For written notes on this lecture, please read chapter 14 of *The Practical Bioinformatician*.

CS2220: Introduction to Computational Biology Unit 3: Gene Expression Analysis

Wong Limsoon

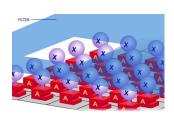
Plan

- Microarray background
- Gene expression profile classification
- Gene expression profile clustering
- Normalization
- Extreme sample selection
- Gene regulatory network inference

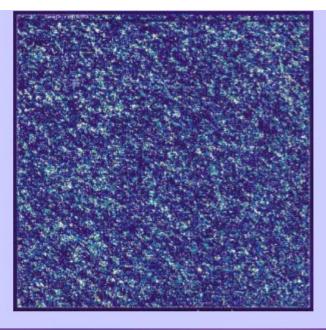
Background on microarrays

What is a microarray?

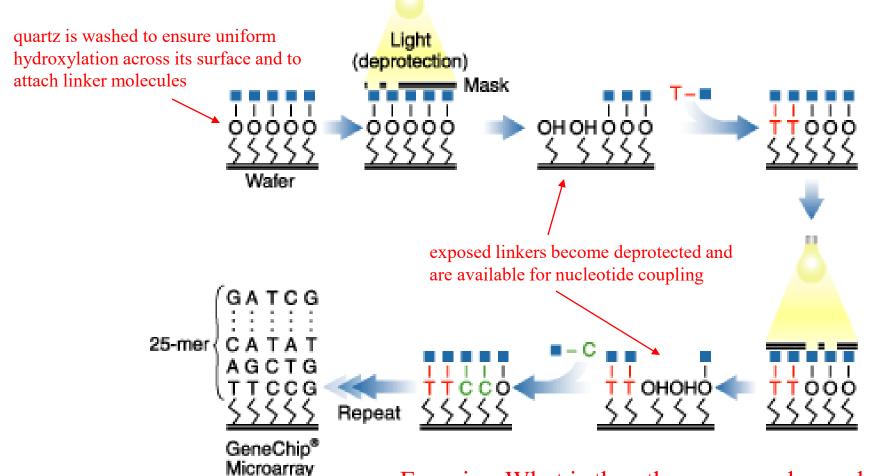
- Contain large numbers of DNA molecules spotted on glass slides, nylon membranes, or silicon wafers
- Detect what genes are being expressed or found in a cell of a tissue sample
- Measure expression of thousands of genes simultaneously



Affymetrix GeneChip®



Making Affymetrix GeneChip®



Exercise: What is the other commonly used type of microarray? How is that one different from Affymetrix's?

Gene
expression
measurement
by Affymetrix
GeneChip®

Biotin-labeled **Total RNA cDNA cRNA** In Vitro Reverse Transcription Transcription Fragmentation GeneChip Expression Array Fragmented, Biotin-labeled В Hybridization cRNA Wash and Scan and Quantitate Stain

Click to watch an interesting movie explaining the working of microarray

Sample Affymetrix GeneChip® NUS National University of Singapore data file (U95A)

	00-0586-US	00-0586-US	00-0586-US	00-0586-US	00-0586-US	Descriptions
	Positive		Pairs InAv		Abs Call	
AFFX-Murl	5	2	19	297.5	Α	M16762 Mouse interleukin 2 (IL-2) gene, exon 4
AFFX-Murl	3	2	19	554.2	Α	M37897 Mouse interleukin 10 mRNA, complete cds
AFFX-Murl	4	2	19	308.6	Α	M25892 Mus musculus interleukin 4 (II-4) mRNA, comp
AFFX-Murf	1	3	19	141	Α	M83649 Mus musculus Fas antigen mRNA, complete i
AFFX-BioE	13	1	19	9340.6	Р	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r
AFFX-BioE	15	0	19	12862.4	Р	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r
AFFX-BioE	12	0	19	8716.5	Р	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r
AFFX-Bio0	17	0	19	25942.5	Р	J04423 E coli bioC protein (-5 and -3 represent transcr
AFFX-Bio0	16	0	20	28838.5	Р	J04423 E coli bioC protein (-5 and -3 represent transcr
AFFX-Bio0	17	0	19	25765.2	Р	J04423 E coli bioD gene dethiobiotin synthetase (-5 ar
AFFX-Bio0	19	0	20	140113.2	Р	J04423 E coli bioD gene dethiobiotin synthetase (-5 ar
AFFX-CreX	20	0	20	280036.6	Р	X03453 Bacteriophage P1 cre recombinase protein (-5
AFFX-CreX	20	0	20	401741.8	Р	X03453 Bacteriophage P1 cre recombinase protein (-5
AFFX-BioE	7	5	18	-483	Α	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r
AFFX-BioE	5	4	18	313.7	Α	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r
AFFX-BioE	7	6	20	-1016.2	А	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r

Some advice on processing Affymetrix GeneChip® data

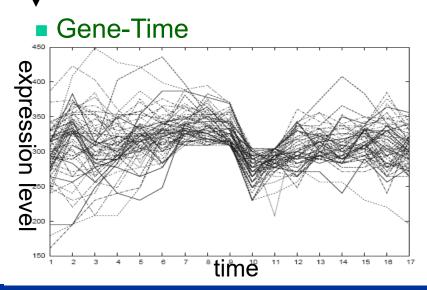
- Ignore AFFX genes
 - These genes are control genes
- Ignore genes with "Abs Call" equal to "A" or "M"
 - Measurement quality is suspect
- Upperbound 40000, lowerbound 100
 - Saturation of laser scanner
- Deal with missing values

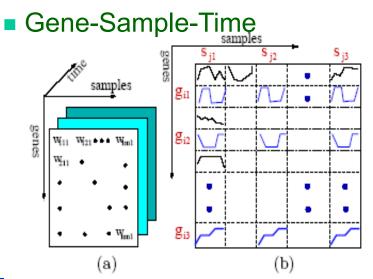
Exercise: Suggest 2 ways to deal with missing value

Type of gene expression datasets National States of Signature of Signa

Gene-Conditions or Gene-Sample (numeric or discretized)

	•	1000 - 100,000 columns ————————————————————————————————————									
↑	`	Class	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6	Gene7		
	Sample1	Cancer	0.12	-1.3	1.7	1.0	-3.2	0.78	-0.12		
	Sample2	Cancer							1.3		
100-50	o .										
rows		~Cancer									
	SampleN	~Cancer									

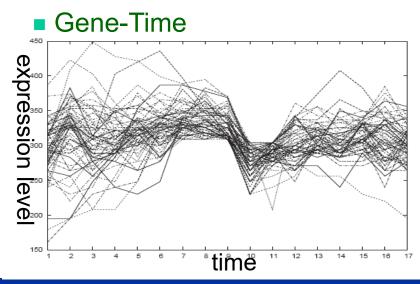


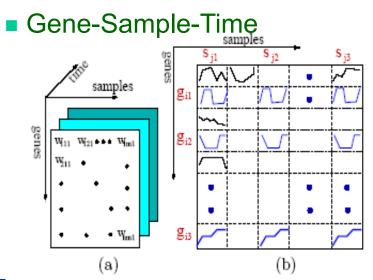


Type of gene expression datasets National University of Singapore

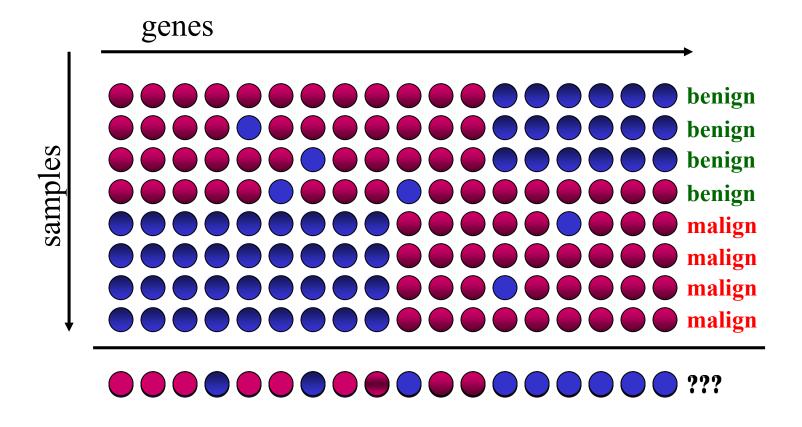
Gene-Conditions or Gene-Sample (numeric or discretized)

	—	1000 - 100,000 columns									
1	`	Class	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6	Gene7		
	Sample1	Cancer	1	0	1	1	1	0	0		
	Sample2	Cancer							1		
100-50 rows	0										
		~Cancer									
1	SampleN	I ∼Cancer									

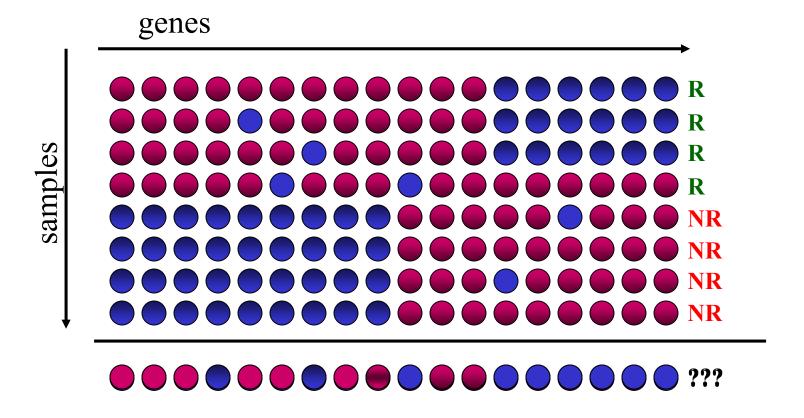




Application: Disease subtype diagnos



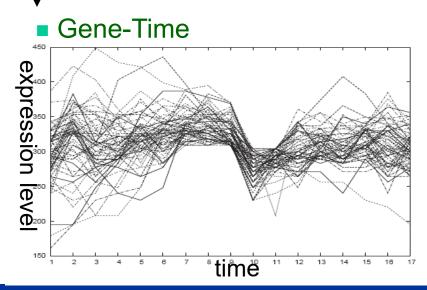
Application: Treatment prognosis

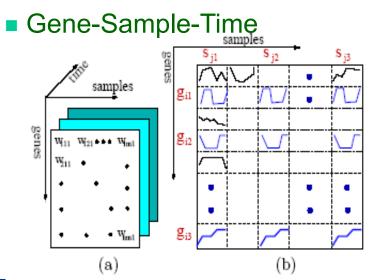


Type of gene expression datasets National of Singa

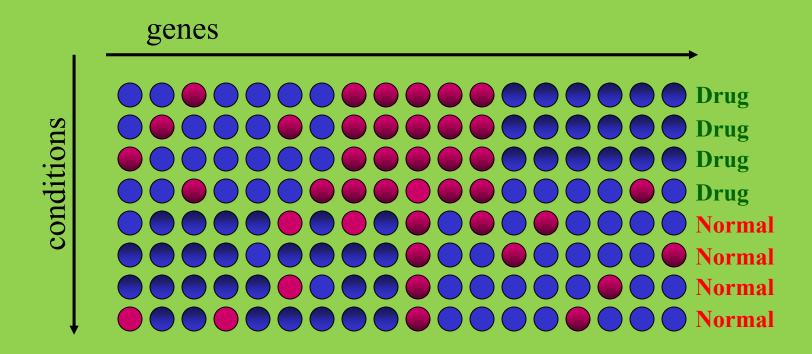
Gene-Conditions or Gene-Sample (numeric or discretized)

	Gene1	Gene2	Gene3	Gene 4	Gene5	Gene6	Gene7	
Cond1	0.12	-1.3	1.7	1.0	-3.2	0.78	-0.12	
Cond2							1.3	
CondN								





Application: Drug-action detection National of Singal



Which group of genes does the drug affect? Why?

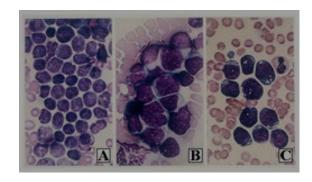
Gene expression profile classification

Childhood acute lymphoblastic leukemia subtype diagnosis

Childhood ALL

- Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR-ABL, MLL genome rearrangements, Hyperdiploid>50
- Diff subtypes respond differently to same Tx
- Over-intensive Tx
 - Development of secondary cancers
 - Reduction of IQ
- Under-intensiveTx
 - Relapse

The subtypes look similar

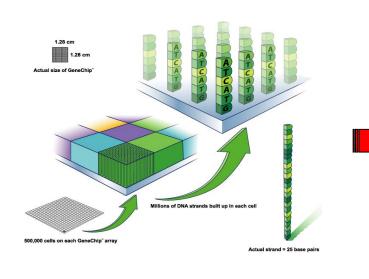


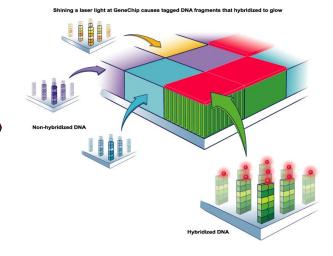
- Conventional diagnosis
 - Immunophenotyping
 - Cytogenetics
 - Molecular diagnostics
- Unavailable in most ASEAN countries

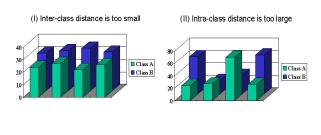
Mission

- Conventional risk assignment procedure requires difficult expensive tests and collective judgement of multiple specialists
- Generally available only in major advanced hospitals
- ⇒ Can we have a single-test easy-to-use platform instead?

Single-test platform of microarray & machine learning





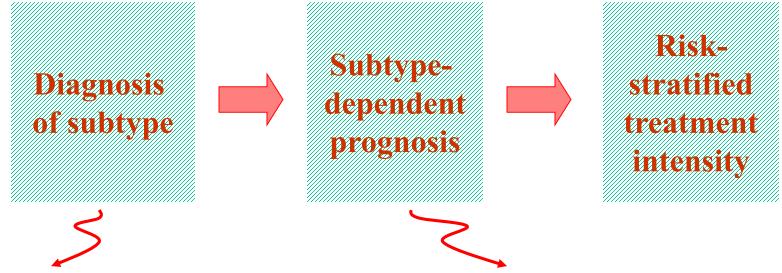


	00-0586-U	00-0586-U	00-0586-U	00-0586-U	Descriptions	
	Positive	Negative	Pairs InAv	Avg Diff	Abs Call	
AFFX-Murl	5	2	19	297.5	Α	M16762 Mouse int
AFFX-Murl	3	2	19	554.2	Α	M37897 Mouse int
AFFX-Murl	4	2	19	308.6	Α	M25892 Mus musi
AFFX-Murl	1	3	19	141	Α	M83649 Mus musi
AFFX-BioE	13	1	19	9340.6	Р	J04423 E coli bioE
AFFX-BioE	15	0	19	12862.4	Р	J04423 E coli bioE
AFFX-BioE	12	0	19	8716.5	Р	J04423 E coli bioE
AFFX-BioC	17	0	19	25942.5	Р	J04423 E coli bioC
AFFX-BioC	16	0	20	28838.5	Р	J04423 E coli bioC
AFFX-BioD	17	0	19	25765.2	Р	J04423 E coli bioD
AFFX-BioD	19	0	20	140113.2	Р	J04423 E coli bioC
AFFX-Cre>	20	0	20	280036.6	Р	X03453 Bacterioph
AFFX-Cre>	20	0	20	401741.8	Р	X03453 Bacterioph
AFFX-BioE	7	5	18	-483	Α	J04423 E coli bioE
AFFX-BioE	5	4	18	313.7	Α	J04423 E coli bioE
AFFX-BioE	7	6	20	-1016.2	А	J04423 E coli bioE

80	
60	Class A
	Class B
20	

(III) Inter- and intra-class distances of a good signal

Overall strategy



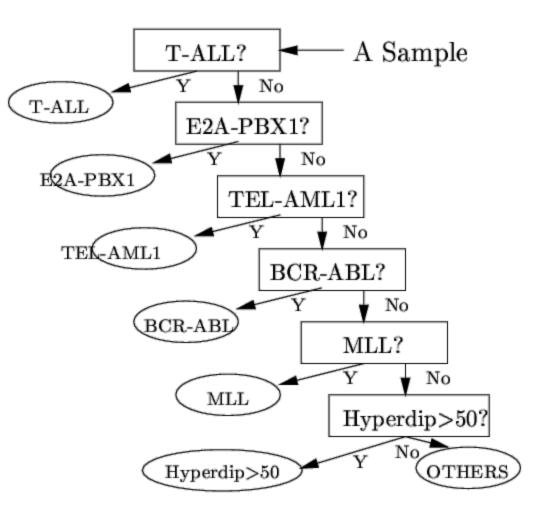
- For each subtype, select genes to develop classification model for diagnosing that subtype
- For each subtype, select genes to develop prediction model for prognosis of that subtype

Subtype diagnosis by PCL

- Gene expression data collection
- Gene selection by χ2
- Classifier training by emerging pattern
- Classifier tuning (optional for some machine learning methods)
- Apply classifier for diagnosis of future cases by PCL

Childhood ALL subtype diagnosis workflow

A tree-structured diagnostic workflow was recommended by our doctor collaborator

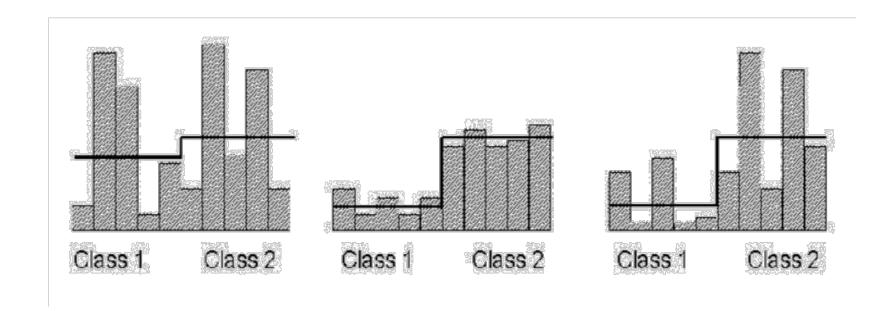


Training and testing sets

Paired datasets	Ingredients	Training	Testing
T-ALL vs	$OTHERS1 = \{E2A-PBX1, TEL-AML1,$	28 vs 187	15 vs 97
OTHERS1	BCR-ABL, Hyperdip>50, MLL, OTHERS}		
E2A-PBX1 vs	$OTHERS2 = \{TEL-AML1, BCR-ABL\}$	18 vs 169	9 vs 88
OTHERS2	Hyperdip>50, MLL, OTHERS}		
TEL-AML1 vs	$OTHERS3 = \{BCR-ABL$	52 vs 117	27 vs 61
OTHERS3	Hyperdip>50, MLL, OTHERS}		
BCR-ABL vs	$OTHERS4 = {Hyperdip>50},$	9 vs 108	6 vs 55
OTHERS4	MLL, OTHERS}		
MLL vs	$OTHERS5 = {Hyperdip>50, OTHERS}$	14 vs 94	6 vs 49
OTHERS5			
Hyperdip>50 vs	OTHERS = {Hyperdip47-50, Pseudodip,	42 vs 52	22 vs 27
OTHERS	Hypodip, Normo}		

Signal selection basic idea

- Choose a signal w/ low intra-class distance
- Choose a signal w/ high inter-class distance



Signal selection by $\chi 2$

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^2 = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, k the number of classes, A_{ij} the number of samples in the ith interval, jth class, R_i the number of samples in the ith interval, C_j the number of samples in the jth class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

Emerging patterns

- An emerging pattern is a set of conditions
 - usually involving several features
 - that most members of a class satisfy
 - but none or few of the other class satisfy
- A jumping emerging pattern is an emerging pattern that
 - some members of a class satisfy
 - but no members of the other class satisfy
- We use only jumping emerging patterns

Examples

Patterns	Frequency (P)	Frequency(N)
$\{9, 36\}$	38 instances	0
$\{9, 23\}$	38	0
$\{4, 9\}$	38	0
{9, 14}	38	Easy interpretation
$\{6, 9\}$	38	0 Lasy merpretation
{7, 21}	0	36
{7, 11}	0	35
{7, 43}	0	35
$\{7, 39\}$	0	34
{24, 29}	0	34

Reference number 9: the expression of gene 37720_at > 215

Reference number 36: the expression of gene 38028 at ≤ 12

PCL: Prediction by Collective Likelih Rational University Charge pore

- Let EP_1^P, \ldots, EP_i^P be the most general EPs of D^P in descending order of support.
- Suppose the test sample T contains these most general EPs of D^P (in descending order of support):

$$EP_{i_1}^P, EP_{i_2}^P, \cdots, EP_{i_x}^P$$

• Use k top-ranked most general EPs of D^P and D^N . Define the score of T in the D^P class as

$$score(T, D^P) = \sum_{m=1}^{k} \frac{frequency(EP_{i_m}^P)}{frequency(EP_m^P)}$$

- Ditto for $score(T, D^N)$.
- If $score(T, D^P) > score(T, D^N)$, then T is class P. Otherwise it is class N.

PCL learning

Top-Ranked EPs in Positive class

Top-Ranked EPs in Negative class

The idea of summarizing multiple top-ranked EPs is intended to avoid some rare tie cases

PCL testing

Most freq EP of pos class in the test sample

Score^P =
$$EP_1^{P'} / EP_1^{P} + ... + EP_k^{P'} / EP_k^{P}$$

Most freq EP of pos class

Similarly,

$$Score^{N} = EP_{1}^{N'} / EP_{1}^{N} + ... + EP_{k}^{N'} / EP_{k}^{N}$$

If Score^P > Score^N, then positive class, Otherwise negative class

Accuracy of PCL (vs. other classifie Nus National University of Singapore

Testing Data	Error rate of different models					
	C4.5	SVM	NB	PCL		
T-ALL vs OTHERS1	0:1	0:0	0:0	0:0		
E2A-PBX1 vs OTHERS2	0:0	0:0	0:0	0:0		
TEL-AML1 vs OTHERS3	1:1	0:1	0:1	1:0		
BCR-ABL vs OTHERS4	2:0	3:0	1:4	2:0		
MLL vs OTHERS5	0:1	0:0	0:0	0:0		
Hyperdiploid $>$ 50 vs OTHERS	2:6	0:2	0:2	0:1		
Total Errors	14	6	8	4		

The classifiers are all applied to the 20 genes selected by $\chi 2$ at each level of the tree

Understandability of PCL

 E.g., for T-ALL vs. OTHERS, one ideally discriminatory gene 38319_at was found, inducing these 2 EPs

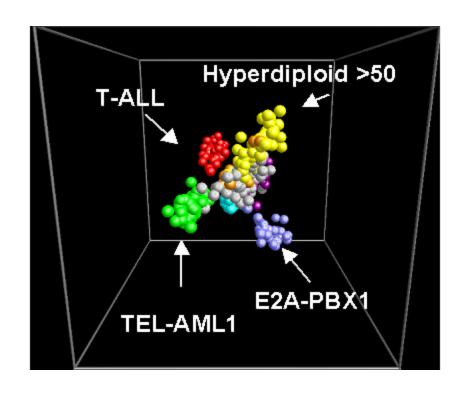
$$\{gene_{-(38\,319_at)} @ (-\infty, 15\,975.6)\}$$
 and $\{gene_{-(38\,319_at)} @ [15\,975.6, +\infty)\}.$

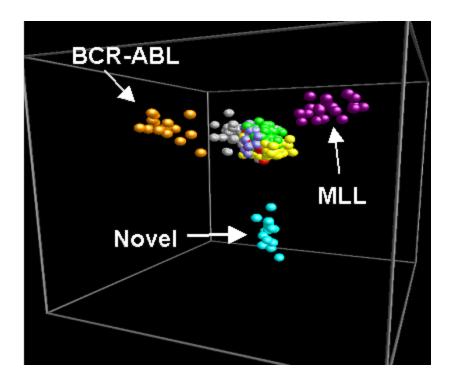
These give us the diagnostic rule

If the expression of 38 319_at is less than 15 975.6, then this ALL sample must be a T-ALL.

Otherwise it must be a subtype in OTHERS1.

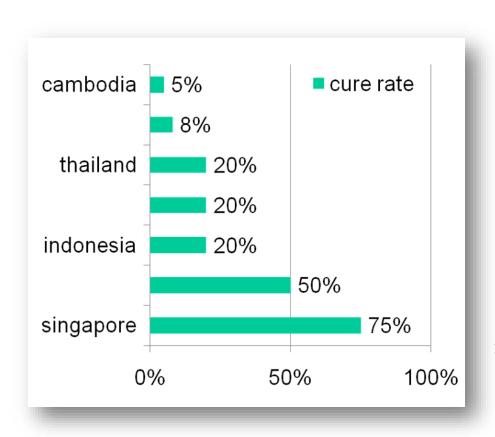
Multidimensional scaling plot for subtype diagnosis





Obtained by performing PCA on the 20 genes chosen for each level

Childhood ALL cure rates

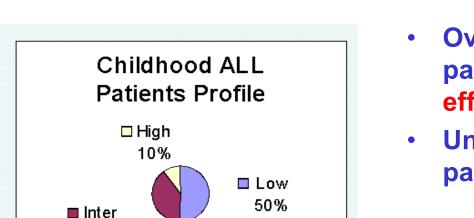


- Conventional risk
 assignment
 procedure requires
 difficult expensive
 tests and collective
 judgement of
 multiple specialists
- ⇒ Not available in less advanced ASEAN countries

Childhood ALL treatment cost

- Treatment for childhood ALL over 2 yrs
 - Intermediate intensity: US\$60k
 - Low intensity: US\$36k
 - High intensity: US\$72k
- Treatment for relapse: US\$150k
- Cost for side-effects: Unquantified

Current situation (2000 new cases / yr in ASEAN)



 Intermediate intensity conventionally applied in less advanced ASEAN countries

40%

- Over intensive for 50% of patients, thus more side effects
- Under intensive for 10% of patients, thus more relapse
- US\$120m (US\$60k * 2000) for intermediate intensity tx
- US\$30m (US\$150k * 2000 * 10%) for relapse tx
- Total US\$150m/yr plus unquantified costs for dealing with side effects

Using our platform

- Low intensity applied to 50% of patients
- Intermediate intensity to 40% of patients
- High intensity to 10% of patients
- ⇒ Reduced side effects
- ⇒ Reduced relapse
- \Rightarrow 75-80% cure rates

- US\$36m (US\$36k * 2000 * 50%) for low intensity
- US\$48m (US\$60k * 2000 * 40%) for intermediate intensity
- US\$14.4m (US\$72k * 2000 * 10%) for high intensity
- Total US\$98.4m/yr
- ⇒ Save US\$51.6m/yr

A nice ending...

 Asian Innovation Gold Award 2003

Gene expression profile clustering

Novel disease subtype discovery

Is there a new subtype?

Genes selected by χ2

 Hierarchical clustering of gene expression profiles reveals a novel subtype of childhood ALL

Diagnostic ALL BM Samples (n = 327) Genes for class MLL T-ALL Hyperdiploid > 50 TEL-AML1 New subtype

Exercise: Name and describe one bi-clustering method

discovered

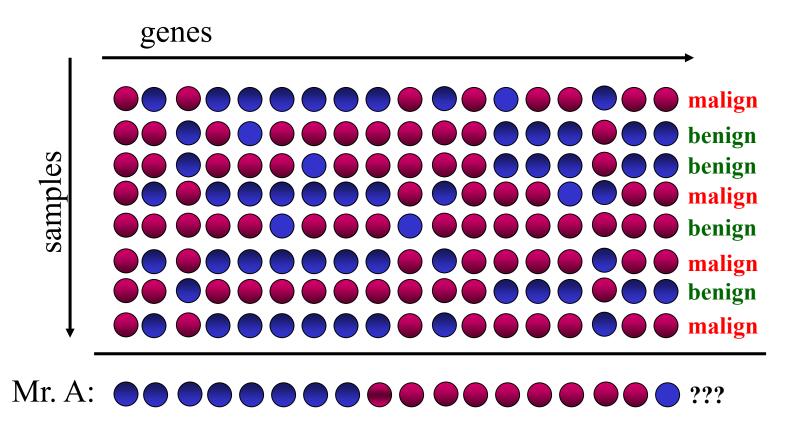
... Hierarchical clustering

- Assign each item to its own cluster
 - If there are N items initially, we get N clusters, each containing just one item
- Find the "most similar" pair of clusters, merge them into a single cluster, so we now have one less cluster
- Repeat previous step until all items are clustered into a single cluster of size N

Gene expression profile clustering

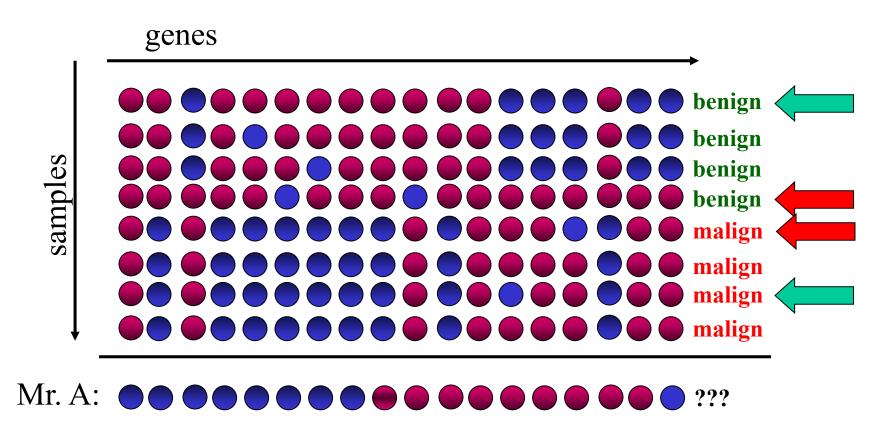
Diagnosis via guilt-by-association

Some patient samples



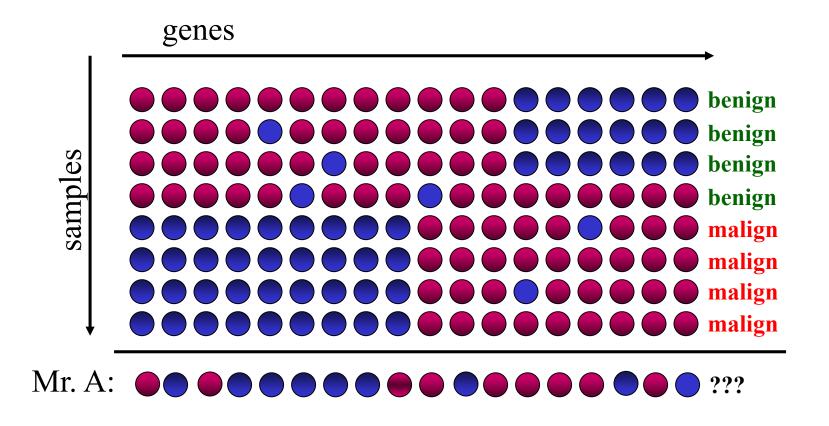
Does Mr. A have cancer?

Let's rearrange the rows...



Does Mr. A have cancer?

and the columns too...

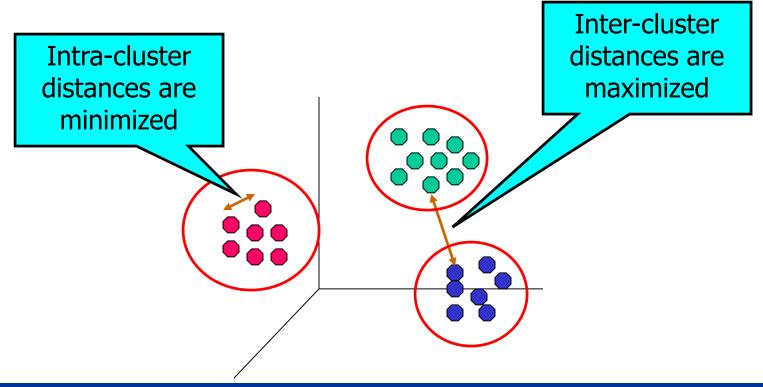


Does Mr. A have cancer?

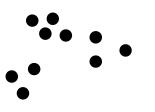
Introduction to simple clustering methods

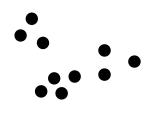
What is cluster analysis?

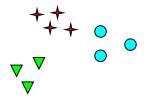
 Finding groups of objects such that objects in a group are similar to one another and different from objects in other groups

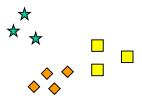


Notion of a cluster can be ambiguous



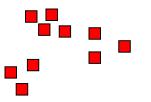


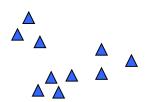


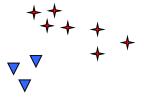


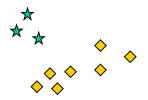
How many clusters?

Six Clusters





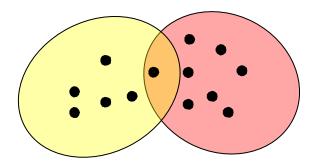




Two Clusters

Four Clusters

We can also have



K-means clustering

- Partitional clustering approach
- Each cluster is associated with a centroid
- Each point is assigned to the cluster with the closest centroid
- # of clusters, K, must be specified
 - 1: Select K points as the initial centroids.
 - 2: repeat

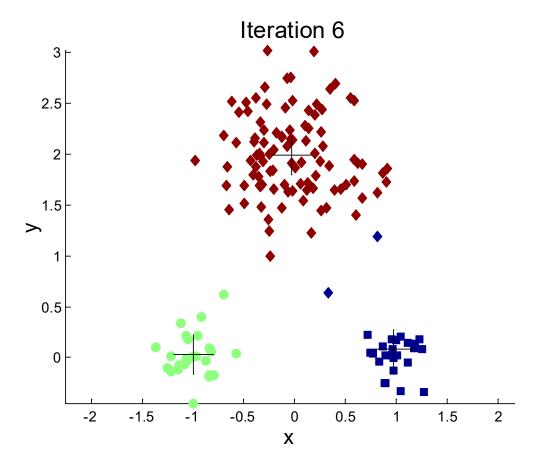
Assignment

- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.

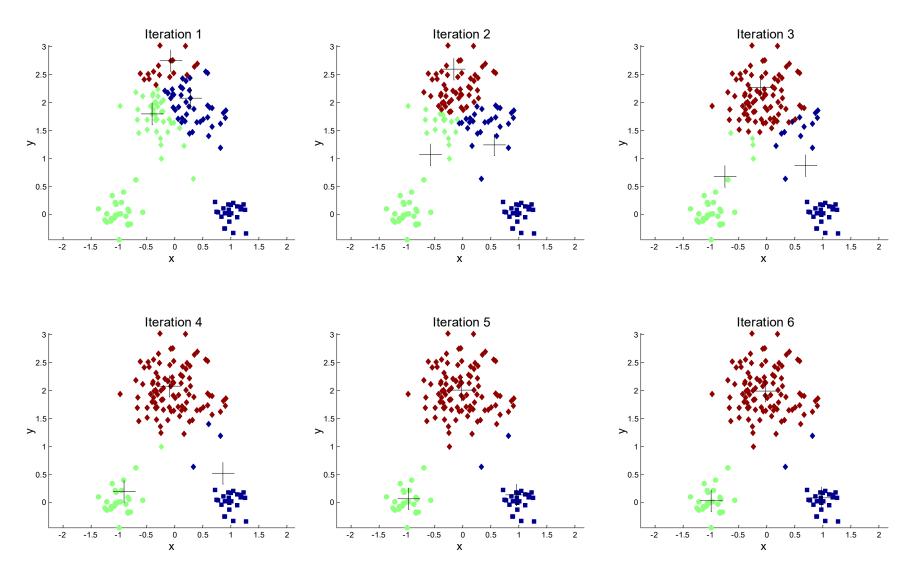
Update

5: **until** The centroids don't change

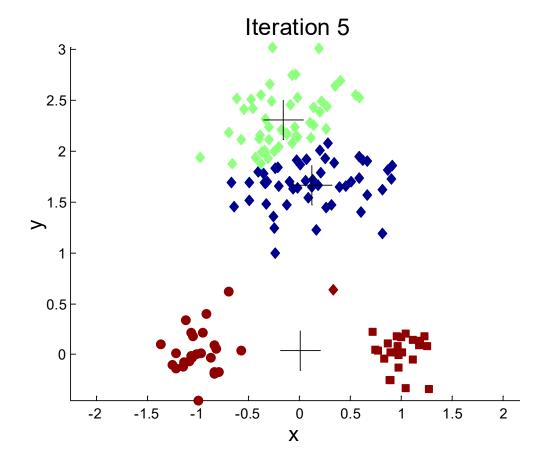
K-means clustering illustration



K-means clustering illustration



Importance of choosing initial centroids



Hierarchical clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

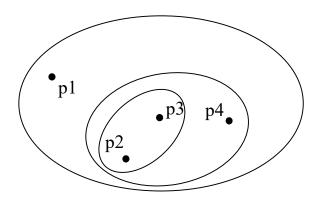
Agglomerative hierarchical clustering

- More popular hierarchical clustering technique
- Basic algorithm
 Compute the proximity matrix
 Let each data point be a cluster
 Repeat

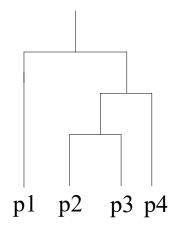
Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains

- Key is computation of proximity of two clusters
 - Different approaches to defining the distance / similarity between clusters

Visualization of agglomerative hierarchical clustering

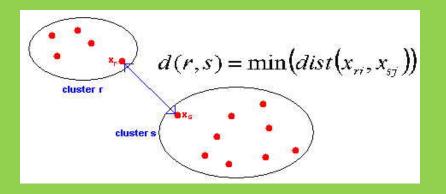


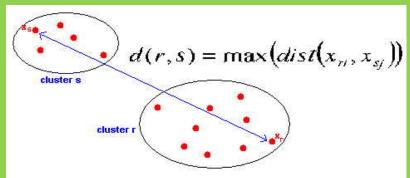
Traditional Hierarchical Clustering



Traditional Dendrogram

Single, complete, & average Linka National University of Singapore





Single linkage defines distance betw two clusters as min distance betw them

Complete linkage defines distance betw two clusters as max distance betw them

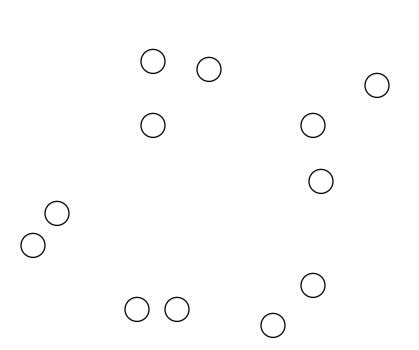
Exercise: Give definition of "average linkage"

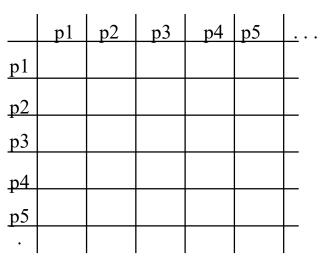
Copy

Image source: UCL Microcore Website

Simulation: Starting situation

Start with clusters of individual points and a proximity matrix





Proximity Matrix

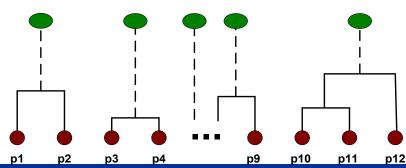
.

Intermediate situation

 After some merging steps, we have some clusters

	C1	C2	C3	C4	C5
<u>C1</u>					
<u>C2</u>					
C3 C4					
<u>C5</u>					

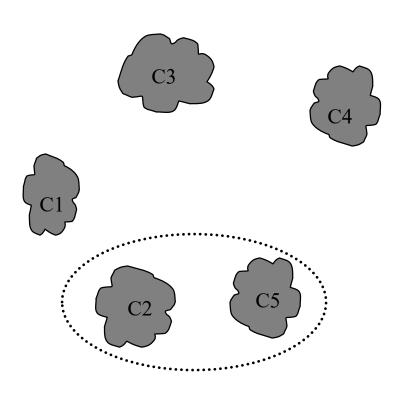
Proximity Matrix

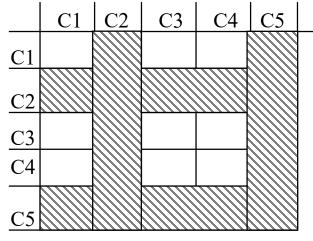


Intermediate situation

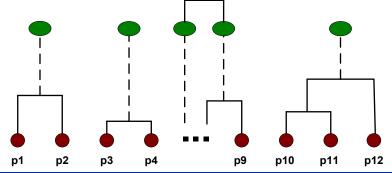
We want to merge the two closest clusters (C2 and C5)

and update the proximity matrix.





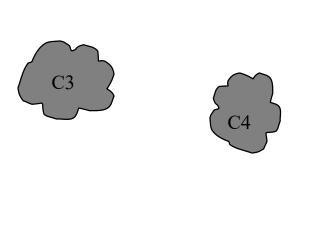
Proximity Matrix



After merging

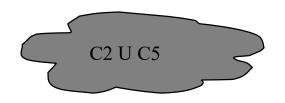
The question is "How do we update the proximity

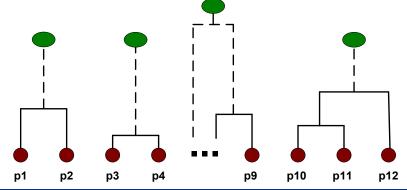
matrix?"



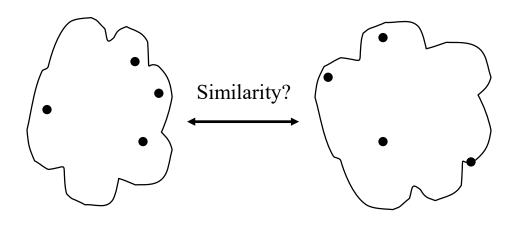
			C2		
		C1	$\begin{bmatrix} U \\ C5 \end{bmatrix}$	C3	C4
	C1		?		
C2 U	C5	?	?	?	?
	C3		?		
	<u>C4</u>		?		

Proximity Matrix





How to define inter-cluster similari National Univers of Singapore



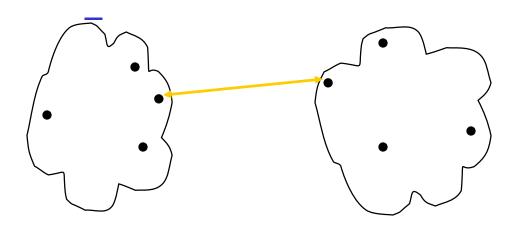
	p1	p2	р3	p4	p5	<u> </u>
<u>p1</u>						
p2						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						_
•						

- Min
- Max
- Group average
- Distance between centroids

Proximity Matrix

.

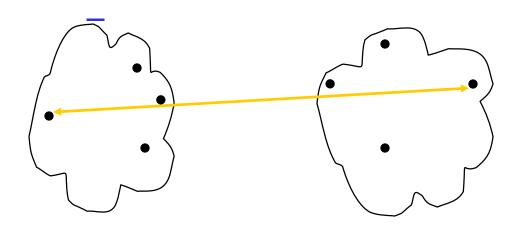
How to define inter-cluster similari National Union of Singapore



	p1	p2	р3	p4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u>						
<u>p4</u> <u>p5</u>						

- Min
- Max
- Group average
- Distance between centroids

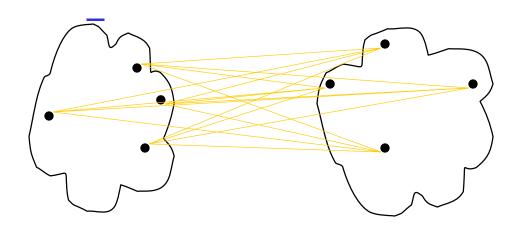
How to define inter-cluster similari



	p1	p2	р3	p4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- Min
- Max
- Group average
- Distance between centroids

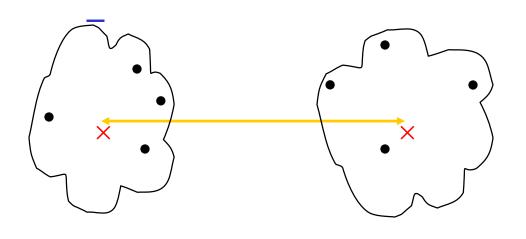
How to define inter-cluster similari National of Single



	p1	p2	р3	p4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u>						_
<u>p4</u> <u>p5</u>						

- Min
- Max
- Group average
- Distance between centroids

How to define inter-cluster similari National Un of Singapor



	p1	p2	р3	p4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
<u>p5</u>						
•						

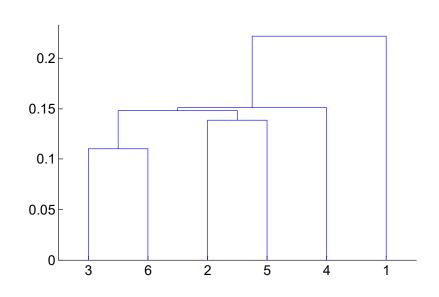
- Min
- Max
- Group average
- Distance between centroids

Cluster similarity: Min / single linkage

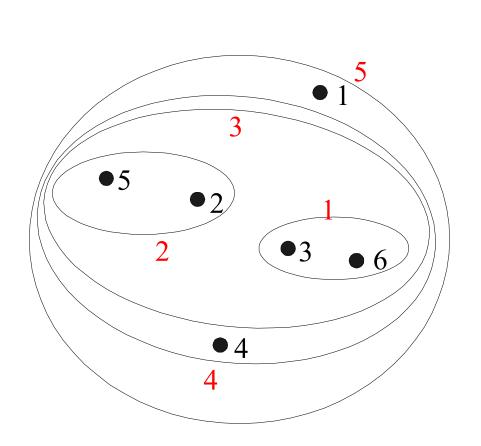
- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.



Hierarchical clustering: Min



0.2 0.15 0.1 0.05 5

Single-linkage clustering

Single-linkage dendrogram

Food for thought

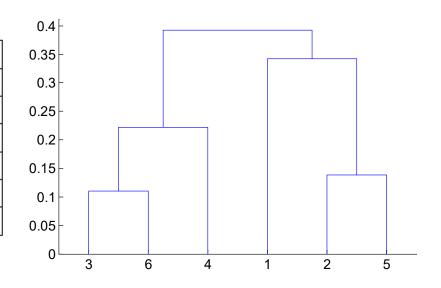
- What are the key strengths of single-linkage clustering?
- What are the key weaknesses of single-linkage clustering?

Cluster similarity: Max / complete linkage

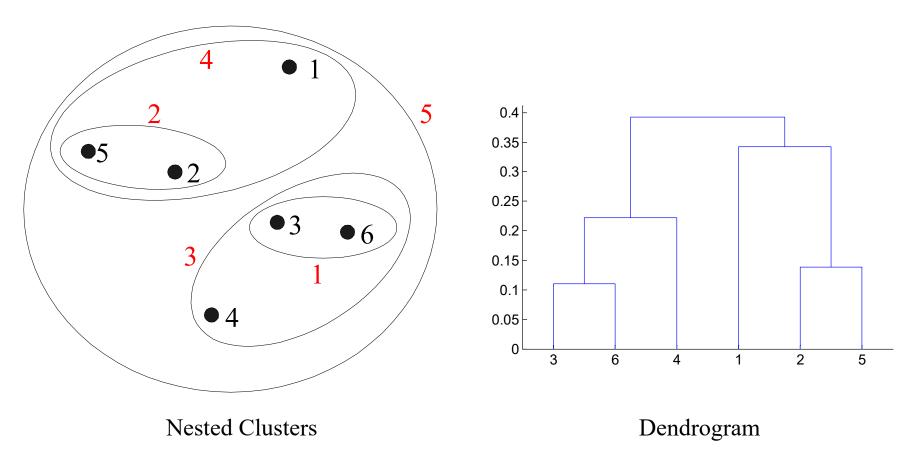
- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.



Hierarchical clustering: Max



We still want to merge two most similar clusters each time. But we define the distance between clusters based on MAX

Food for thought

- What are the key strengths of complete-linkage clustering?
- What are the key weaknesses of complete-linkage clustering?

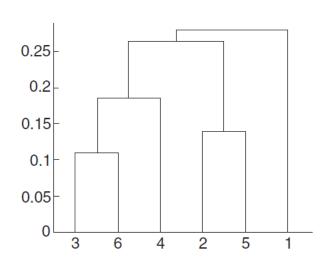
Cluster similarity: Group average National Union of Singapore

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters

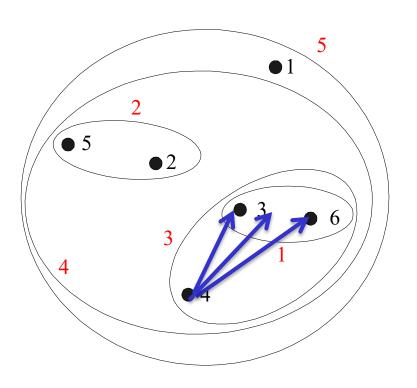
$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| * |Cluster_{j}|}$$

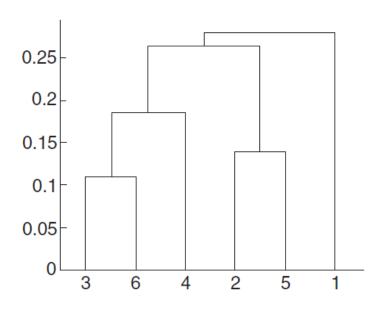
	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.



Hierarchical clustering: Group average





Group Average Clustering

Group Average Dendrogram

Hierarchical clustering: Group average

 Compromise between single and complete linkage

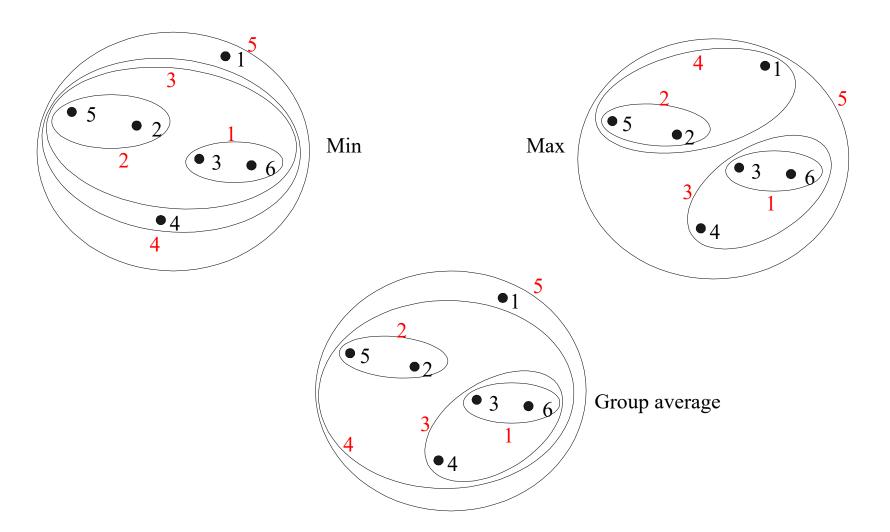
Strengths

 Less susceptible to noise and outliers

Limitations

Biased towards
 globular clusters

Hierarchical clustering: Comparison



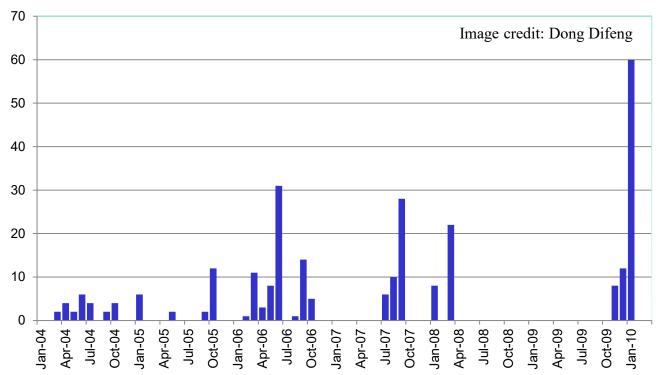
Food for thought

 What are the space and time complexity of hierarchical clustering?

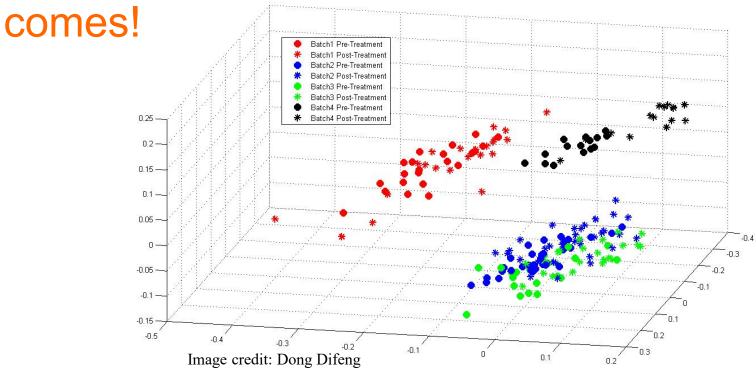
Normalization

Sometimes, a gene expression study may involve batches of data collected over a long period of time...

Time Span of Gene Expression Profiles



In such a case, batch effect may be severe... to the extent that you can predict the batch that each sample



⇒ Need normalization to correct for batch effect

Normalization approaches

 Aim of normalization: Reduce variance w/o increasing bias Xform data so that distribution of probe intensities is same on all arrays

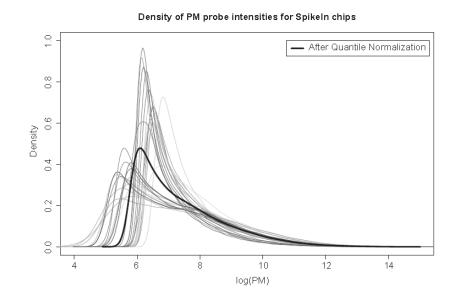
$$- E.g., Z = (x - \mu) / \sigma$$

- Scaling method
 - Intensities are scaled so that each array has same ave value
 - E.g., Affymetrix's

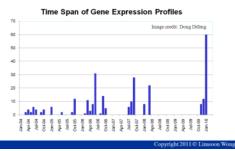
Quantile normalization

Quantile normalization

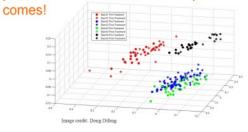
- Given n arrays of length p, form X of size p × n where each array is a column
- Sort each column of X to give X_{sort}
- Take means across rows of X_{sort} and assign this mean to each elem in the row to get X'_{sort}
- Get X_{normalized} by arranging each column of X'_{sort} to have same ordering as X



 Implemented in some microarray s/w, e.g., EXPANDER Sometimes, a gene expression study may involve batches of data collected over a long period of time...



In such a case, batch effect may be severe... to the extent that you can predict the batch that each sample



⇒ Need normalization to correct for batch effect

After quantile normalization

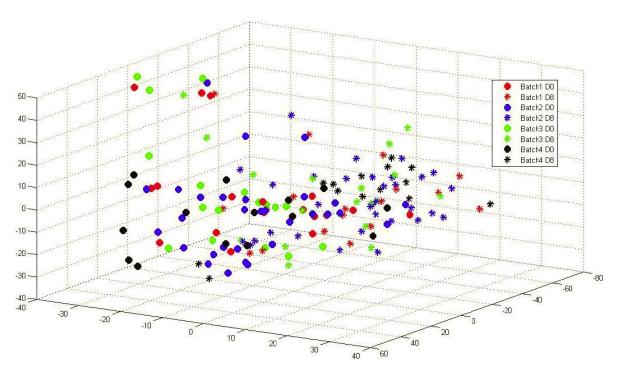
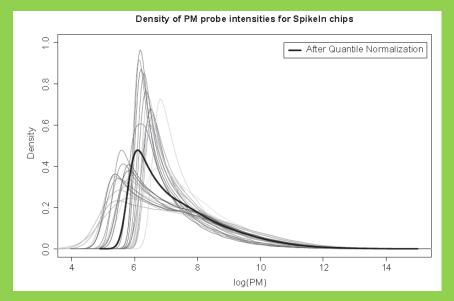


Figure 3.6: GEPs after the batch effects removing.

Food for thought

- Given a cancer vs normal dataset
- Should you apply quantile normalization to the dataset as a whole or should you apply quantile normalization to the cancer and the normal part separately? Why?



CS2220, AY2020/21

Food for thought

- Given a cancer vs normal dataset
- Should you apply Z-normalization to each phenotype separately or to the whole dataset in one go?
- Should you apply Z-normalization in a patientwise or gene-wise manner? Why?

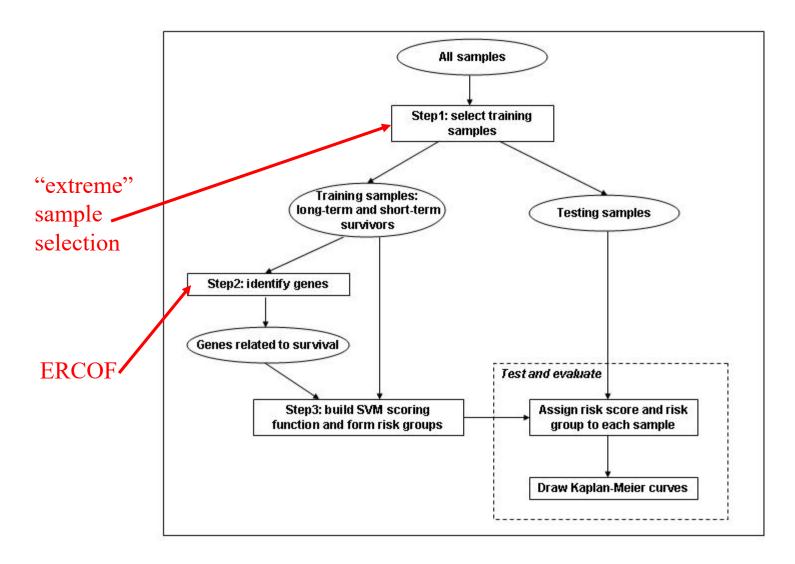
Selection of patient samples and genes for disease prognosis

Gene expression profile + clinical data ⇒ outcome prediction

- Univariate & multivariate Cox survival analysis (Beer et al 2002, Rosenwald et al 2002)
- Fuzzy neural network (Ando et al 2002)
- Partial least squares regression (Park et al 2002)
- Weighted voting algorithm (Shipp et al 2002)
- Gene index and "reference gene" (LeBlanc et al 2003)
- •

Liu et al. "Use of extreme patient samples for outcome prediction from gene expression data. *Bioinformatics*, 21(16):3377--3384, 2005

Our approach



Extreme sample selection

Short-term Survivors v.s. Long-term Survivors

Short-term survivors

who died within a *short* period

 $F(T) < c_1$ and E(T) = 1

Long-term survivors

who were alive after a long follow-up time

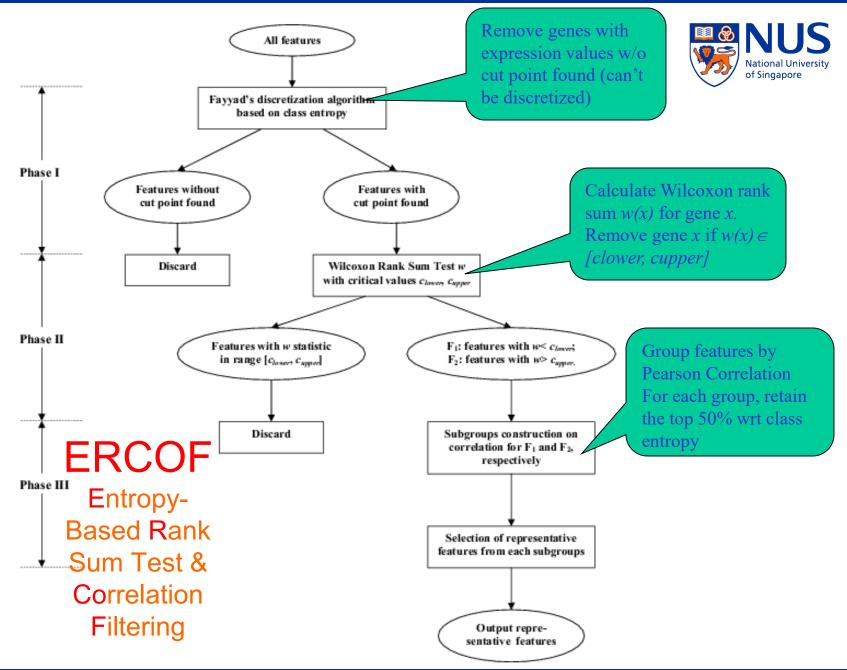
$$F(T) > c_2$$

T: sample

F(T): follow-up time

E(T): status (1:unfavorable; 0: favorable)

 c_1 and c_2 : thresholds of survival time



Risk score construction

Linear Kernel SVM regression function

$$G(T) = \sum_{i} a_{i} y_{i} K(T, x(i)) + b$$

T: test sample, x(i): support vector,

 y_i : class label (1: short-term survivors; -1: long-term survivors)

Transformation function (posterior probability)

$$S(T) = \frac{1}{1 + e^{-G(T)}}$$
 $(S(T) \in (0,1))$

S(*T*): *risk score* of sample *T*

Diffuse large B-cell lymphoma

- DLBC lymphoma is the most common type of lymphoma in adults
- Can be cured by anthracycline-based chemotherapy in 35 to 40 percent of patients
- ⇒ DLBC lymphoma comprises several diseases that differ in responsiveness to chemotherapy

- Intl Prognostic Index (IPI)
 - age, "Eastern Cooperative Oncology Group" Performance status, tumor stage, lactate dehydrogenase level, sites of extranodal disease, ...
- Not very good for stratifying DLBC lymphoma patients for therapeutic trials
- ⇒ Use gene-expression profiles to predict outcome of chemotherapy?

Rosenwald et al., NEJM 2002

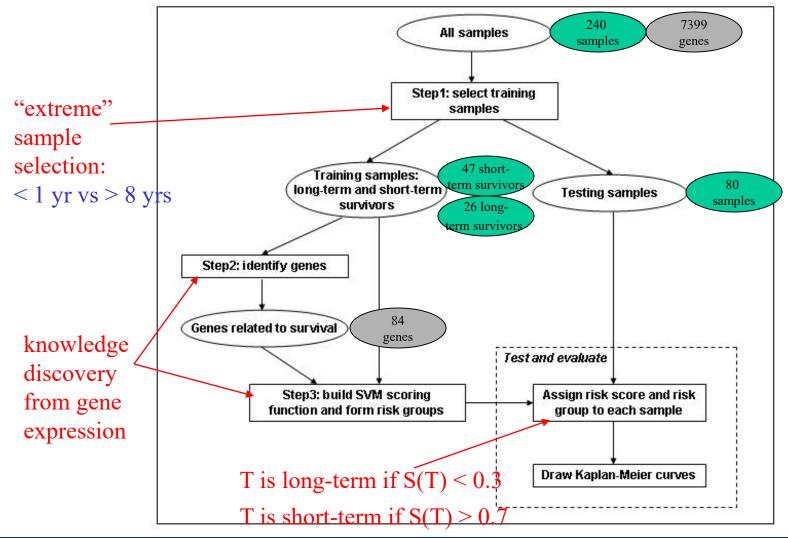
240 data samples

- 160 in preliminary group
- 80 in validation group
- each sample described by 7399 microarray features

Rosenwald et al.'s approach

- identify gene: Cox proportional-hazards model
- cluster identified genes into four gene signatures
- calculate for each sample an outcome-predictor score
- divide patients into quartiles according to score

Knowledge discovery from gene NUS National University of Singapore expression of "extreme" samples



Discussions: Sample selection

Application	Data set	Status		Total
		Dead	Alive	
DLBCL	Original	88	72	160
	Informative	47+1(*)	25	73

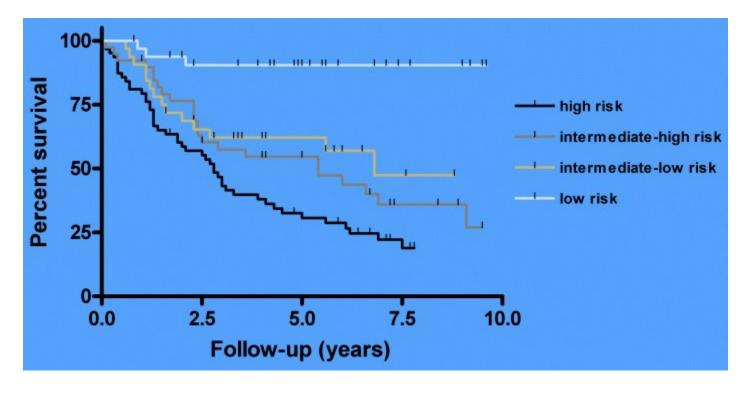
Number of samples in original data and selected informative training set. (*): Number of samples whose corresponding patient was dead at the end of follow-up time, but selected as a long-term survivor.

Discussions: Gene identification

Gene selection	DLBCL		
Original	4937(*)		
Phase I	132(2.7%)		
Phase II	84(1.7%)		

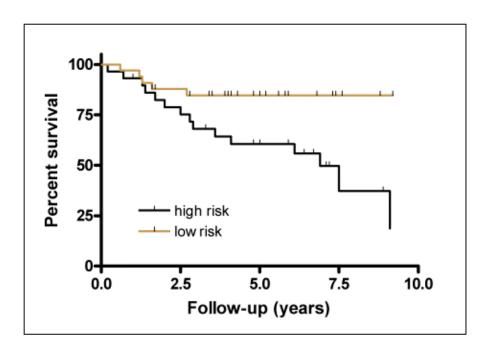
Number of genes left after feature filtering for each phase. (*): number of genes after removing those genes who were absent in more than 10% of the experiments.

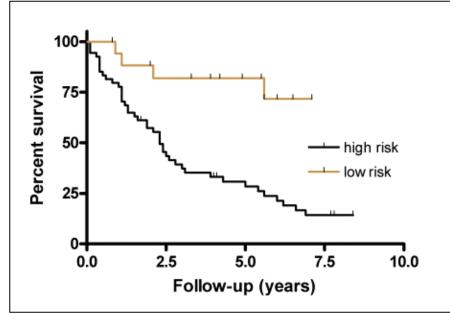
Kaplan-Meier plot for 80 test cases



p-value of log-rank test: < 0.0001 Risk score thresholds: 0.7, 0.3

Improvement over IPI

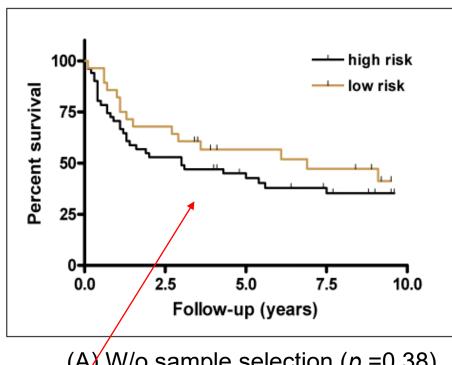


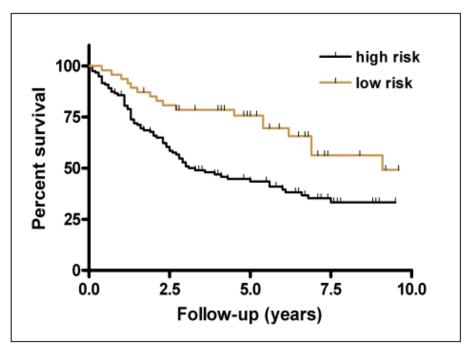


(A) IPI low, p-value = 0.0063

(B) IPI intermediate, p-value = 0.0003

Merit of "extreme" samples





(A) W/o sample selection (p = 0.38)

(B) With sample selection (p=0.009)

No clear difference on the overall survival of the 80 samples in the validation group of DLBCL study, if no training sample selection conducted

About the inventor: Huiqing Liu

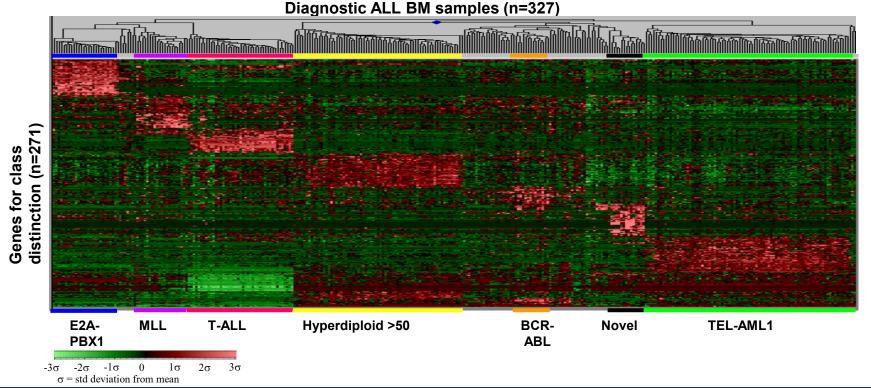
Huiqing Liu

- PhD, NUS, 2004
- Currently PI at Incyte
- Asian InnovationGold Award 2003
- New Jersey Cancer
 Research Award for
 Scientific Excellence
 2008
- Gallo Prize 2008

Beyond disease diagnosis & prognosis

Beyond classification of gene expression profiles

 After identifying the candidate genes by feature selection, do we know which ones are causal genes, which ones are surrogates, and which are noise?

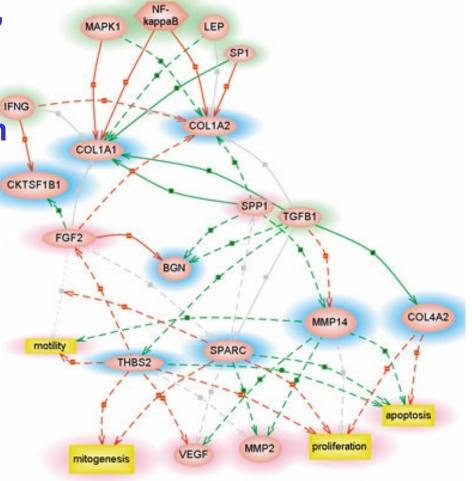


Gene regulatory circuits

 Genes are "connected" in "circuit" or network

 Expression of a gene in a network depends on expression of some other genes in the network

 Can we "reconstruct" the gene network from gene expression and other data?



Source: Miltenyi Biotec

Key questions

For each gene in the network:

- Which genes affect it?
- How they affect it?
 - Positively?
 - Negatively?
 - More complicated ways?

Some techniques

- Bayesian Networks
 - Friedman et al., JCB 7:601--620, 2000
- Boolean Networks
 - Akutsu et al., PSB 2000, pages 293--304
- Differential equations
 - Chen et al., *PSB* 1999, pages 29--40
- Classification-based method
 - Soinov et al., "Towards reconstruction of gene network from expression data by supervised learning", *Genome Biology* 4:R6.1--9, 2003

A classification-based technique

National University of Singapore

Soinov et al., Genome Biology 4:R6.1-9, 2003

- Given a gene expression matrix X
 - each row is a gene
 - each column is a sample
 - each element x_{ii} is expression of gene i in sample j
- Find the average value a_i of each gene i
- Denote s_{ij} as state of gene i in sample j,

$$-s_{ij} = up if x_{ij} > a_i$$

$$- s_{ij} = down if x_{ij} \le a_i$$

A classification-based technique

Soinov et al., Genome Biology 4:R6.1-9, Jan 2003

- To see whether the state of gene g is determined by the state of other genes
 - See whether ⟨s_{ij} | i ≠ g⟩
 can predict s_{gj}
 - If can predict with high accuracy, then "yes"
 - Any classifier can be used, such as C4.5, PCL, SVM, etc.

- To see how the state of gene g is determined by the state of other genes
 - Apply C4.5 (or PCL or other "rule-based" classifiers) to predict s_{gj} from ⟨s_{ij} | i ≠ g⟩
 - Extract the decision tree or rules used

Advantages of this method

- Can identify genes affecting a target gene
- Don't need discretization thresholds?
- Each data sample is treated as an example
- Explicit rules can be extracted from the classifier (assuming C4.5 or PCL)
- Generalizable to time series

 Discuss the point "Don't need discretization thresholds". Is it true?

Copyrigi 20 wong Limsoon

Exercise #8

Concluding remarks

Bcr-Abl

Targeted drug dev

- Know what molecular effect you want to achieve
 - E.g., inhibit a mutated form of a protein
- Engineer a
 compound that
 directly binds and
 causes the desired
 effect

Gleevec (imatinib)

- 1st success for real drug
- Targets Bcr-Abl fusion protein (ie, Philadelphia chromosome, Ph)
- NCI summary of clinical trial of imatinib for ALL at

http://www.cancer.gov/clinicals/results/ALLimatinib1109/print

What have we learned?

Technologies

- Microarray
- PCL, ERCOF

Microarray applications

- Disease diagnosis by supervised learning
- Subtype discovery by unsupervised learning
- Disease diagnosis via guilt-by-association
- Gene network reconstruction

Important tactic

Extreme sample selection

Useful packages

- EXPANDER (EXPression Analyser & DisplayER)
 - http://acgt.cs.tau.ac.il/expander
- BRB-Array Tools
 - http://linus.nci.nih.gov/BRB-ArrayTools.html
- NetProt
 - http://rpubs.com/gohwils/204259
 - https://github.com/gohwils/NetProt/releases/

Any question?

References

- E.-J. Yeoh et al., "Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling", *Cancer Cell*, 1:133--143, 2002
- H. Liu, J. Li, L. Wong. Use of Extreme Patient Samples for Outcome Prediction from Gene Expression Data. *Bioinformatics*, 21(16):3377--3384, 2005.
- L.D. Miller et al., "Optimal gene expression analysis by microarrays", *Cancer Cell* 2:353--361, 2002
- J. Li, L. Wong, "Techniques for Analysis of Gene Expression", The Practical Bioinformatician, Chapter 14, pages 319—346, WSPC, 2004
- B. Bolstad et al. "A comparison of normalization methods for high density oligonucleotide array data based on variance and bias". *Bioinformatics*, 19:185–193. 2003