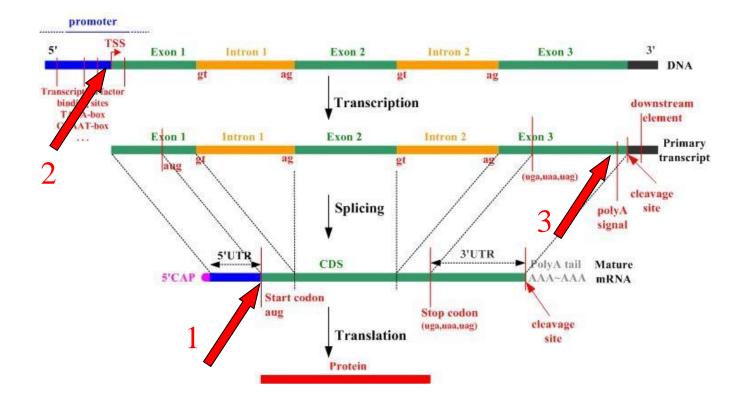
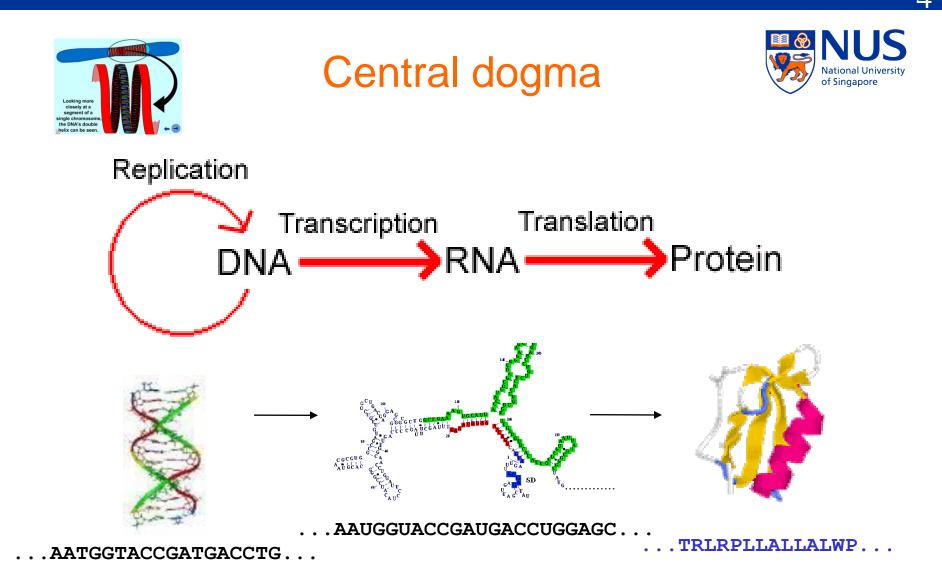
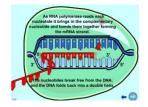
For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*, and Koh & Wong, "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences", *Proc GIW 2007*, pages 73--82


CS2220: Introduction to Computational Biology Unit 2: Gene Feature Recognition

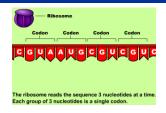
Wong Limsoon



Some relevant biology



Players in protein synthesis



Transcription

- Synthesize mRNA from one strand of DNA
 - An enzyme RNA polymerase temporarily separates doublestranded DNA
 - It begins transcription at transcription start site
 - $A \rightarrow A, C \rightarrow C, G \rightarrow G, \& T \rightarrow U$
 - Once RNA polymerase reaches transcription stop site, transcription stops

- Additional "steps" for Eukaryotes
 - Transcription produces pre-mRNA that contains both introns & exons
 - 5' cap & poly-A tail are added to pre-mRNA
 - RNA splicing removes introns & mRNA is made
 - mRNA are transported out of nucleus

Translation

- Synthesize protein from mRNA
- Each amino acid is encoded by consecutive seq of 3 nucleotides, called a codon
- The decoding table from codon to amino acid is called genetic code

- 4³=64 diff codons
- ⇒ Codons are not 1-to-1 corr to 20 amino acids
- All organisms use the same decoding table (except some mitochrondrial genes)
- Amino acids can be classified into 4 groups. A single-base change in a codon is usu insufficient to cause a codon to code for an amino acid in diff group

Genetic code

- Start codon
 - ATG (code for M)
- Stop codon
 - TAA
 - TAG
 - TGA

			Second Pos	sition of Codon			
		Т	С	А	G		
F	Т	TTT Phe [F] TTC Phe [F] TTA Leu [L] TTG Leu [L]	TCT Ser [S] TCC Ser [S] TCA Ser [S] TCG Ser [S]	TAT Tyr [Y] TAC Tyr [Y] TAA <i>Ter</i> [end] TAG <i>Ter</i> [end]	TGT Cys [C] TGC Cys [C] TGA <i>Ter</i> [end] TGG Trp [W]	T C A G	
i r s t P	с	CTT Leu [L] CTC Leu [L] CTA Leu [L] CTG Leu [L]	CCT Pro [P] CCC Pro [P] CCA Pro [P] CCG Pro [P]	CAT His [H] CAC His [H] CAA Gln [Q] CAG Gln [Q]	CGT Arg [R] CGC Arg [R] CGA Arg [R] CGG Arg [R]	T C A G	
P o s i t i	A	ATT Ile [I] ATC Ile [I] ATA Ile [I] ATG Met [M]	ACT Thr [T] ACC Thr [T] ACA Thr [T] ACG Thr [T]	AAT Asn [N] AAC Asn [N] AAA Lys [K] AAG Lys [K]	AGT Ser [S] AGC Ser [S] AGA Arg [R] AGG Arg [R]	T C A G	2
o n	G	GTT Val [V] GTC Val [V] GTA Val [V] GTG Val [V]	GCT Ala [A] GCC Ala [A] GCA Ala [A] GCG Ala [A]	GAT Asp [D] GAC Asp [D] GAA Glu [E] GAG Glu [E]	GGT Gly [G] GGC Gly [G] GGA Gly [G] GGG Gly [G]	T C A G	

Example

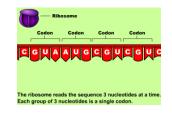
9

Example of computational translation - notice the indication of (alternative) start-codons:

```
VIRTUAL RIBOSOME
Translation table: Standard SGC0
>Sea1
Reading frame: 1
  M V L S A A D K G N V K A A W G K V G G H A A E Y G A E A L
5' ATGGTGCTGTCTGCCGCCGACAAGGGCAATGTCAAGGCCGCCTGGGGGCAAGGTTGGCGGCCACGCTGCAGAGTATGGCGCAGAGGCCCTG 90
 >>>...)))...........)))
                     K T Y F P H F D L S H G S A Q V K G H G
  ERM
       FLSFPTT
5' GAGAGGATGTTCCTGAGCTTCCCCACCACCACGAGACCTACTTCCCCCCACTTCGACCTGAGCCACGGCTCCGCGCAGGTCAAGGGCCACGGC 180
  A K V A A A L T K A V E H L D D L P
                                        T.
                                    G
                                      А
                                           S
                                            ELSDL
                                                      нан
5' GCGAAGGTGGCCGCCGCGCGCGACCAAAGCGGTGGAACACCTGGACGACCTGCCCGGTGCCCTGTCTGAACTGAGTGACCTGCACGCTCAC 270
  KLRV
          D P
               N F K L L S H S L L V T L A S H L
                                                P S
             v
5' AAGCTGCGTGTGGACCCGGTCAACTTCAAGCTTCTGAGCCACTCCCTGCTGGTGACCCTGGCCTCCCACCTCCCCAGTGATTTCACCCCC 360
  ...))).....))).....)))
  AVHASLDKF
                   L
                     A N
                         v
                           s
                             т
                               v
                                - T.
                                     - 5
5' GCGGTCCACGCCTCCCTGGACAAGTTCTTGGCCAACGTGAGCACCGTGCTGACCTCCAAATACCGTTAA 429
  Annotation key:
>>> : START codon (strict)
))) : START codon (alternative)
*** : STOP
```

Translation initiation sites

An introduction to the World's simplest TIS recognition system



1

Translation initiation site

CS2220, AY2021/22

Copyright 2021 © Wong Limsoon

2

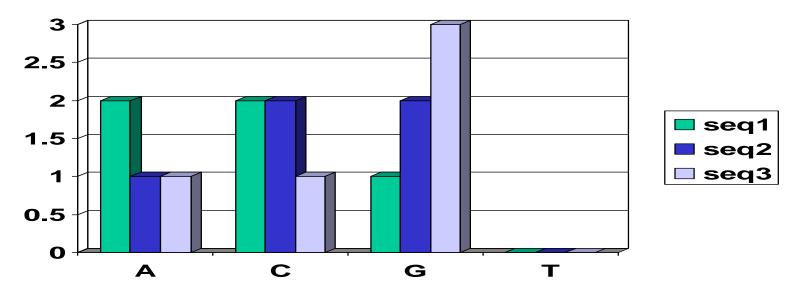
A sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC <u>ATG</u> GCTGAACACTGACTCCCAGCTGTG	80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC <u>ATG</u> GCTTTTGGCTGTCAGGGCAGCTGTA	160
GGAGGCAG <u>ATG</u> AGAAGAGGGAG <u>ATG</u> GCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
ieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

• What makes the second ATG the TIS?

- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ 2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

Training & testing data



- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts

Signal generation

- K-grams (ie., k consecutive letters)
 - K = 1, 2, 3, 4, 5, ...
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame

299 HSU27655.1 CAT U27655 Homo sapiens80CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG80CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA160GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGGAAGGGGGCCTGGTGCCGAGGA240CCTCTCCTGGCCAGGAGCTTCCCACGAGGACAAGACCTTCCACCCAACAAGGACTCCCCT240

- Window = ±100 bases
- In-frame, downstream
 - GCT = 1, TTT = 1, ATG = 1...
- Any-frame, downstream
 - GCT = 3, TTT = 2, ATG = 2...
- In-frame, upstream

- GCT = 2, TTT = 0, ATG = 0, ...

Exercise: Find the in-frame downstream ATG

Feature generation - Summary

Raw Data

An ATG segment – positive sample

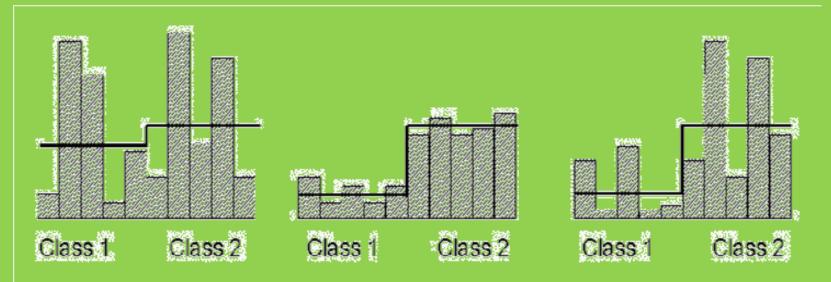
> 206 +1_Index(56)

A feature vector --- upstream/downstream inframe 3 grams

Too many features

- For each value of k, there are 4^k * 3 * 2 k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 + 1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms

Signal selection: Basic idea


Exercise #2

Copyrigh

21 Wong Limsoon

19

- Choose a signal w/ low intra-class distance
- Choose a signal w/ high inter-class distance

 Which of these three features are best for distinguishing Class 1 from Class 2? Why?

The t-stats of a signal is defined as $t = \frac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$

where σ_i^2 is the variance of that signal in class i, μ_i is the mean of that signal in class i, and n_i is the size of class i.

Signal selection: $\chi 2$

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^{2}}{E_{ij}},$$

where m is the number of intervals, kthe number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} $(E_{ij} = R_i * C_j/N)$.

Example

22

 Suppose you have a sample of 50 men and 50 women and the following weight distribution is observed:

	obs	exp	(obs – exp)²/exp	$\left \right\rangle$	
нм	40	60*50/100=30	3.3		
нพ	20	60*50/100=30	3.3		$\left \right\rangle$
LM	10	40*50/100=20	5.0		
LW	30	40*50/100=20	5.0		

 $\chi 2=16.6$ P = 0.00004, df = 1 So weight and sex are not indep

Copyrigh

 Is weight a good attribute for distinguishing men from women?
 Exercise #3

Signal selection: CFS

- Instead of scoring individual signals, how about scoring a group of signals as a whole?
- CFS
 - Correlation-based Feature Selection
 - A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other
- What is the main challenge in implementing CFS?

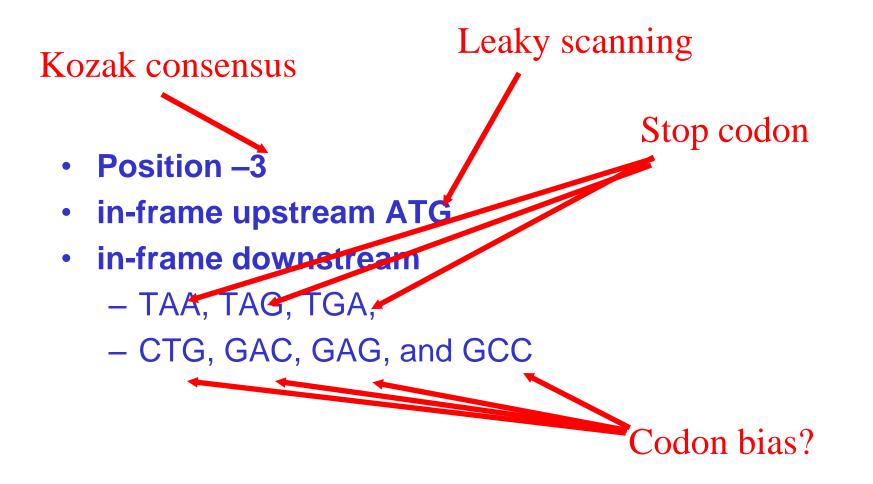
Exercise #4

rimsoon

Copyrigh

24

Distributions of two 3-grams


Name: INFRAME_UPSTREAM_ATG Type: Numeric Missing: 0 (0%) Distinct: 11 Unique: 1 (0%)	Name: INFRAME_UPSTREAM_CTT Type: Numeric Missing: 0 (0%) Distinct: 7 Unique: 1 (0%)
Statistic Value	Statistic Value
Minimum 0	Minimum 0
Maximum 10	Maximum 6
Mean 0.585	Mean 0.419
StdDev 0.874	StdDev 0.695
Class: Class (Nom) Visualize All	Class: Class (Nom) Visualize All
$\chi 2 = 1672.97447$	$\chi 2 = 0$
0 5 10	

• Which is the better one? Why?

Sample k-grams selected by CFS for recognizing TIS

Signal integration

• kNN

- Given a test sample, find the k training samples that are most similar to it. Let the majority class win
- SVM
 - Given a group of training samples from two classes, determine a separating plane that maximises the margin of error
- Naïve Bayes, ANN, C4.5, ...

27

	predicted	predicted
	as positive	as negative
positive	TP	FN
negative	FP	TN

Exercise: What is TP/(TP+FP)?

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Improvement by voting

28

• Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
Worst of 4	73.9%	86.1%	66.3%	85.7%

Improvement by scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That's the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
NB+Scanning	87.3%	96.1%	87.9%	93.9%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%

Performance comparison

30

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

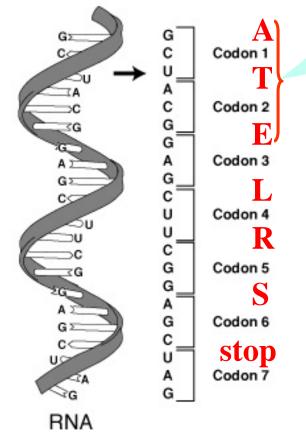
* result not directly comparable

CS2220, AY2021/22

Copyright 2021 © Wong Limsoon

Technique comparison

- Pedersen&Nielsen [ISMB'97]
 - Neural network
 - No explicit features
- Zien [Bioinformatics'00]
 - SVM+kernel engineering
 - No explicit features
- Hatzigeorgiou [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

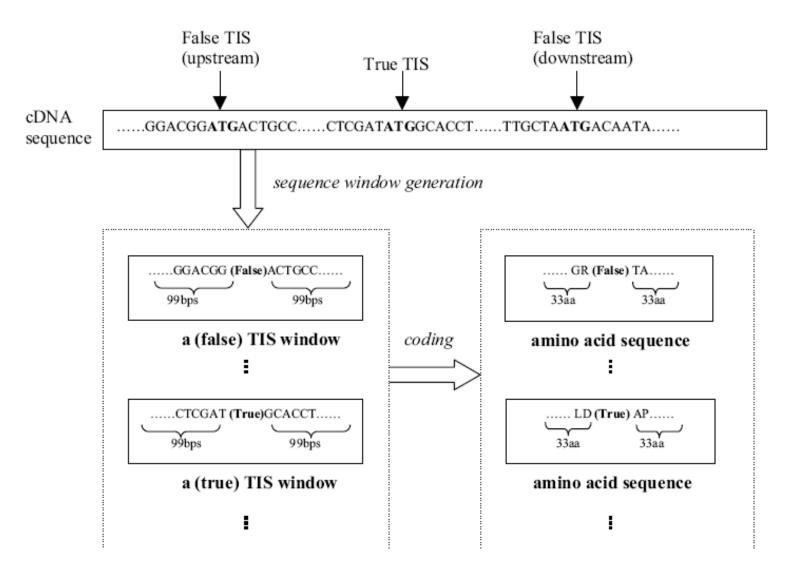

Our approach

- Explicit feature generation
- Explicit feature selection
- Use any machine learning method w/o any form of complicated tuning
- Scanning rule is optional

mRNA -> protein

32

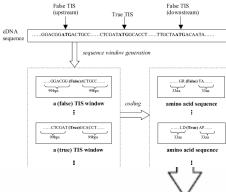
Ribonucleic acid


CS2220, AY2021/22

Exercise: List the first 10 amino acid in our example sequence

How about using k-grams from the translation?

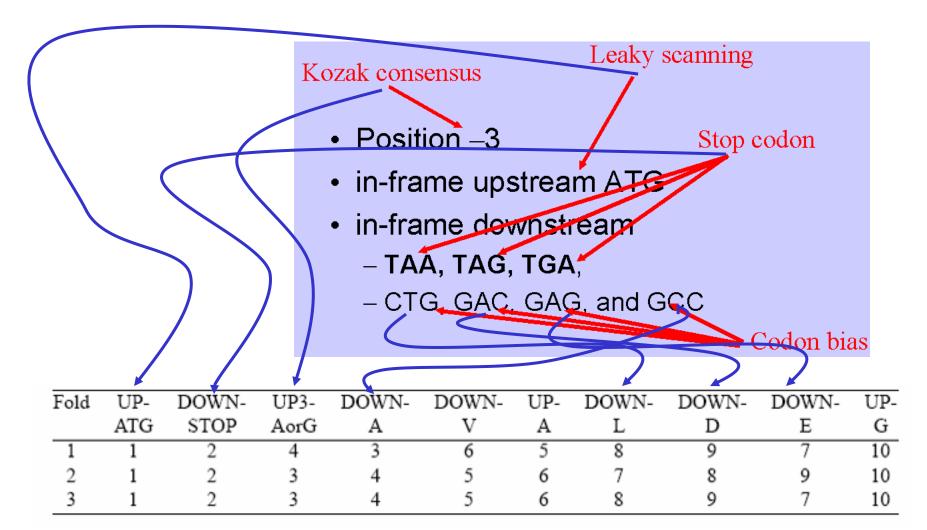
First	U	С	Α	G	Last
U	Phe F	Ser S	Tyr 🗸	Cys	U
	Phe	Ser Ser	Tyr	Cys	С
	Leu T.	Ser	Stop (Ochre)	Stop (Umber)	Α
	Leu	Ser	Stop (Amber)	Trp W	G
С	Leu	Pro P	His H	Arg R	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gin O	Arg	Α
	Leu	Pro	Gin	Arg	G
Α	Ile 🗕	Thr 📊	Asn N	Ser	U
	Ile 📥	Thr 📥	Asn	Ser	С
	Ile	Thr	Lys K	Arg	Α
	Met M	Thr	Lys	Arg	G
G	Val V	Ala 🗛	Asp D	Gly G	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu 🖪	Gly	Α
	Val	Ala	Glu	Gly	G


Amino-acid features

33

of Singapore

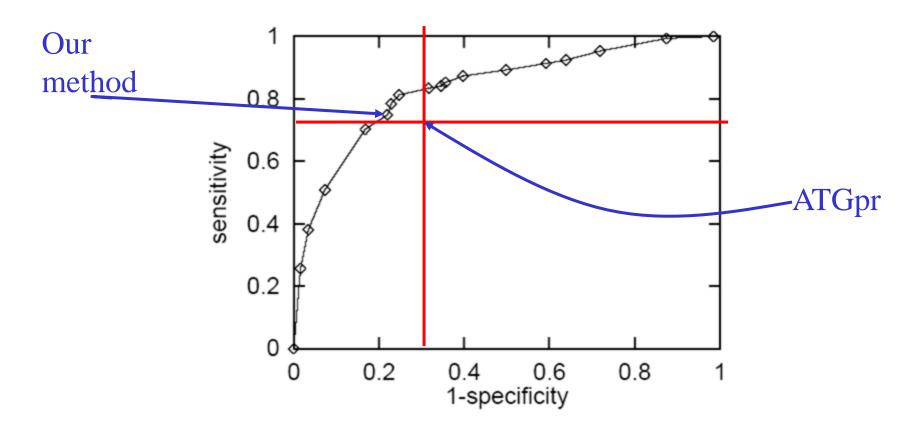
Amino-acid features



		×					
New feature space (total of 927 features + class label)							
42 1-gram amino acid patterns	882 2-gram amino acid patterns	3 bio-know- ledge patterns	class label				
UP-A, UP-R, ,UP-N, DOWN- A, DOWN-R,, DOWN-N (numeric type)	UP-AA, UP-AR,, UP-NN, DOWN-AA, DOWN-AR ,, DOWN-NN (numeric type)	DOWN4-G UP3-AorG, UP-ATG (boolean type, Y or N)	True, False				
	Frequency as val	ues					
1, 3, 5, 0, 4,	6, 2, 7, 0, 5,	N, N, N,	False				
6, 5, 7, 9, 0,	2, 0, 3, 10, 0,	Υ, Υ, Υ,	True				
i	ł	ł	1				

Amino acid K-grams discovered by entropy

Independent validation sets


- A. Hatzigeorgiou:
 - 480 fully sequenced human cDNAs
 - 188 left after eliminating sequences similar to training set (Pedersen & Nielsen's)
 - 3.42% of ATGs are TIS
- Our own:
 - Well-characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

Algorithm	Sensitivity	Specificity	Precision	Accuracy
SVMs(linear)	96.28%	89.15%	25.31%	89.42%
SVMs(quad)	94.14%	90.13%	26.70%	90.28%
Ensemble Trees	92.02%	92.71%	32.52%	92.68%
07797 (1°)	0.5.010/	00 5 10/	A 1 (AA)	00.000/

 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's dataset

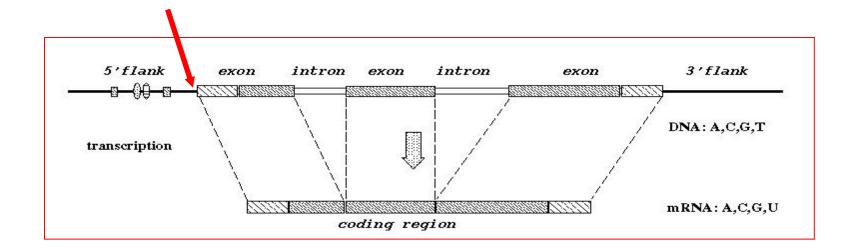
 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's

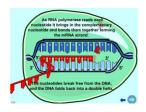
About the inventor: Huiqing Liu

Huiqing Liu

- PhD, NUS, 2004
- Currently PI at Incyte
- Asian Innovation
 Gold Award 2003
- New Jersey Cancer Research Award for Scientific Excellence 2008
- Gallo Prize 2008

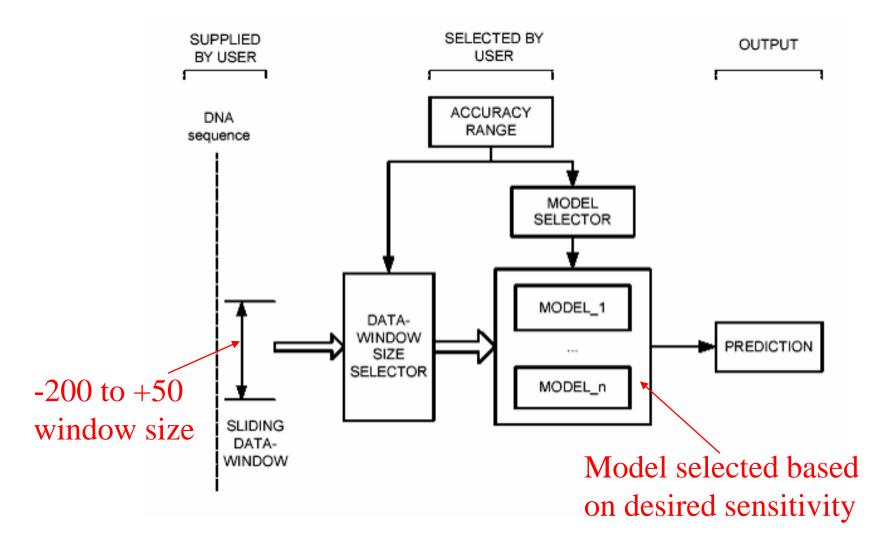
Recognition of Transcription Start Sites

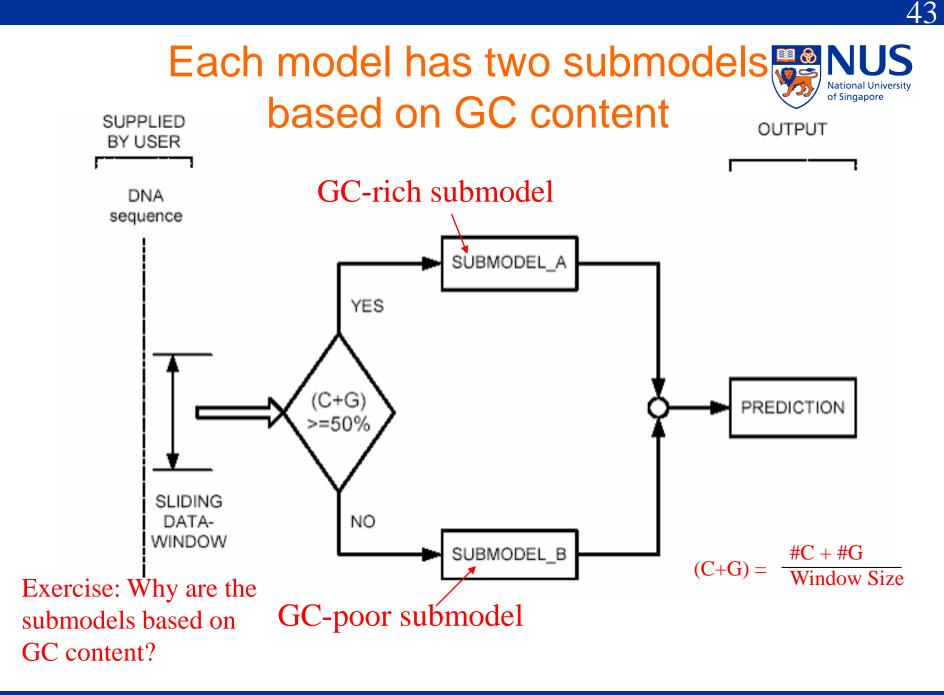

An introduction to the World's best TSS recognition system of its time: A heavy tuning approach



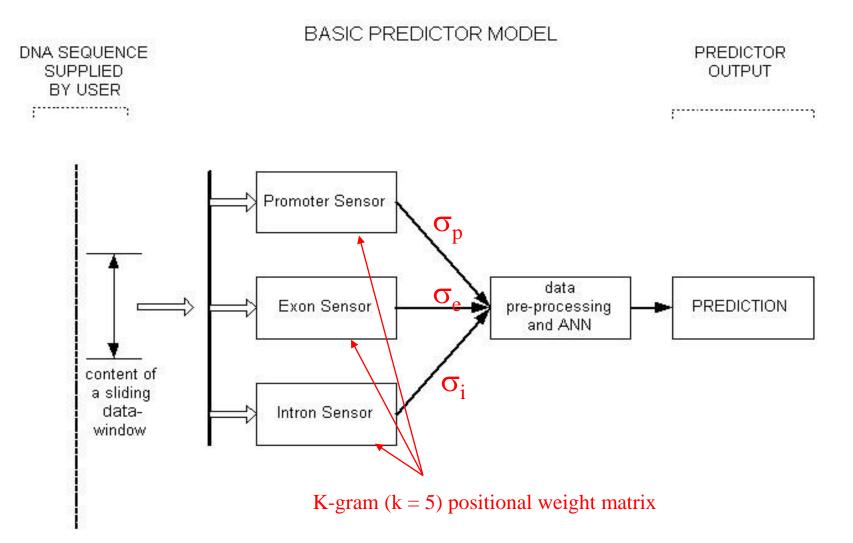
41

Transcription start site




CS2220, AY2021/22

Copyright 2021 © Wong Limsoon



Copyright 2021 © Wong Limsoon

Copyright 2021 © Wong Limsoon

Promoter, exon, intron sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively

Window size
$$\left(\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}\right)$$

 $\sigma = \left(\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}\right)$, $p_j^i \otimes f_{j,i} = \begin{cases} f_{j,i}, \text{ if } p_i = p_j^i \\ 0, \text{ if } p_i \neq p_j^i \end{cases}$, $0, \text{ if } p_i \neq p_j^i$
Frequency of jth pentamer at ith position in training window

46

- Given 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG
- Then

1-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9	pos10
Α	3/3	0/3	0/3							
С	0/3	1/3	1/3		Exerc	vise: Fil	l in the	rest of t	he table	•
G	0/3	2/3	0/3							
Т	0/3	0/3	2/3				-		Ever	eise #5

Copyrigh

1 wong Limsoon

Just to make sure you know what I mean Mational University of Singapore

- Given 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG

• Then

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

Copyrigh

1 wong Limsoon

2-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9
AA	0/3	0/3	0/3						
AC	1/3	0/3	0/3		Exerci	se [.] Fill	in the re	est of th	e table
TT	0/3	0/3	1/3				1/3		
						-		Exe	rcise #6

48

Data preprocessing & ANN

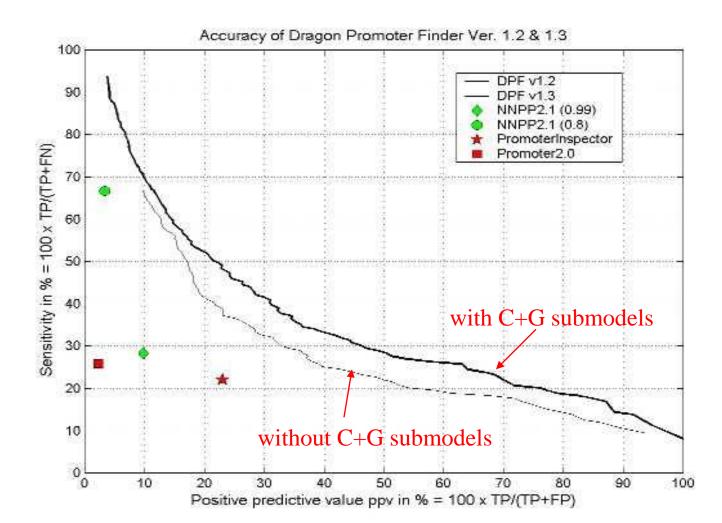
Tuning parameters

$$s_{E} = sat(\sigma_{p} - \sigma_{e}, a_{e}, b_{e}),$$

$$s_{I} = sat(\sigma_{p} - \sigma_{i}, a_{i}, b_{i}),$$

$$s_{EI} = sat(\sigma_{e} - \sigma_{i}, a_{ei}, b_{ei}),$$

where the function *sat* is defined by


$$sat(x,a,b) = \begin{cases} a, if & x > a \\ x, if & b \le x \le a. \\ b, if & b > x \end{cases}$$

Simple feedforward ANN trained by the Bayesian regularisation method W Tuned s_E tanh(net threshold SI SIF $tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$ $net = \sum s_i * w_i$

Accuracy comparison

49

CS2220, AY2021/22

Copyright 2021 © Wong Limsoon

Training data criteria & preparatio

- Contain both positive and negative sequences
- Sufficient diversity, resembling different transcription start mechanisms
- Sufficient diversity, resembling different nonpromoters
- Sanitized as much as possible

TSS taken from

- 793 vertebrate promoters from EPD
- -200 to +50 bp of TSS
- non-TSS taken from
 - GenBank,
 - 800 exons
 - 4000 introns,
 - 250 bp,
 - non-overlapping,
 - <50% identities</p>

Tuning data preparation

 To tune adjustable system parameters in Dragon, we need a separate tuning data set TSS taken from

- 20 full-length gene seqs with known TSS
- -200 to +50 bp of TSS
- no overlap with EPD
- Non-TSS taken from
 - 1600 human 3'UTR seqs
 - 500 human exons
 - 500 human introns
 - 250 bp
 - no overlap

Testing data criteria & preparation National University of Singapore

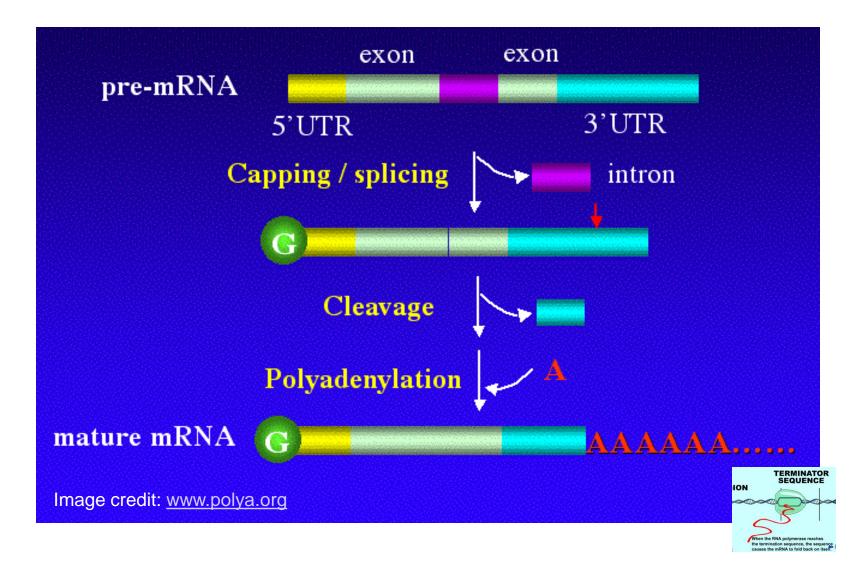
- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities

- 159 TSS from 147 human and human virus seqs
- cummulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.

About the inventor: Vlad Bajic

• Vladimir B. Bajic

- Principal Scientist,
 I²R, 2001-2006
- Director & Professor,
 Computational
 Bioscience Research
 Center, KAUST
- Passed away in 2019

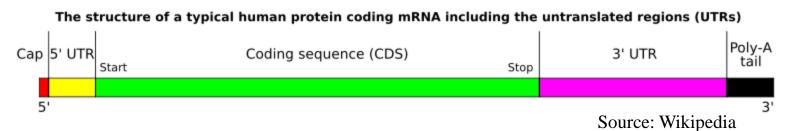


Recognition of Poly-A signal sites

A twist to the "feature generation, feature selection, feature integration" approach

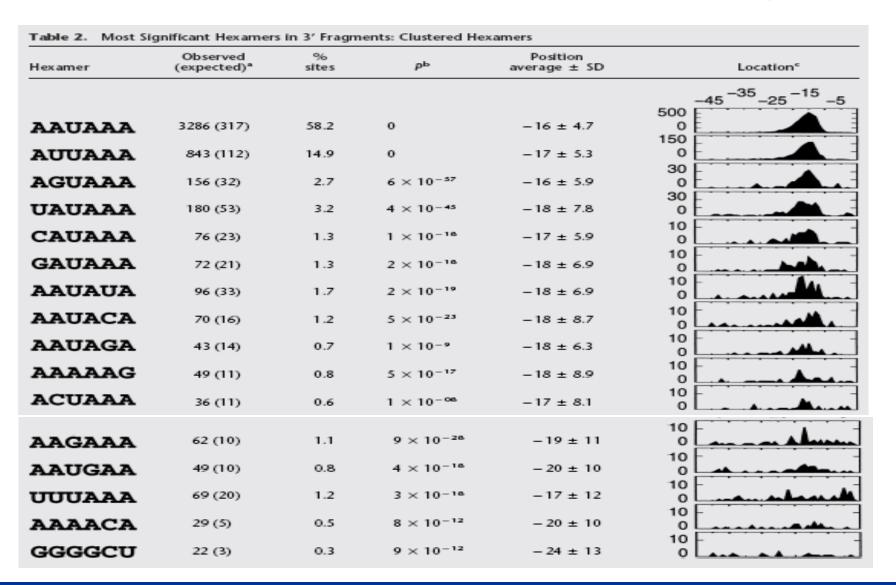
CS2220, AY2021/22

Copyright 2021 © Wong Limsoon


Polyadenylation in eukaryotes

56

- Addition of poly(A) tail to RNA
 - Begins as transcription finishes
 - 3'-most segment of newly-made RNA is cleaved off
 - Poly(A) tail is then synthesized at 3' end


- Poly(A) tail is impt for nuclear export, translation & stability of mRNA
- Tail is shortened over time. When short enough, the mRNA is degraded

CS2220, AY2021/22

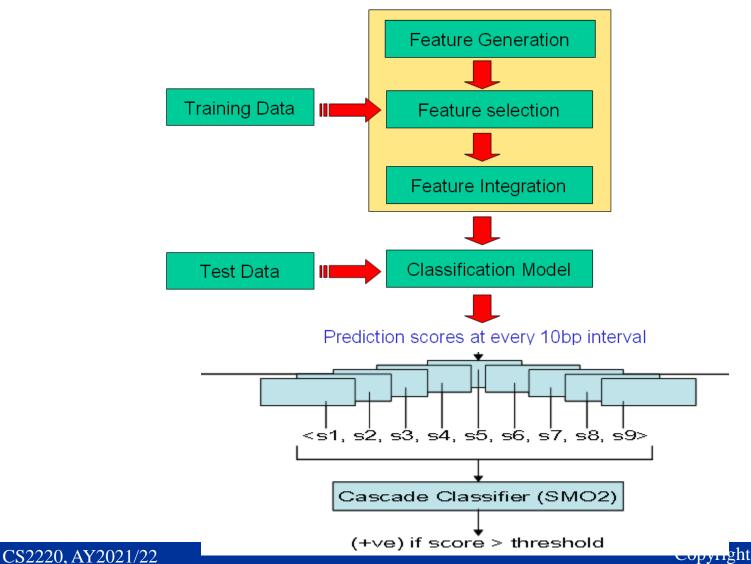
Copyright 2021 © Wong Limsoon

Poly-A signals in human (Gautheret et al., 200

Copyright 2021 © Wong Limsoon

VĒ

57


National University of Singapore

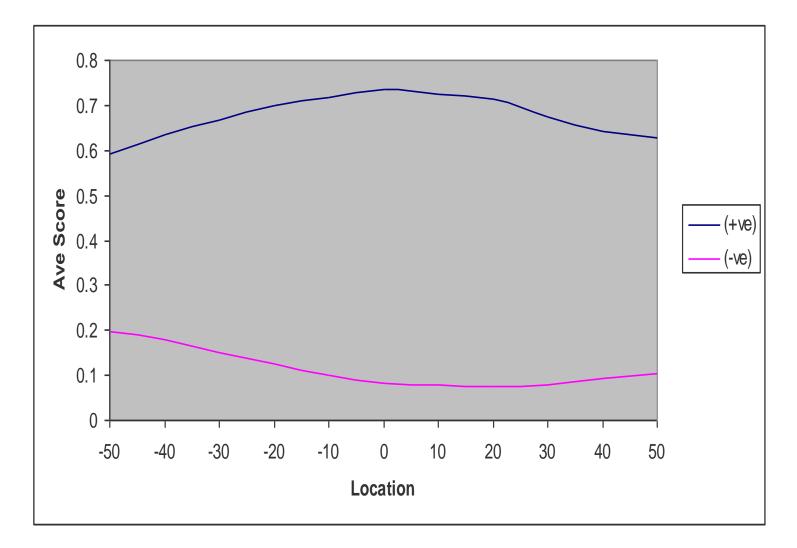
Poly-A signals in Arabidopsis

Table 2. Most Si	gnificant Hexamers	s in 3' Fragm	ents: Clustered He	xamers	
Hexamer	Observed (expected)*	% sites	рь	Position average ± SD	Location ^c
					-45 ⁻³⁵ -25 ⁻¹⁵ -5
AAUAAA	3286 (317)	58.2	0	-16 ± 4.7	
AUUAAA	843 (112)	14.9	0	-17 ± 5.3	0
AGUAAA	156 (32)	2.7	6×10^{-57}	-16 ± 5.9	30
UAUAAA	180 (53)	3.2	4 × 10-45	-18 ± 7.8	30
CAUAAA	76 (23)	1.3	1×10^{-16}	-17 ± 5.9	
GAUAAA	72				10
AAUAUA	96 <mark>In</mark>	contra	ist to hun	1an, PAS ir	Arab is
AAUACA	70 hi	ahly d	egenerate	. E.g., only	10% of
AAUAGA	43		U		
AAAAAG	49	A	cab PAS i	s AAUAAA	
20112.2.2					
ACUAAA	36 (11)	0.6	$1 \times 10^{-\infty}$	-17 ± 8.1	
AAGAAA	36 (11) 62 (10)	0.6	$1 \times 10^{-\infty}$ 9×10^{-28}		10
				-17 ± 8.1	
AAGAAA	62 (10)	1.1	9 × 10 ⁻²⁸	-17 ± 8.1 -19 ± 11	
AAGAAA AAUGAA	62 (10) 49 (10)	1.1 0.8	9×10^{-28} 4×10^{-18}	-17 ± 8.1 -19 ± 11 -20 ± 10	
AAGAAA AAUGAA UUUAAA	62 (10) 49 (10) 69 (20)	1.1 0.8 1.2	9×10^{-28} 4×10^{-18} 3×10^{-18}	-17 ± 8.1 -19 ± 11 -20 ± 10 -17 ± 12	

Copyright 2021 © Wong Limsoon

Approach on Arab PAS sites (II)

- Data collection
 - #1 from Hao Han, 811+ve seq (-200/+200)
 - #2 from Hao Han, 9742
 -ve seq (-200/+200)
 - #3 from Qingshun Li,
 - 6209 (+ve) seq (-300/+100)
 - 1581 (-ve) intron (-300/+100)
 - 1501 (-ve) coding (-300/+100)
 - 864 (-ve) 5'utr (-300/+100)


Feature generation

- 3-grams, compositional features (4U/1N. G/U*7, etc)
- Freq of features above in 3 diff windows: (-110/+5), (-35/+15), (-50/+30)
- Feature selection

- χ2

- Feature integration & Cascade
 - SVM

Copyright 2021 © Wong Limsoon

62

Validation results

SN_0	SMO 1		SM	10 2	PASS 1.0		
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold	
Sequences							
CDS	90%	0.26	94%	0.24	95%	3.7	
5'UTR	79%	0.42	85%	0.49	78%	5.5	
Intron	64%	0.59	71%	0.67	63%	6.3	

Table 2. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_10.

SN_10	SMO 1		SM	10 2	PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	94%	0.36	96%	0.31	96%	4
5'UTR	86%	0.53	89%	0.6	81%	5.7
Intron	73%	0.68	77%	0.77	67%	6.6

Table 3. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_30.

SN_30	SMO 1		SMO 2		PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	97%	0.44	97%	0.37	97%	4.3
5'UTR	90%	0.62	92%	0.67	84%	6.2
Intron	79%	0.75	83%	0.81	72%	6.8

Copyright 2021 © Wong Limsoon

About the inventor: Koh Chuan Ho

Koh Chuan Hock

- BComp (CB), NUS, 2008
- PhD, NUS, 2012
- Currently Data
 Science Mgr at
 Indeed Inc, Japan

Concluding remarks...

What have we learned?

- Gene feature recognition applications
 TIS, TSS, PAS
- General methodology
 - "Feature generation, feature selection, feature integration"
- Important tactics
 - Multiple models to optimize overall performance
 - Feature transformation (DNA \rightarrow amino acid)
 - Classifier cascades

Any question?

Acknowledgements

67

• The slides for PAS site prediction are adapted from slides given to me by Koh Chuan Hock

References (TIS recognition)

- A. G. Pedersen, H. Nielsen, "Neural network prediction of translation initiation sites in eukaryotes", *ISMB* 5:226--233, 1997
- A. Zien et al., "Engineering support vector machine kernels that recognize translation initiation sites", *Bioinformatics* 16:799--807, 2000
- A. G. Hatzigeorgiou, "Translation initiation start prediction in human cDNAs with high accuracy", *Bioinformatics* 18:343--350, 2002
- J. Li et al., "Techniques for Recognition of Translation Initiation Sites", *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004

References (TSS recognition)

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003
- J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997
- M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB 297:599--606, 2000
- V. B. Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical Bioinformatician*, Chapter 7, pages 157—165, 2004

References (PAS recognition)

- Q. Li et al., "Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures". *Plant Physiology*, 138:1457-1468, 2005
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences". *Gene*, 231:77-86, 1999
- M. Legendre, D. Gautheret, "Sequence determinants in human polyadenylation site selection". *BMC Genomics*, 4:7, 2003
- B. Tian et al., "Prediction of mRNA polyadenylation sites by support vector machine". *Bioinformatics*, 22:2320-2325, 2006
- C. H. Koh, L. Wong. "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences". *Proc. GIW 2007*, pages 73--82

References (Feature selection)

- U. M. Fayyad, K. B. Irani, "Multi-interval discretization of continuous-valued attributes", *IJCAI* 13:1022-1027, 1993
- H. Liu, R. Sentiono, "Chi2: Feature selection and discretization of numeric attributes", *IEEE Intl. Conf. Tools with Artificial Intelligence* 7:338--391, 1995