

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



MAST example

. (VII
. v

N
/\A v

o Xo |

(V)

Copyright 2019 © Wong Limsoon
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Population tree

« Estimate order in which
“populations” evolved

Mbuti Pygmy }Afrlca

Ethiopian Based on assimilated freq
ltalian }Empe of many different genes
— bglih But ...

] JT;EZLZC pasia — is human evolution a
—— Navaio _— §ucpeSS|on of population
Cherokee } fissions?

Indonesian — Is there such thing as a
Polynesian }Oceanla proto-Anglo-Italian

Papuan }Austalasm population which s_plit,
Australian never to meet again, and

became inhabitants of
England and ltaly?

Time since split
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Evolution tree

 Leaves and nodes are
individual persons---real
people, not hypothetical
concept like “proto-
population”

Root—

 Lines drawn to reflect
genetic differences
between them in one
special gene called
mitochondrial DNA

LI

| | | |
150000 100000 50000 present
years ago years ago years ago

OaAfrican  OAsian .Papuan DEuropean
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Why mitochondrial DNA

of Singapore

* Present in abundance in bone fossils
* Inherited only from mother
« Sufficient to look at the 500bp control region

« Accumulate more neutral mutations than nuclear
DNA

 Accumulate mutations at the “right” rate, about 1
every 10,000 years

* No recombination, not shuffled at each
generation

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Mutation rates

 All pet golden hamstersin = Mitochondrial control

the world descend from a region mutates at the
single female caught in “right” rate
1930 in Syria

“manage” ~4 generations
a year :-)

 So >250 hamster
generations since 1930

 Mitochondrial control
regions of 35
(independent) golden
hamsters were sequenced
and compared

e No mutation was found

E Golden hamsters

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon



Contamination

* Need to know if DNA extracted from old bones
really from those bones, and not contaminated
with modern human DNA

 Apply same procedure to old bones from animals,
check if you see modern human DNA

* If none, then procedure is OK
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Origin of Polynesians

Do they come from Asia or America?

b New Guinea |
T 1

[Rarvonge)
e S

189, 217, 247, 26

pﬂhlaml) i
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In the course of evolution...
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Origin of Polynesians

« Common mitochondrial « More 189, 217 closer to
control seq from Taiwan. More 189, 217, 261
Rarotonga have variants at closer to Rarotonga
positions 189, 217, 247, « 247 not found in America
261. Less common ones -

— Polynesians came from
have 189, 217, 261 Taiwan!

 Seq from Taiwan natives

° T H t.
have variants 189, 217 alwan seq sometimes

have extra mutations not
found in other parts

 Seq from regions in betw — These are mutations that
have variants 189, 217, happened since
261. Polynesians left Taiwan!

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon
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Neanderthal vs Cro Magnon 9z

 Are Europeans descended purely from Cro
Magnons? Pure Neanderthals? Or mixed?

LR el Cro Magnon
Neanderthal
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Neanderthal vs Cro Magnon 9z

 Based on palaeontology,  The number of diff betw
Neanderthal & Cro Magnon Welsh is ~3, & at most 8.
last shared an ancestor «  When compared w/ other
250000 yrs ago Europeans, 14 diff at most

« Mitochondrial control — Ancestor either 100%
regions accumulate 1 Neanderthal or 100% Cro
mutation per 10000 yrs Magnon

= If Europeans have mixed
ancestry, the
mitochondrial control
regions betw 2 Europeans
should have ~25 diff w/
high probability

 Mitochondrial control seq
from Neanderthal have 26
diff from Europeans

— Ancestor must be 100%
Cro Magnon

http://www.geneticorigins.org/mito/media2.html
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« Clan mother is the

—O most recent maternal
o 403 ancestor common to
O— — O all members of the
e clan
—0
X 0 —
402  Whichofa,p, y,0is
O the clan mother?
o O
B —O Why?
O
O
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| TN US
How many clans in Europe? %%

« Cluster seq according to  The founder seq carried by
mutations just 1 woman in each case-

--the clan mother
« Each cluster thus

represents a major clan * Note that the clan mother
_ did not need to be alone.
« European seq cluster into There could be other
7 major clans women, it was just that

« The 7 clusters age betw their descendants

45,000 and 10,000 years eventually died out
(length of time taken for all

mutations in a cluster to

arise from a single founder

seq)
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'\ Neanderthals

Hamop evectuis

‘Mitochondrial Eve'
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Any question?




Acknowledgements

* A lot of the slides from this lecture were given to
me by Ken Sung

 Many slides are also based on the lecture slides
of Yechiam Yemini

CS2220, AY2019/20

Copyright 2019 © Wong Limsoon



120
TINUS
95

National University
of Singapore

References

B. Sykes. The seven daughters of Eve, Gorgi Books, 2002

« S.-W. Meng. Analysis of Phylogeny: A Case Study on
Saururacea, The Practical Bioinformatician, chapter 11, pages
245—268, WSPC, 2004

 J.Kim, T. Warnow. Tutorial on Phylogenetic Tree Estimation,
ISMB 19909.

CS2220, AY2019/20 Copyright 2019 © Wong Limsoon


http://www.geneticorigins.org/mito/media2.html

