
CS2220: Introduction to Computational Biology

Unit 4: Essence of Sequence Comparison

Wong Limsoon

For written notes on this lecture, please read chapter 10 of The Practical Bioinformatician, ond chapter 2 and 5 

of Algorithms in Bioinformatics.
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Plan 

• Dynamic programming

• Protein evolution

• String comparison

• Sequence alignment

– Pairwise alignment

– Multiple alignment 

• Popular tools

– FASTA, BLAST, Pattern Hunter



Dynamic programming
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Knapsack problem

• Each item that can go into the knapsack has a 

size and a benefit

• The knapsack has a certain capacity 

• What should go into the knapsack to maximize 

the total benefit? 
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Formulation of a solution

• Intuitively, to fill a w-pound knapsack, we must 

start by adding some item. If we add item j, we 

end up with a knapsack k’ of size w − wj to fill …

where

– wj and bj be weight and benefit for item j

– g(w) is max benefit that can be gained from a w-

pound knapsack

Source: http://mat.gsia.cmu.edu/classes/dynamic/node6.html
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Exercise #1

• Does g(w) produce the optimal benefit?  Prove it

where

– wj and bj be weight and benefit for item j

– g(w) is max benefit that can be gained from a w-

pound knapsack
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Direct recursive evaluation 

is inefficient
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• g(1), g(2), … are computed many times
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“Memoize” to avoid recomputation

80

80

30

30

6530

80

g(5)

g(4)g(3)

65 30

65
g(2)g(0)g(1)

g(0) g(0)

65

160160

int s[]; s[0] := 0;

g’(w) = if s[w] is defined

then return s[w];

else { 

s[w] := maxj{bj + g’(w – wj)};

return s[w]; }
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Exercise #2

• In what order do s[0], s[1], … get defined?

int s[]; s[0] := 0;

g’(w) = if s[w] is defined

then return s[w];

else { 

s[w] := maxj{bj + g’(w – wj)};

return s[w]; }
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Remove recursion: Dynamic programming

int s[]; s[0] := 0;

g’(w) = if s[w] is defined

then return s[w];

else { 

s[w] := maxj{bj + g’(w – wj)};

return s[w]; }

int s[]; s[0] := 0; s[1] := 30;

s[2] := 65; s[3] = 95;

for i := 4 .. w do 

s[i] := maxj{bj + s[i – wj]};

return s[w]; 

g(0) = 0 

g(1) = 30, item 3

g(2) = max{65 + g(0) =65, 30 + g(1) = 60} = 65, item 1

g(3) = max{65 + g(1) = 95, 80 + g(0) = 80, 30 + g(2) = 95} 

= 95, item 1/3

g(4) = max{65 + g(2) = 130, 80 + g(1) = 110, 30 + g(3) = 

125} = 130, item 1

g(5) = max{65 + g(3) = 160, 80 + g(2) = 145, 30 + g(4) = 

160} = 160, item 1/3

80

80

30

30

6530

80

g(5)

g(4)g(3)

65 30

65
g(2)g(0)g(1)

g(0) g(0)
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160160



Protein evolution
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A protein is a ...

• A protein is a large 

complex molecule 

made up of one or 

more chains of 

amino acids

• Proteins perform a 

wide variety of 

activities in the cell
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In the course of evolution…



14

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Exercise #3

Let a = AFPHQHRVP

Let b = PQVYNIMKE

Suppose each generation differs from 

the previous by 1 residue

What is the max difference between the 

2nd generation of a?

What is the min difference between the 

2nd generation of a and b?
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Therefore…

Two proteins 

inheriting their 

function from a 

common ancestor 

have very similar 

amino acid 

sequences



Sequence alignment
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Why we compare sequences

• The structure of a protein defines its function

– In order for a protein to have a specific function, it 

must satisfy specific structural constraints

• Protein evolves → amino acid seq changes →

protein structure changes → breaks those 

structural constraints → protein loses function

• The more similar two proteins’ amino acid 

sequences are, the more likely they come from 

the same ancestor → the more likely they have 

the same structure and function

“Law”

Abduction
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Earliest research in seq comparison

• Doolittle et al. (Science, July 1983) searched for 

platelet-derived growth factor (PDGF) in his own 

DB. He found that PDGF is similar to v-sis 

oncogene

PDGF-2  1       SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34

p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

Source: Ken Sung
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Sequence alignment

• Key aspect of seq 

comparison is seq 

alignment

• A seq alignment 

maximizes the 

number of 

positions that are in 

agreement in two 

sequences

Sequence U

Sequence V

mismatch

match

indel
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Applications of sequence comparison

• Infer protein function

– When two protein look similar, we conjecture they 

come from the same ancestor and inherit the 

ancestor’s function (i.e. they are homologous)

• Find evolution distance between two species

– Evolution modifies the DNA of species →

Similarity of their genome correlates with their 

evolutionary distance

• Help genome assembly

– Human genome project reconstructs the whole 

genome based on overlapping info of a huge 

amount of short DNA pieces
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Poor sequence alignment

• Poor seq alignment shows few matched positions

 The two proteins are not likely to be homologous

No obvious match between 

Amicyanin and Ascorbate Oxidase
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Good sequence alignment

• Good alignment usually has clusters of extensive 

matched positions

 The two proteins are likely to be homologous

good match between 

Amicyanin and unknown M. loti protein
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h

Alignment:

Simple-minded probability & score

• Define score S(A) by simple log likelihood as

– S(A) = log(prob(A)) - [m log(s) + h log(s)], with 

log(p/s) = 1

• Then S(A) = #matches -  #mismatches -  #indels

Exercise: Derive  and 
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Global pairwise alignment:

Problem definition

• The problem of finding a global pairwise 

alignment is to find an alignment A so that S(A) is 

max among exponential number of possible 

alternatives

• Given sequences U and V of lengths n and m, 

then number of possible alignments is given by

– f(n, m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1)

– f(n,n) ~ (1 + 2)2n+1 n-1/2
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Global pairwise alignment:

Dynamic programming solution

• Define an indel-similarity matrix s(.,.); e.g., 

– s(x,x) = 2

– s(x,y) = -, if x  y

• Then

This is the basic idea of the

Needleman-Wunsch algorithm
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Exercise #4

• What happens when  is large?
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Needleman-Wunsch algorithm (I)

• Consider two strings S[1..n] and T[1..m]

• Let V(i, j) be score of optimal alignment betw 

S[1..i] and T[1..j]

• Basis:

– V(0, 0) = 0

– V(0, j) = V(0, j −1) − 

• Insert j times

– V(i, 0) = V(i − 1, 0) − 

• Delete i times

Source: Ken Sung
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Needleman-Wunsch algorithm (II)

• Recurrence: For i>0, j>0

• In the alignment, the last pair must be either 

match/mismatch, delete, insert









−−

−−

+−−

=





)1,(

),1(

])[],[()1,1(

max),(

jiV

jiV

jTiSsjiV

jiV

Match/mismatch

Delete

Insert

Source: Ken Sung

xxx…xx      xxx…xx    xxx…x_

|           |         |

xxx…yy      yyy…y_    yyy…yy

Match/mismatch           Delete               Insert
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Example (I)

_ A G C A T G C

_ 0 −1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1

C − 2

A − 3

A − 4

T − 5

C − 6

C − 7

Source: Ken Sung
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Example (II)

_ A G C A T G C

_ 0 −1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1 2

C − 2

A − 3

A − 4

T − 5

C − 6

C − 7

Source: Ken Sung
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Example (III)

_ A G C A T G C

_ 0 −1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1 2 1

C − 2

A − 3

A − 4

T − 5

C − 6

C − 7

Source: Ken Sung
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Example (IV) / Exercise #5

_ A G C A T G C

_ 0 − 1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1 2 1 0 − 1 − 2 − 3 − 4

C − 2 1 1 ?

A − 3

A − 4

T − 5

C − 6

C − 7

3 2

Can you tell from these entries what are the 

values of s(A,G), s(A,C), s(A,A), etc.?

Source: Ken Sung
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Example (V) / Exercise #6

_ A G C A T G C

_ 0 −1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1 2 1 0 − 1 − 2 − 3 -4

C − 2 1 1 3 2 1 0 -1

A − 3 0 0 2 5 4 3 2

A − 4 − 1 − 1 1 4 4 3 2

T − 5 − 2 − 2 0 3 6 5 4

C − 6 − 3 − 3 0 2 5 5 7

C − 7 − 4 − 4 − 1 1 4 4 7

Source: Ken Sung

What is the 

alignment 

corresponding 

to this?
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Pseudo codes

Create the table V[0..n,0..m] and P[1..n,1..m];

V[0,0] = 0;

For j=1 to m, set V[0,j] := v[0,j − 1] −  ;

For i=1 to n, set V[i,0] := V[i − 1,0] −  ;

For j=1 to m {

For i = 1 to n {

set V[i,j] := V[i,j − 1] −  ;

set P[i,j] := (0, − 1);

if V[i,j] < V[i − 1,j] −  then

set V[i,j] := V[i − 1,j] −  ;

set P[i,j] := (− 1, 0);

if (V[i,j] < V[i − 1, j − 1] + s(S[i],T[j])) then

set V[i,j] := V[i − 1, j − 1] + s(S[i],T[j]);

set P[i,j] := (− 1, − 1);

}

}

Backtracking P[n,m] to P[0,0] to find optimal alignment;

Source: Ken Sung
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Analysis

• We need to fill in all entries in the nm matrix

• Each entry can be computed in O(1) time

 Time complexity = O(nm)

 Space complexity = O(nm)

Source: Ken Sung

Exercise: Write down the memoized version of 

Needleman-Wunsch. What is its time/space 

complexity?



36

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Problem on speed

• Aho, Hirschberg, Ullman 

1976

– If we can only compare 

whether two symbols are 

equal or not, the string 

alignment problem can 

be solved in (nm) time

• Hirschberg 1978

– If symbols are ordered 

and can be compared, 

the string alignment 

problem can be solved in 

(n log n) time

• Masek and Paterson 1980

– Based on Four-Russian’s 

paradigm, the string 

alignment problem can 

be solved in O(nm/log2 

n) time

• Let d be the total number 

of inserts and deletes. 

Thus 0  d  n+m. If d is 

smaller than n+m, can we 

get a better algorithm? 

Yes!

Source: Ken Sung
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O(dn)-time algorithm

• The alignment should be inside the 2d+1 band

 No need to fill-in the lower and upper triangle

 Time complexity: O(dn)

2d+1

Source: Ken Sung



38

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example

• d=3

A_CAATCC

AGCA_TGC

_ A G C A T G C

_ 0 -1 -2 -3

A -1 2 1 0 -1

C -2 1 1 3 2 1

A -3 0 0 2 5 4 3

A -1 -1 1 4 4 3 2

T -2 0 3 6 5 4

C 0 2 5 5 7

C 1 4 4 7
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Exercise #7 /

Recursive equation for O(dn)-time algo

Write down the base cases, the 

memoized version, and the non-

recursive version.

v(i – 1, j – 1) + s(S[i], S[j])

v(i, j) = max v(i – 1, j) – , if | i – j | < d

v(i, j – 1) – , if | i – j | < d
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Problem on space

• Dynamic programming requires O(mn) space

• When we compare two very long sequences, 

space may be the limiting factor

• Can we solve the string alignment problem in 

linear space?
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Easy, if no need to recover alignment

• When filling row 4, 

it depends only on 

row 3

– No need to keep 

rows 1 and 2

• I.e., we only need 

to keep two rows

“Cost only” algo

_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7

A -1 2 1 0 -1 -2 -3 -4

C -2 1 1 3 2 1 0 -1

A -3 0 0 2 5 4 3 2

A -4 -1 -1 1 4 4 3 2

T -5 -2 -2 0 3 6 5 4

C -6 -3 -3 0 2 5 5 7

C -7 -4 -4 -1 1 4 4 7
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Recovering alignment in O(n+m) space

• Use cost-only algo to find mid-point of alignment

• Divide the problem into two halves

• Recursively deduce alignments for the two halves

n/2 n/2 n/2

3n/4

n/4

mid-point
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How to find mid-point

• Do cost-only dynamic programming for 1st half 

– I.e., find V(S[1..n/2], T[1..j]) for all j

• Do cost-only dynamic programming for 2nd half

– i.e., find V(S[n/2+1..n], T[j+1..m]) for all j

• Determine j which maximizes the sum above

 ])..1[],..1[(])..1[],..1[(max

])..1[],..1[(

22
0

mjTnSVjTSV

mTnSV

nn

mj
+++

=


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Example
Step 1 Step 2

Step 3Step 4: Recursive on subproblems
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Complexity analysis

• Space

– O(m) working memory for finding mid-point 

– Once mid-point is found, can free working 

memory → In each recursive call, we only 

need to store the alignment path

– Alignment subpaths are disjoint → total 

space required is O(n+m)

• Time?  This one is for you to think about ☺
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Global pairwise alignment:

More Realistic Handling of Indels

• In Nature, indels of several adjacent letters are 

not the sum of single indels, but the result of one 

event

• So reformulate as follows:
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Gap penalty

• g(q):→ is the penalty of a gap of length q

• Note g() is subadditive, i.e, g(p+q)  g(p) + g(q)

• If g(k) =  + k, the gap penalty is called affine

– A penalty () for initiating the gap

– A penalty () for the length of the gap

Source: Ken Sung
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N-W algo w/ general gap penalty (I)

• Global alignment of S[1..n] and T[1..m]:

– Denote V(i, j) be the score for global alignment 

between S[1..i] and T[1..j]

– Base cases:

• V(0, 0) = 0

• V(0, j) = g(j)

• V(i, 0) = g(i)

Source: Ken Sung
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N-W algo w/ general gap penalty (II)

• Recurrence for i>0 and j>0,













−+

−+

+−−

=

−

−

)}(),({max

)}(),({max

])[],[()1,1(

max),(

10

10

kigjkV

kjgkiV

jTiSjiV

jiV

ik

jk

 Match/mismatch

Insert T[k+1..j]

Delete S[k+1..i]

Source: Ken Sung
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Analysis

• We need to fill in all entries in the nm table

• Each entry can be computed in O(max{n, m}) time

 Time complexity = O(nm max{n, m})

 Space complexity = O(nm)

Source: Ken Sung
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Variations of pairwise alignment

• Fitting a “short’’ seq

to a “long’’ seq

• Indels at beginning 

and end are not 

penalized

• Find “local” alignment

• Find i, j, k, l, so that

– S(A) is maximized,

– A is alignment of ui…uj

and vk…vl

U

V

U

V
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Local alignment

• Given two long DNAs, both of them contain the 

same gene or closely related gene 

– Can we identify the gene?

• Local alignment problem: Given two strings 

S[1..n] and T[1..m], among all substrings of S and 

T, find substrings A of S and B of T whose global 

alignment has the highest score

Source: Ken Sung
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Brute-force solution

• Algorithm:

– For every substring A of S, for every substring B of 

T, compute the global alignment of A and B

– Return the pair (A, B) with the highest score

• Time:

– There are n2 choices of A and m2 choices of B

– Global alignment computable in O(nm) time

– In total, time complexity = O(n3m3)

• Can we do better?

Source: Ken Sung
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Some background / Exercise #8

• X is a suffix of S[1..n] if X=S[k..n] for some k1

• X is a prefix of S[1..n] if X=S[1..k] for some kn

• E.g.

– Consider S[1..7] = ACCGATT

– ACC is a prefix of S, GATT is a suffix of S

– Empty string is both prefix and suffix of S

Source: Ken Sung

Which other string is both a prefix and suffix of S?
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Dynamic programming for 

local alignment problem

• Define V(i, j) be max score of global alignment of 

A and B over 

– all suffixes A of S[1..i] and 

– all suffixes B of T[1..j]

• Then, score of local alignment is 

– maxi,j V(i ,j)

Source: Ken Sung
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Smith-Waterman algorithm

• Basis: 

V(i, 0) = V(0, j) = 0

• Recursion for i>0 and j>0:













−−

−−

+−−
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0
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jiV

jiV

jTiSsjiV
jiV

Match/mismatch

Delete

Insert

Ignore initial segment

Source: Ken Sung
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Example (I)
• Score for match = 2

• Score for insert, delete, 

mismatch = −1

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0

C 0

A 0

A 0

T 0

C 0

G 0

Source: Ken Sung
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Example (II) / Exercise #9

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0 0 0 0 2 1 0 0

C 0 2 1 2 1 1 0 2

A 0 0 1 1 4 3 2 1

A 0 0 0 0 3 3 2 1

T 0 0 ?

C

G

1 22

• Score for match = 2

• Score for insert, delete, 
mismatch = −1

Source: Ken Sung
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Analysis / Exercise #10

• Need to fill in all entries in the nm matrix

• Each entries can be computed in O(1) time

• Finally, finding the entry with the max value

 Time complexity = ??

 Space complexity = O(nm)

What is the time complexity?

Source: Ken Sung
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Local alignment with at most d indels

• Cf. global alignment with at most d index has time 

complexity O(dn)
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Photos

Limsoon & Temple Smith Ken & Michael Waterman



Scoring function
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Scoring function for DNA

• For DNA, since we only have 4 nucleotides, the 

score function is simple

– BLAST matrix

– Transition-transversion matrix: Give mild penalty 

for replacing purine by purine. Similar for replacing 

pyrimadine by pyrimadine

A C G T

A 5 -4 -4 -4

C -4 5 -4 -4

G -4 -4 5 -4

T -4 -4 -4 5

A C G T

A 1 -5 -1 -5

C -5 1 -5 -1

G -1 -5 1 -5

T -5 -1 -5 1

BLAST Matrix Transition-Transversion Matrix
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Scoring function for protein

• Commonly, it is devised based on two criteria:

– Chemical/physical similarity

– Observed substitution frequencies
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Scoring function for protein using 

physical/chemical properties

• An amino acid is more likely to be substituted by 

another if they have similar property [Karlin & 

Ghandour, PNAS, 82:8597, 1985]

• The score matrices can be derived based on 

hydrophobicity, charge, electronegativity, & size

• E.g., give higher score for substituting nonpolar 

amino acid to another nonpolar amino acid
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Scoring function for protein 

based on statistical model

• Most often used approaches

• Two popular matrices:

– Point Accepted Mutation (PAM) matrix

– BLOSUM

• Both methods define the score as the log-odds 

ratio between the observed substitution rate and 

the expected substitution rate

• https://en.wikipedia.org/wiki/Substitution_matrix

https://en.wikipedia.org/wiki/Substitution_matrix
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Point Accepted Mutation (PAM)

• PAM was developed by Dayhoff (1978)

• A point mutation means substituting one residue 

by another

– It is called an accepted point mutation if the 

mutation does not change the protein’s function or 

is not fatal

• Two sequence S1 and S2 are said to be 1 PAM 

diverged if a series of accepted point mutations 

can convert S1 to S2 with an average of 1 

accepted point mutation per 100 residues
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PAM matrix by example (I)

• Ungapped alignment is constructed for high 

similarity amino acid sequences (usually >85%)

• Below is a simplified gap-free global multiple 

alignment of some highly similar amino acid seqs

– IACGCTAFK

IGCGCTAFK

LACGCTAFK

IGCGCTGFK

IGCGCTLFK

LASGCTAFK

LACACTAFK
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PAM matrix by example (II)

• Build the phylogenetic tree for the sequences

IACGCTAFK

IGCGCTAFK LACGCTAFK

LACACTAFKLASGCTAFKIGCGCTLFKIGCGCTGFK

A→G I→L

A→G A→L C→S G→A
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PAM-1 matrix

• Oa,b and Ea,b are observed and expected freq

– Oa,a = 99/100, as PAM-1 assumes 1 mutation per 100 

residues

– For ab, Oa,b = Fa,b / (100 xy Fx,y) where Fa,b is freq

of substituting a by b or b by a

– Ea,b = fa * fb where fx is # of x divided by total residues

• E.g., FA,G = 3, FA,L=1, fA = fG = 10/63, then OA,G = 

3/(100*2*6) = 0.0025, EA,G = (10/63)(10/63) = 0.0252, 

(A,G) = log (0.0025 / 0.0252) = log (0.09925) = -1.0034

ba,

ba,

10
E

O
log),( =ba
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Exercise #11

• OA,G = 3/(100 * 2 * 6)

• Where do the 2 and 6 

come from?
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PAM-n matrix

• Let Ma,b = Oa,b / fa be prob that a is mutated to b

• Mn(a,b) is prob that a is mutated to b after n mutations

• PAM-n matrix is created by extrapolating PAM-1 

• PAM-n matrix is computed as follows.

– At time t, suppose the residue is a

– At time t+1, prob that it becomes j is M(a,b)

– At time t+2, prob that it becomes j is M2(a,b)

– …

– At time t+n, prob that it becomes j is Mn(a,b)

 (a,b) entry of PAM-n matrix is log(fa Mn(a,b)/fa fb) = 

log(Mn(a,b)/fb)
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BLOSUM (BLOck SUbstition Matrix)

• PAM did not work well for aligning evolutionarily 

divergent sequences since the matrix is 

generated by extrapolation

• Henikoff and Henikoff (1992) proposed BLOSUM

• Unlike PAM, BLOSUM matrix is constructed 

directly from the observed alignment (instead of 

extrapolation)
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Generating conserved blocks

• In BLOSUM, the input is a set of multiple 

alignments for nonredundant groups of protein 

families

• Based on PROTOMAT, blocks of nongapped local 

aligments are derived

• Each block represents a conserved region of a 

protein family
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Extract frequencies from blocks

•
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BLOSUM scoring function

• For each pair of aligned residues a and b, the 

alignment score (a,b) = (1/)(ln pab/(papb))

– pab is prob that a and b are observed to align 

together

– pa and pb are freq of residues a and b

–  is a normalization constant

• Example: pL=0.099, pA=0.074, pAL = 0.0044. With 

=0.347, (A,L) = -1.47
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What is BLOSUM 62?

• To reduce multiple contributions to amino acid 

pair freq from the most closely related members 

of a family, similar seqs are merged within block

• BLOSUM p matrix is created by merging seqs

with  p% similarity

• Example

– AVAAA, AVAAA, AVAAA, AVLAA, VVAAL

– First 4 seqs have 80% similarity. Similarity of last 

seq with the other 4 sequences is <62%

– For BLOSUM 62, we group first 4 seqs and get 

AV[A0.75L0.25]AA, VVAAL. Then pAV = 1/5, pAL = 

(0.25 + 1)/5.
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BLOSUM vs PAM

• BLOSUM 80  PAM 1

• BLOSUM 62  PAM 120

• BLOSUM 45  PAM 250

• BLOSUM 62 is the 

default matrix for 

BLAST 2.0



Multiple sequence alignment
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What is a domain

• A domain is a component of a protein that is self-

stabilizing and folds independently of the rest of 

the protein chain

– Not unique to protein products of one gene; can 

appear in a variety of proteins

– Play key role in the biological function of proteins

– Can be "swapped" by genetic engineering betw 

one protein and another to make chimeras

• May be composed of one, more than one, or not 

any structural motifs (often corresponding to 

active sites)
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Discovering domain and active sites

• How do we find the domain and associated active 

sites in the protein above? 

>gi|475902|emb|CAA83657.1| protein-tyrosine-phosphatase alpha 

MDLWFFVLLLGSGLISVGATNVTTEPPTTVPTSTRIPTKAPTAAPDGGTTPRVSSLNVSSPMTTSAPASE 

PPTTTATSISPNATTASLNASTPGTSVPTSAPVAISLPPSATPSALLTALPSTEAEMTERNVSATVTTQE 

TSSASHNGNSDRRDETPIIAVMVALSSLLVIVFIIIVLYMLRFKKYKQAGSHSNSFRLPNGRTDDAEPQS 

MPLLARSPSTNRKYPPLPVDKLEEEINRRIGDDNKLFREEFNALPACPIQATCEAASKEENKEKNRYVNI 

LPYDHSRVHLTPVEGVPDSHYINTSFINSYQEKNKFIAAQGPKEETVNDFWRMIWEQNTATIVMVTNLKE 

RKECKCAQYWPDQGCWTYGNIRVSVEDVTVLVDYTVRKFCIQQVGDVTNKKPQRLVTQFHFTSWPDFGVP 

FTPIGMLKFLKKVKTCNPQYAGAIVVHCSAGVGRTGTFIVIDAMLDMMHAERKVDVYGFVSRIRAQRCQM 

VQTDMQYVFIYQALLEHYLYGDTELEVTSLEIHLQKIYNKVPGTSSNGLEEEFKKLTSIKIQNDKMRTGN 

LPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASFIDGYRRRTPTCQPRPVQHTIEDFWRMIWEWK 

SCSIVMLTELEERGQEKCAQYWPSDGSVSYGDINVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFH 

GWPEVGIPSDGKGMINIIAAVQKQQQQSGNHPMHCHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVK 

SLRLQRPHMVQTLEQYEFCYKVVQEYIDAFSDYANFK 
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Domain/active sites as emerging patterns

• How to discover active site and/or domain?

• If you are lucky, domain has already been 

modelled

– BLAST, HMMPFAM, …

• If you are unlucky, domain not yet modelled

– Find homologous seqs

– Do multiple alignment of homologous seqs

– Determine conserved positions

 Emerging patterns relative to background

 Candidate active sites and/or domains
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In the course of evolution…
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Multiple alignment: Example

• Multiple seq alignment maximizes number of 

positions in agreement across several seqs

• Seqs belonging to same “family” usually have 

more conserved positions in a multiple seq

alignment

Conserved sites
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Multiple alignment: Naïve approach

• Let S(A) be the score of a multiple alignment A. 

The optimal multiple alignment A of sequences 

U1, …, Ur can be extracted from the following 

dynamic programming computation of Sm1,…,mr:

• This requires O(2r) steps

Exercise for the Brave: 

Propose a practical approximation



Popular tools for sequence comparison: 

FASTA, BLAST, Pattern Hunter
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Scalability

• Increasing # of sequenced 

genomes: yeast, human, 

rice, mouse, fly, …

• S/w must be “linearly” 

scalable to large datasets
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Database search

• Consider a database D of genomic sequences (or 

protein sequences)

• Given a query string Q,

– Look for string S in D which is the closest match to 

the query string Q

– Two meanings for closest match:

• S and Q has a semi-global alignment (forgive the 

spaces at the two ends of Q)

• S and Q have a local alignment
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Goodness of a search algorithm

• Sensitivity

– Ability to detect “true positive”

– Measured as the probability of finding the match 

given the query and the database sequence has 

only x% similarity

• Specificity

– Ability to reject “false positive”

• A good search algorithm should be both sensitive 

and specific
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Need heuristics for 

sequence comparison

• Time complexity for 

optimal alignment is 

O(n2), where n is seq

length

 Given current size of 

seq databases, use of 

optimal algorithms is 

not practical for 

database search

• Heuristic techniques: 

– BLAST

– FASTA

– Pattern Hunter

– MUMmer, ...

• Speed up:

– 20 min (optimal 

alignment) 

– 2 min (FASTA) 

– 20 sec (BLAST)
Exercise: Describe MUMer
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Basic idea: Indexing & filtering

• Good alignment includes short identical, or 

similar fragments

 Break entire string into substrings, index the 

substrings

 Search for matching short substrings and use as 

seed for further analysis

 Extend to entire string find the most significant 

local alignment segment
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BLAST in 3 steps
Altschul et al, JMB 215:403-410, 1990

• Similarity matching of 

words (3 aa’s, 11 bases) 

– No need identical words

• If no words are similar, 

then no alignment

– Won’t find matches for 

very short sequences 

• MSP: Highest scoring pair 

of segments of identical 

length. A segment pair is 

locally maximal if it cannot 

be improved by extending 

or shortening the 

segments

• Find alignments w/ optimal 

max segment pair (MSP) 

score

• Gaps not allowed

• Homologous seqs will 

contain a MSP w/ a high 

score; others will be 

filtered out
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BLAST in 3 steps
Altschul et al, JMB 215:403-410, 1990

Step 1

• For the query, find the list of high scoring words 

of length w

Image credit: Barton
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BLAST in 3 steps
Altschul et al, JMB 215:403-410, 1990

Step 2

• Compare word list to db & find exact matches

Image credit: Barton
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BLAST in 3 steps
Altschul et al, JMB 215:403-410, 1990

Step 3

• For each word match, extend alignment in both 

directions to find alignment that score greater 

than a threshold s

Image credit: Barton
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Spaced seeds

• 111010010100110111 is an example of a spaced seed model 
with

– 11 required matches (weight=11)

– 7 “don’t care” positions

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT…

|| ||||||||| ||||| || |||||   ||||||

GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT…

111010010100110111

• 11111111111 is the BLAST seed model for comparing DNA 
seqs
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Observations on spaced seeds

• Seed models w/ different shapes can detect 

different homologies

– the 3rd base in a codon “wobbles” so a seed like 

110110110… should be more sensitive when 

matching coding regions

 Some models detect more homologies 

− More sensitive homology search

– PatternHunter I

 Use >1 seed models to hit more homologies

– Approaching 100% sensitive homology search

– PatternHunter II Exercise: Why does

the 3rd base wobbles?
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CAA?A??A?C??TA?TGG?

|||?|??|?|??||?|||?

CAA?A??A?C??TA?TGG?

111010010100110111

111010010100110111

PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

• BLAST’s seed usually 

uses more than one hits to 

detect one homology 

 Wasteful

• Spaced seeds uses fewer 

hits to detect one 

homology 

 Efficient 

TTGACCTCACC?

|||||||||||?

TTGACCTCACC?

11111111111

11111111111

1/4 chances to have 2nd hit 

next to the 1st hit 1/46 chances to have 2nd hit

next to the 1st hit
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PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

Proposition. The expected number of hits of a 

weight-W length-M model within a length-L region of 

similarity p is (L – M + 1) * pW

Proof.

For any fixed position, the prob of a hit is pW. 

There are L – M + 1 candidate positions. 

The proposition follows.
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Implication

• For L = 1017

– BLAST seed expects 

(1017 – 11 + 1) * p11 = 

1007 * p11 hits

– But ~1/4 of these overlap 

each other. So likely to 

have only ~750 * p11

distinct hits

– Our example spaced seed 

expects (1017 – 18 + 1) * 

p11 = 1000 * p11 hits

– But only 1/46 of these 

overlap each other. So 

likely to have ~1000 * p11

distinct hits

Spaced 

seeds 

likely to

be more

sensitive

& more 

efficient
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Sensitivity of PatternHunter I

Image credit: Li
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Speed of PatternHunter I

• Mouse Genome 

Consortium used 

PatternHunter to 

compare mouse 

genome & human 

genome

• PatternHunter did the 

job in a 20 CPU-days ---

it would have taken 

BLAST 20 CPU-years!

Nature, 420:520-522, 2002
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How to increase sensitivity?

• Ways to increase sensitivity:

– “Optimal” seed

– Reduce weight by 1

– Increase number of spaced seeds by 1

• Intuitively, for DNA seq,

– Reducing weight by 1 will increase number of 

matches 4 folds

– Doubling number of seeds will increase number of 

matches 2 folds

• Is this really so?
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How to increase sensitivity?

• Ways to increase 

sensitivity:

– “Optimal” seed

– Reduce weight by 1

– Increase number of 

spaced seeds by 1

• For L = 1017 & p = 50%

– 1 weight-11 length-18 model 

expects 1000/211 hits

– 2 weight-12 length-18 

models expect 2 * 1000/212

= 1000/211 hits

 When comparing regions w/ 

>50% similarity, using 2 

weight-12 spaced seeds 

together is more sensitive 

than using 1 weight-11 

spaced seed!

Exercise #12: Proof this claim
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PatternHunter II
Li et al, GIW, 164-175, 2003

• Idea

– Select a group of 

spaced seed models

– For each hit of each 

model, conduct 

extension to find a 

homology

• Selecting optimal 

multiple seeds is NP-

hard

• Algorithm to select 

multiple spaced seeds

– Let A be an empty set

– Let s be the seed such 

that A ⋃ {s} has the 

highest hit probability

– A = A ⋃ {s}

– Repeat until |A| = K

• Computing hit 

probability of multiple 

seeds is NP-hard
But see also Ilie & Ilie, “Multiple spaced seeds for 

homology search”, Bioinformatics, 23(22):2969-2977, 2007
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One weight-12

Two weight-12

One weight-11

Sensitivity of PatternHunter II

• Solid curves: Multiple (1, 2, 

4, 8,16) weight-12 spaced 

seeds

• Dashed curves: Optimal 

spaced seeds with weight 

= 11,10, 9, 8

 “Double the seed 

number” gains better 

sensitivity than “decrease 

the weight by 1”

se
n

si
ti

v
it

y

Image credit: Ma
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Expts on real data

• 30k mouse ESTs (25Mb) vs 4k human ESTs (3Mb) 

– downloaded from NCBI genbank

– “low complexity” regions filtered out

• SSearch (Smith-Waterman method) finds “all” 

pairs of ESTs with significant local alignments

• Check how many percent of these pairs can be 

“found” by BLAST and different configurations of 

PatternHunter II
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In fact, at 80% 

similarity, 100% 

sensitivity can 

be achieved 

using 40 

weight-9 seeds

Results

Image credit: Ma
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Farewell to Supercomputer Age

of sequence comparison!

Image credit: Bioinformatics Solutions Inc
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Concluding remarks
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What have we learned? 

• General methodology

– Dynamic programming

• Dynamic programming applications

– Pairwise Alignment

• Needleman-Wunsch global alignment algorithm 

• Smith-Waterman local alignment algorithm

– Multiple Alignment 

• Important tactics

– Indexing & filtering (BLAST)

– Spaced seeds (Pattern Hunter)



Any question?
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