For written notes on this lecture, please read chapter 3 of *The Practical Bioinformatician*. Alternatively, please read “Rule-Based Data Mining Methods for Classification Problems in Biomedical Domains”, a tutorial at *PKDD04* by Jinyan Li and Limsoon Wong, September 2004. http://www.comp.nus.edu.sg/~wongls/talks/pkdd04/

CS2220: Introduction to Computational Biology
Unit 1b: Essence of Knowledge Discovery

Wong Limsoon
Outline

• Overview of supervised learning
 – Decision trees

• Decision tree ensembles
 – Bagging

• Other methods
 – K-nearest neighbour
 – Support vector machines
 – Naïve Bayes
 – Hidden Markov models
Overview of supervised learning
Supervised learning

• Also called **classification**

• Learn from past experience, and use the learned knowledge to classify new data

• Knowledge learned by **intelligent algorithms**

• **Examples:**
 – Clinical diagnosis for patients
 – Cell type classification
Data

- Classification application involves > 1 class of data. E.g.,
 - Normal vs disease cells for a diagnosis problem

- Training data is a set of instances (samples, points, etc.) with known class labels

- Test data is a set of instances whose class labels are to be predicted
Notations

• Training data
 \{ \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \ldots, \langle x_m, y_m \rangle \}
 where \(x_j \) are \(n \)-dimensional vectors
 and \(y_j \) are from a discrete space \(Y \).
 E.g., \(Y = \{ \text{normal, disease} \} \)

• Test data
 \{ \langle u_1, ? \rangle, \langle u_2, ? \rangle, \ldots, \langle u_k, ? \rangle \}
Training data: X $\xrightarrow{f(X)}$ Class labels Y

A classifier, a mapping, a hypothesis

Test data: U $\xrightarrow{f(U)}$ Predicted class labels
Relational representation

m samples

n features (order of 1000)

<table>
<thead>
<tr>
<th>gene_1</th>
<th>gene_2</th>
<th>gene_3</th>
<th>gene_4</th>
<th>...</th>
<th>gene_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td>x_{12}</td>
<td>x_{13}</td>
<td>x_{14}</td>
<td>...</td>
<td>x_{1n}</td>
</tr>
<tr>
<td>x_{21}</td>
<td>x_{22}</td>
<td>x_{23}</td>
<td>x_{24}</td>
<td>...</td>
<td>x_{2n}</td>
</tr>
<tr>
<td>x_{31}</td>
<td>x_{32}</td>
<td>x_{33}</td>
<td>x_{34}</td>
<td>...</td>
<td>x_{3n}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
</tr>
<tr>
<td>x_{m1}</td>
<td>x_{m2}</td>
<td>x_{m3}</td>
<td>x_{m4}</td>
<td>...</td>
<td>x_{mn}</td>
</tr>
</tbody>
</table>

class

P

N
Features (aka attributes)

• **Categorical features**
 – color = \{red, blue, green\}

• **Continuous or numerical features**
 – gene expression
 – age
 – blood pressure

• **Discretization**
Example

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>75</td>
<td>70</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Sunny</td>
<td>80</td>
<td>90</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>85</td>
<td>85</td>
<td>false</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>72</td>
<td>95</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>69</td>
<td>70</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>72</td>
<td>90</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>83</td>
<td>78</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>64</td>
<td>65</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>81</td>
<td>75</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>71</td>
<td>80</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Rain</td>
<td>65</td>
<td>70</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Rain</td>
<td>75</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>68</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>70</td>
<td>96</td>
<td>false</td>
<td>Play</td>
</tr>
</tbody>
</table>
Recap: Evaluation of a classifier

- **Performance on independent blind test data**
 - Blind test data properly represent real world

- **K-fold cross validation**
 - Given a dataset, divide it into k even parts, k-1 of them are used for training, and the rest one part treated as test data

- **LOOCV, a special case of K-fold cross validation**

- **Accuracy, error rate, false positive rate, false negative rate, sensitivity, specificity, precision**
Requirements of biomedical classification

- High accuracy, sensitivity, specificity, precision
- High comprehensibility
Importance of rule-based methods

• Systematic selection of a small number of features used for the decision making
 ⇒ Increase comprehensibility of the knowledge patterns

• C4.5 and CART are two commonly used rule induction algorithms—a.k.a. decision tree induction algorithms
Structure of decision trees

- If $x_1 > a_1$ & $x_2 > a_2$, then it’s A class
- C4.5, CART, two of the most widely used
- Easy interpretation, but accuracy maybe unattractive
Elegance of decision trees

Every path from root to a leaf forms a decision rule
Brief history of decision trees

CLS (Hunt et al. 1966) --- cost driven

CART (Breiman et al. 1984) --- Gini Index

ID3 (Quinlan, 1986) --- Information-driven

C4.5 (Quinlan, 1993) --- Gain ratio + Pruning ideas
A simple dataset

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>75</td>
<td>70</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Sunny</td>
<td>80</td>
<td>90</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>85</td>
<td>85</td>
<td>false</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>72</td>
<td>95</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>69</td>
<td>70</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>72</td>
<td>90</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>83</td>
<td>78</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>64</td>
<td>65</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>81</td>
<td>75</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>71</td>
<td>80</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Rain</td>
<td>65</td>
<td>70</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Rain</td>
<td>75</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>68</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>70</td>
<td>96</td>
<td>false</td>
<td>Play</td>
</tr>
</tbody>
</table>

9 Play samples
5 Don’t
A total of 14.
A decision tree

• Construction of a tree is equiv to determination of root node of the tree and root nodes of its sub-trees

Exercise: What is the accuracy of this tree?
Food for thought

• What is the accuracy of this decision tree?
An example

Source: Anthony Tung
Most discriminatory feature

• Every feature can be used to partition the training data

• If the partitions contain a pure class of training instances, then this feature is most discriminatory
Example of partitions

• **Categorical feature**
 – Number of partitions of the training data is equal to the number of values of this feature

• **Numerical feature**
 – Two partitions
<table>
<thead>
<tr>
<th>Instance #</th>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>75</td>
<td>70</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>80</td>
<td>90</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>3</td>
<td>Sunny</td>
<td>85</td>
<td>85</td>
<td>false</td>
<td>Don’t</td>
</tr>
<tr>
<td>4</td>
<td>Sunny</td>
<td>72</td>
<td>95</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>5</td>
<td>Sunny</td>
<td>69</td>
<td>70</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>6</td>
<td>Overcast</td>
<td>72</td>
<td>90</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>7</td>
<td>Overcast</td>
<td>83</td>
<td>78</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>8</td>
<td>Overcast</td>
<td>64</td>
<td>65</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>9</td>
<td>Overcast</td>
<td>81</td>
<td>75</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>10</td>
<td>Rain</td>
<td>71</td>
<td>80</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>11</td>
<td>Rain</td>
<td>65</td>
<td>70</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>12</td>
<td>Rain</td>
<td>75</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>13</td>
<td>Rain</td>
<td>68</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>14</td>
<td>Rain</td>
<td>70</td>
<td>96</td>
<td>false</td>
<td>Play</td>
</tr>
</tbody>
</table>
A categorical feature is partitioned based on its number of possible values.
A numerical feature is generally partitioned by choosing a “cutting point”

Total 14 training instances

Temperature

\begin{itemize}
\item \text{Temperature} \leq 70
\item \text{Temperature} > 70
\end{itemize}

\begin{itemize}
\item 5, 8, 11, 13, 14
\item P, P, D, P, P
\end{itemize}

\begin{itemize}
\item 1, 2, 3, 4, 6, 7, 9, 10, 12
\item P, D, D, D, P, P, P, D, P
\end{itemize}
Decision tree construction

• Select the “best” feature as root node of the whole tree

• Partition dataset into subsets using this feature so that the subsets are as “pure” as possible

• After partition by this feature, select the best feature (wrt the subset of training data) as root node of this sub-tree

• Recursively, until the partitions become pure or almost pure
Let’s construct a decision tree

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>75</td>
<td>70</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Sunny</td>
<td>80</td>
<td>90</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>85</td>
<td>85</td>
<td>false</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>72</td>
<td>95</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>69</td>
<td>70</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>72</td>
<td>90</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>83</td>
<td>78</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>64</td>
<td>65</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>81</td>
<td>75</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>71</td>
<td>80</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Rain</td>
<td>65</td>
<td>70</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Rain</td>
<td>75</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>68</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>70</td>
<td>96</td>
<td>false</td>
<td>Play</td>
</tr>
</tbody>
</table>

Ask the class to pick root node and construct the tree recursively with them… How good is that tree?

Exercise #2
Three measures to evaluate which feature is best

- Gini index
- Information gain
- Information gain ratio

Look the last two up yourself
Gini index

\[
gini(S) = \frac{\text{diff of two arbitrary specimen in } S}{\text{mean specimen in } S}
\]

\[
= \text{prob(getting two specimen of diff class in } S) \\
= 1 - \text{prob(getting two specimen of same class in } S) \\
= 1 - \sum_i \text{prob(getting specimen of class } i \text{ in } S)^2
\]

• Gini index is the expected value of the ratio of the diff of two arbitrary specimens to the mean value of all specimens

• Closer to 1, feature is similar to “background distribution”. Closer to 0, feature is “unexpected”
Gini index

Let \(\mathcal{U} = \{C_1, ..., C_k\} \) be all the classes. Suppose we are currently at a node and \(D \) is the set of those samples that have been moved to this node. Let \(f \) be a feature and \(d[f] \) be the value of the feature \(f \) in a sample \(d \). Let \(S \) be a range of values that the feature \(f \) can take. Then the Gini index for \(f \) in \(D \) for the range \(S \) is defined as

\[
\text{gini}_f^D(S) = 1 - \sum_{C_i \in \mathcal{U}} \left(\frac{|\{d \in D \mid d \in C_i, \ d[f] \in S\}|}{|D|} \right)^2
\]

The purity of a split of the value range \(S \) of an attribute \(f \) by some split-point into subranges \(S_1 \) and \(S_2 \) is then defined as

\[
\text{gini}_f^D(S_1, S_2) = \sum_{S \in \{S_1, S_2\}} \frac{|\{d \in D \mid d[f] \in S\}|}{|D|} \times \text{gini}_f^D(S)
\]

we choose the feature \(f \) and the split-point \(p \) that minimizes \(\text{gini}_f^D(S_1, S_2) \) over all possible alternative features and split-points.
Gini index of “Outlook”

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>75</td>
<td>70</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Sunny</td>
<td>80</td>
<td>90</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>85</td>
<td>85</td>
<td>false</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>72</td>
<td>95</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Sunny</td>
<td>69</td>
<td>70</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>72</td>
<td>90</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>83</td>
<td>78</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>64</td>
<td>65</td>
<td>true</td>
<td>Play</td>
</tr>
<tr>
<td>Overcast</td>
<td>81</td>
<td>75</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>71</td>
<td>80</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Rain</td>
<td>65</td>
<td>70</td>
<td>true</td>
<td>Don’t</td>
</tr>
<tr>
<td>Rain</td>
<td>75</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>68</td>
<td>80</td>
<td>false</td>
<td>Play</td>
</tr>
<tr>
<td>Rain</td>
<td>70</td>
<td>96</td>
<td>false</td>
<td>Play</td>
</tr>
</tbody>
</table>

- $gini(\text{Sunny}) = 1 - (2/5)^2 - (3/5)^2 = 0.48$
- $gini(\text{Overcast}) = 1 - (4/4)^2 - (0/5)^2 = 0$
- $gini(\text{Rain}) = 1 - (3/5)^2 - (2/5)^2 = 0.48$
- $gini(\text{Outlook}) = 5/14 \times 0.48 + 4/14 \times 0 + 5/14 \times 0.48 = 0.34$
Characteristics of C4.5/CART trees:

- Single coverage of training data (elegance)
- Divide-and-conquer splitting strategy
- Fragmentation problem ⇒ Locally reliable but globally insignificant rules
 - Miss many globally significant rules; mislead system
Example Use of Decision Tree Methods:

Proteomics Approaches to Biomarker Discovery

- In prostate and bladder cancers (Adam et al. *Proteomics*, 2001)
- In serum samples to detect breast cancer (Zhang et al. *Clinical Chemistry*, 2002)
- In serum samples to detect ovarian cancer (Petricoin et al. *Lancet*; Li & Rao, *PAKDD* 2004)
Decision tree ensembles
Motivating example

- h_1, h_2, h_3 are independent classifiers with accuracy = 60%
- C_1, C_2 are the only classes
- t is a test instance in C_1
- $h(t) = \arg\max_{c \in \{C_1, C_2\}} |\{h_j \in \{h_1, h_2, h_3\} \mid h_j(t) = C\}|$
- Then $\text{prob}(h(t) = C_1)\]

 \[
 = \text{prob}(h_1(t)=C_1 \& h_2(t)=C_1 \& h_3(t)=C_1) + \\
 \text{prob}(h_1(t)=C_1 \& h_2(t)=C_1 \& h_3(t)=C_2) + \\
 \text{prob}(h_1(t)=C_1 \& h_2(t)=C_2 \& h_3(t)=C_1) + \\
 \text{prob}(h_1(t)=C_2 \& h_2(t)=C_1 \& h_3(t)=C_1) \\
 = 60\% \times 60\% \times 60\% + 60\% \times 60\% \times 40\% + \\
 60\% \times 40\% \times 60\% + 40\% \times 60\% \times 60\% = 64.8\%
 \]
Bagging

- Proposed by Breiman (1996)

- Also called *Bootstrap aggregating*

- Make use of randomness injected to training data
Main ideas

Original training set

50 p + 50 n

48 p + 52 n
49 p + 51 n
53 p + 47 n

A base inducer such as C4.5

A committee H of classifiers:

h_1, h_2, ..., h_k

Draw 100 samples with replacement
Decision making by bagging

Given a new test sample T

\[
\text{bagged}(T) = \arg\max_{C_j \in \mathcal{U}} \left| \{ h_i \in \mathcal{H} \mid h_i(T) = C_j \} \right|
\]

where $\mathcal{U} = \{ C_1, \ldots, C_r \}$

- What does this formula mean?

Exercise #3
Summary of ensemble classifiers

- Bagging
- Random Forest
- AdaBoost.M1
- Randomization Trees
- CS4

Rules may not be correct when applied to training data

Rules correct

Exercise: Describe the decision tree ensemble classifiers not explained in this ppt
Other machine learning approaches
Outline

• K-nearest neighbor (kNN)
• Support vector machines (SVM)
• Naïve Bayes
• Hidden Markov models (HMM)

Can you present one of these machine learning approaches?

Exercise #4
K-nearest neighbours
How kNN works

• Given a new case

• Find k “nearest” neighbours, i.e., k most similar points in the training data set

• Assign new case to the same class to which most of these neighbours belong

• A common “distance” measure between samples x and y is

$$
\sqrt{\sum_f (x[f] - y[f])^2}
$$

where f ranges over features of the samples

Exercise: What does the formula above mean?
Illustration of kNN (k=8)

Neighborhood

5 of class
3 of class

Image credit: Zaki
Some issues

- Simple to implement
- Must compare new case against all training cases
 ⇒ May be slow during prediction

- No need to train
- But need to design distance measure properly
 ⇒ May need expert for this

- Can’t explain prediction outcome
 ⇒ Can’t provide a model of the data
Example Use of kNN

Ovarian cancer diagnosis based on SELDI proteomic data

- Use kNN to diagnose ovarian cancers using proteomic spectra

- Data set is from Petricoin et al., *Lancet* 359:572-577, 2002

Fig. 1. Minimum, median and maximum of percentages of correct prediction as a function of the number of top-ranked m/z ratios in 50 independent partitions into learning and validation sets.
Support vector machines
(a) Linear separation not possible w/o errors
(b) Better separation by nonlinear surfaces in input space
(c) Nonlinear surface corr to linear surface in feature space.

Map from input to feature space by “kernel” function Φ

\Rightarrow “Linear learning machine” + kernel function as classifier
Linear learning machines

• Hyperplane separating the x’s and o’s points is given by $(W \cdot X) + b = 0$, with $(W \cdot X) = \sum_j W[j] \cdot X[j]$

\Rightarrow Decision function is $llm(X) = \text{sign}((W \cdot X) + b)$
Linear learning machines

- Solution is a linear combination of training points X_k with labels Y_k

$$W = \sum_k \alpha_k Y_k X_k,$$

with $\alpha_k > 0$, and $Y_k = \pm 1$

$$\Rightarrow \text{llm}(X) = \text{sign}(\sum_k \alpha_k Y_k (X_k \cdot X) + b)$$

“data” appears only in dot product!
Kernel function

- \(l1m(X) = \text{sign}(\sum_k \alpha_k y_k (X_k \cdot X) + b) \)

- \(\text{svm}(X) = \text{sign}(\sum_k \alpha_k y_k (\Phi X_k \cdot \Phi X) + b) \)

\[\Rightarrow \text{svm}(X) = \text{sign}(\sum_k \alpha_k y_k K(X_k, X) + b) \]

where \(K(X_k, X) = (\Phi X_k \cdot \Phi X) \)
Kernel function

- $\text{svm}(X) = \text{sign}(\sum_k \alpha_k Y_k * K(X_k, X) + b)$

$\Rightarrow K(A, B)$ can be computed w/o computing Φ

- In fact replace it w/ lots of more “powerful” kernels besides $(A \cdot B)$. E.g.,
 - $K(A, B) = (A \cdot B)^d$
 - $K(A, B) = \exp(- || A B||^2 / (2*\sigma))$, ...
How SVM works

• $\text{svm}(X) = \text{sign}(\sum_k \alpha_k Y_k \ast K(X_k, X) + b)$

• To find α_k is a quadratic programming problem

 $\max: \sum_k \alpha_k - 0.5 \ast \sum_k \sum_h \alpha_k \ast \alpha_h Y_k \ast Y_h \ast K(X_k, X_h)$

 subject to: $\sum_k \alpha_k \ast Y_k = 0$

 and for all α_k, $C \geq \alpha_k \geq 0$

• To find b, estimate by averaging

 $Y_h - \sum_k \alpha_k Y_k \ast K(X_h, X_k)$

 for all $\alpha_h \geq 0$
Example Use of SVM: Recognition of protein translation initiation sites

- Use SVM to recognize protein translation initiation sites from genomic sequences
- Raw data set is same as Liu & Wong, *JBCB* 1:139-168, 2003
Naïve Bayes
Bayes theorem

\[P(h|d) = \frac{P(d|h) \times P(h)}{P(d)} \]

- \(P(h) \) = prior prob that hypothesis \(h \) holds
- \(P(d|h) \) = prob of observing data \(d \) given \(h \) holds
- \(P(h|d) \) = posterior prob that \(h \) holds given observed data \(d \)
Bayesian approach

- Let H be all possible classes. Given a test instance w/ feature vector $\{f_1 = v_1, \ldots, f_n = v_n\}$, the most probable classification is given by

$$\arg\max_{h_j \in H} P(h_j | f_1 = v_1, \ldots, f_n = v_n)$$

- Using Bayes Theorem, rewrites to

$$\arg\max_{h_j \in H} \frac{P(f_1 = v_1, \ldots, f_n = v_n | h_j) \times P(h_j)}{P(f_1 = v_1, \ldots, f_n = v_n)}$$

- Since denominator is independent of h_j, this simplifies to

$$\arg\max_{h_j \in H} P(f_1 = v_1, \ldots, f_n = v_n | h_j) \times P(h_j)$$
Naïve Bayes

• But estimating $P(f_1=v_1, \ldots, f_n=v_n|h_j)$ accurately may not be feasible unless training data set is large

• “Solved” by assuming f_1, \ldots, f_n are conditionally independent of each other

• Then

$$\arg\max_{h_j \in H} P(f_1 = v_1, \ldots, f_n = v_n|h_j) \times P(h_j)$$

$$= \arg\max_{h_j \in H} \prod_i P(f_i = v_i|h_j) \times P(h_j)$$

where $P(h_j)$ and $P(f_i=v_i|h_j)$ can often be estimated reliably from typical training data set

Exercise: How do you estimate $P(h_j)$ and $P(f_i=v_i|h_j)$?
Independence vs Conditional independence

- **Independence**: $P(A,B) = P(A) \times P(B)$
- **Conditional Independence**: $P(A,B|C) = P(A|C) \times P(B|C)$
- **Indep does not imply conditional indep**
 - Consider tossing a fair coin twice
 - A is event of getting head in 1st toss
 - B is event of getting head in 2nd toss
 - C is event of getting exactly one head
 - Then $A=\{HT, HH\}$, $B=\{HH, TH\}$ and $C=\{HT, TH\}$
 - $P(A,B|C) = P(\{HH\}|C) = 0$
 - $P(A|C) = P(A,C)/P(C) = P(\{HT\})/P(C) = (1/4)/(1/2) = 1/2$
 - Similarly, $P(B|C) = 1/2$

Source: Choi Kwok Pui
Example Use of Bayesian: Design of screens for macromolecular crystallization

- Xtallization of proteins requires search of expt settings to find right conditions for diffraction-quality xtals

- BMCD is a db of known xtallization conditions

- Use Bayes to determine prob of success of a set of expt conditions based on BMCD

Figure 1
Crystallization parameter dependency graph. The graph represents the parameters included in the calculation of the estimated probability of success and their dependencies. A connecting arc from pH to buffer indicates that the probability distribution for the buffer may depend on the value of the pH. The lack of a connecting arc between two parameters reflects conditional independence (the probability distribution for a parameter is independent of the value of the other parameter).
Hidden Markov models
What is a HMM

- HMM is a stochastic generative model for seqs
- Defined by model parameters:
 - finite set of states S
 - finite alphabet A
 - transition prob matrix T
 - emission prob matrix E
- Move from state to state as per T while emitting symbols as per E
Order of a HMM

• In nth order HMM, T & E depend on all n previous states

• E.g., for 1st order HMM, given emissions $X = x_1, x_2, \ldots$, & states $S = s_1, s_2, \ldots$, the prob of this seq is

$$\text{Prob}(X, S) = \prod_i \text{Prob}(x_i|s_i) = \prod_i E(x_i|s_i) \times T(s_{i-1}, s_i)$$
Using HMM

• Given the model parameters, compute the probability of a particular output sequence. Solved by the forward algorithm

• Given the model parameters, find the most likely sequence of (hidden) states which could have generated a given output sequence. Solved by the Viterbi algorithm

• Given an output sequence, find the most likely set of state transition and output probabilities. Solved by the Baum-Welch algorithm

Exercise: Describe these algorithms
Example: Dishonest casino

- Casino has two dices:
 - Fair dice
 - \(P(i) = \frac{1}{6}, i = 1..6 \)
 - Loaded dice
 - \(P(i) = \frac{1}{10}, i = 1..5 \)
 - \(P(i) = \frac{1}{2}, i = 6 \)

- Casino switches between fair & loaded die with prob 1/2. Initially, dice is always fair

- Game:
 - You bet $1
 - You roll
 - Casino rolls
 - Highest number wins $2

- Question: Suppose we played 2 games, and the sequence of rolls was 1, 6, 2, 6. Were we likely to have been cheated?
"Visualization" of dishonest casino

![Diagram showing transition between fair and loaded states]

Emission Matrix

- $E(1|\text{Fair}) = \frac{1}{6}$
- $E(2|\text{Fair}) = \frac{1}{6}$
- $E(3|\text{Fair}) = \frac{1}{6}$
- $E(4|\text{Fair}) = \frac{1}{6}$
- $E(5|\text{Fair}) = \frac{1}{6}$
- $E(6|\text{Fair}) = \frac{1}{6}$
- $E(1|\text{Loaded}) = \frac{1}{10}$
- $E(2|\text{Loaded}) = \frac{1}{10}$
- $E(3|\text{Loaded}) = \frac{1}{10}$
- $E(4|\text{Loaded}) = \frac{1}{10}$
- $E(5|\text{Loaded}) = \frac{1}{10}$
- $E(6|\text{Loaded}) = \frac{1}{2}$

Transition Matrix

- $T(\text{Loaded},\text{Loaded}) = \frac{1}{2}$
- $T(\text{Loaded},\text{Fair}) = \frac{1}{2}$
- $T(\text{Fair},\text{Fair}) = \frac{1}{2}$
- $T(\text{Fair},\text{Loaded}) = \frac{1}{2}$
- $T(?,\text{Fair}) = 1.0$
- $T(?,\text{Loaded}) = 0.0$
1, 6, 2, 6?
We were probably cheated...

\[
\begin{align*}
\text{Prob}(X, S = \text{Fair, Fair, Fair, Fair}) &= E(1|\text{Fair}) \times T(?, \text{Fair}) \times \\
& \quad E(6|\text{Fair}) \times T(\text{Fair, Fair}) \times \\
& \quad E(2|\text{Fair}) \times T(\text{Fair, Fair}) \times \\
& \quad E(6|\text{Fair}) \times T(\text{Fair, Fair}) \\
& = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{2} \times \frac{1}{6} \times \frac{1}{2} \times \frac{1}{6} \times \frac{1}{2} \times \frac{1}{6} \times \frac{1}{2} \\
& = 9.6451 \times 10^{-5}
\end{align*}
\]

\[
\begin{align*}
\text{Prob}(X, S = \text{Fair, Loaded, Fair, Loaded}) &= E(1|\text{Fair}) \times T(?, \text{Fair}) \times \\
& \quad E(6|\text{Loaded}) \times T(\text{Fair, Loaded}) \times \\
& \quad E(2|\text{Fair}) \times T(\text{Loaded, Fair}) \times \\
& \quad E(6|\text{Loaded}) \times T(\text{Fair, Loaded}) \\
& = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{6} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \\
& = 8.6806 \times 10^{-4}
\end{align*}
\]
Example Use of HMM: Protein families modelling

- Baldi et al., *PNAS* 91:1059-1063, 1994
- HMM is used to model families of biological sequences, such as kinases, globins, & immunoglobulins
- Bateman et al., *NAR* 32:D138-D141, 2004
- HMM is used to model 6190 families of protein domains in Pfam

Fig. 1. HMM architecture. S and E are the start and end states. Sequence of main states m_i is the backbone. Side states d_i (resp. i_i) correspond to deletions (resp. insertions).
Concluding remarks…
What have we learned?

• Decision trees

• Decision trees ensembles
 – Bagging

• Other methods
 – K-nearest neighbour
 – Support vector machines
 – Naïve Bayes
 – Hidden Markov models
Any question?

• Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization.

Exercise: Download a copy of WEKA. What are the names of classifiers in WEKA that correspond to C4.5 and SVM?
Acknowledgements

• Most of the slides used in this ppt came from a tutorial that WLS gave with Jinyan Li at the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, Pisa, Italy, 20-24 September 2004

• The dishonest casino example came from slides inherited from Ken Sung

• The “indep vs conditional indep” example came from Choi Kwok Pui
References

• L. Breiman, Bagging predictors, Machine Learning, 24:123-140, 1996
• L. Breiman, Random forests, Machine Learning, 45:5-32, 2001
• J. R. Quinlan, Induction of decision trees, Machine Learning, 1:81-106, 1986
• Jinyan Li et al., Data Mining Techniques for the Practical Bioinformatician, The Practical Bioinformatician, Chapter 3, pages 35-70, WSPC, 2004
References