
CS2220: Introduction to Computational Biology

Unit 4: Essence of Sequence Comparison

Wong Limsoon

For written notes on this lecture, please read chapter 10 of The Practical Bioinformatician, ond chapter 2 and 5

of Algorithms in Bioinformatics.

2

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Plan

• Dynamic programming

• Protein evolution

• String comparison

• Sequence alignment

– Pairwise alignment

– Multiple alignment

• Popular tools

– FASTA, BLAST, Pattern Hunter

Dynamic programming

4

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Knapsack problem

• Each item that can go into the knapsack has a

size and a benefit

• The knapsack has a certain capacity

• What should go into the knapsack to maximize

the total benefit?

5

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Formulation of a solution

• Intuitively, to fill a w-pound knapsack, we must

start by adding some item. If we add item j, we

end up with a knapsack k’ of size w − wj to fill …

where

– wj and bj be weight and benefit for item j

– g(w) is max benefit that can be gained from a w-

pound knapsack

Source: http://mat.gsia.cmu.edu/classes/dynamic/node6.html

6

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Exercise #1

• Does g(w) produce the optimal benefit? Prove it

where

– wj and bj be weight and benefit for item j

– g(w) is max benefit that can be gained from a w-

pound knapsack

7

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Direct recursive evaluation

is inefficient

65

30

6530

80

g(5)

g(4)g(3) g(2)

65 80 30

65

g(2)g(0)g(1)

g(0) g(0)

30

g(1)

30

g(0)

65

g(0)

30

g(1)

30

g(0)

65 80 30

g(3)g(1)g(2)

g(0)

30

g(1)

30

g(0)

30

g(0)

65 80 30

g(2)g(0)g(1)

30

g(0)

65

g(0)

30

g(1)

30

g(0)

160160 160

• g(1), g(2), … are computed many times

8

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

“Memoize” to avoid recomputation

80

80

30

30

6530

80

g(5)

g(4)g(3)

65 30

65
g(2)g(0)g(1)

g(0) g(0)

65

160160

int s[]; s[0] := 0;

g’(w) = if s[w] is defined

then return s[w];

else {

s[w] := maxj{bj + g’(w – wj)};

return s[w]; }

9

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Exercise #2

• In what order do s[0], s[1], … get defined?

int s[]; s[0] := 0;

g’(w) = if s[w] is defined

then return s[w];

else {

s[w] := maxj{bj + g’(w – wj)};

return s[w]; }

10

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Remove recursion: Dynamic programming

int s[]; s[0] := 0;

g’(w) = if s[w] is defined

then return s[w];

else {

s[w] := maxj{bj + g’(w – wj)};

return s[w]; }

int s[]; s[0] := 0; s[1] := 30;

s[2] := 65; s[3] = 95;

for i := 4 .. w do

s[i] := maxj{bj + s[i – wj]};

return s[w];

g(0) = 0

g(1) = 30, item 3

g(2) = max{65 + g(0) =65, 30 + g(1) = 60} = 65, item 1

g(3) = max{65 + g(1) = 95, 80 + g(0) = 80, 30 + g(2) = 95}

= 95, item 1/3

g(4) = max{65 + g(2) = 130, 80 + g(1) = 110, 30 + g(3) =

125} = 130, item 1

g(5) = max{65 + g(3) = 160, 80 + g(2) = 145, 30 + g(4) =

160} = 160, item 1/3

80

80

30

30

6530

80

g(5)

g(4)g(3)

65 30

65
g(2)g(0)g(1)

g(0) g(0)

65

160160

Protein evolution

12

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

A protein is a ...

• A protein is a large

complex molecule

made up of one or

more chains of

amino acids

• Proteins perform a

wide variety of

activities in the cell

13

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

In the course of evolution…

14

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Exercise #3

Let a = AFPHQHRVP

Let b = PQVYNIMKE

Suppose each generation differs from

the previous by 1 residue

What is the max difference between the

2nd generation of a?

What is the min difference between the

2nd generation of a and b?

15

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Therefore…

Two proteins

inheriting their

function from a

common ancestor

have very similar

amino acid

sequences

Sequence alignment

17

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Why we compare sequences

• The structure of a protein defines its function

– In order for a protein to have a specific function, it

must satisfy specific structural constraints

• Protein evolves → amino acid seq changes →

protein structure changes → breaks those

structural constraints → protein loses function

• The more similar two proteins’ amino acid

sequences are, the more likely they come from

the same ancestor → the more likely they have

the same structure and function

“Law”

Abduction

18

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Earliest research in seq comparison

• Doolittle et al. (Science, July 1983) searched for

platelet-derived growth factor (PDGF) in his own

DB. He found that PDGF is similar to v-sis

oncogene

PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34

p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

Source: Ken Sung

19

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Sequence alignment

• Key aspect of seq

comparison is seq

alignment

• A seq alignment

maximizes the

number of

positions that are in

agreement in two

sequences

Sequence U

Sequence V

mismatch

match

indel

20

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Applications of sequence comparison

• Infer protein function

– When two protein look similar, we conjecture they

come from the same ancestor and inherit the

ancestor’s function (i.e. they are homologous)

• Find evolution distance between two species

– Evolution modifies the DNA of species →

Similarity of their genome correlates with their

evolutionary distance

• Help genome assembly

– Human genome project reconstructs the whole

genome based on overlapping info of a huge

amount of short DNA pieces

21

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Poor sequence alignment

• Poor seq alignment shows few matched positions

 The two proteins are not likely to be homologous

No obvious match between

Amicyanin and Ascorbate Oxidase

22

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Good sequence alignment

• Good alignment usually has clusters of extensive

matched positions

 The two proteins are likely to be homologous

good match between

Amicyanin and unknown M. loti protein

23

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

h

Alignment:

Simple-minded probability & score

• Define score S(A) by simple log likelihood as

– S(A) = log(prob(A)) - [m log(s) + h log(s)], with

log(p/s) = 1

• Then S(A) = #matches -  #mismatches -  #indels

Exercise: Derive  and 

24

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Global pairwise alignment:

Problem definition

• The problem of finding a global pairwise

alignment is to find an alignment A so that S(A) is

max among exponential number of possible

alternatives

• Given sequences U and V of lengths n and m,

then number of possible alignments is given by

– f(n, m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1)

– f(n,n) ~ (1 + 2)2n+1 n-1/2

25

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Global pairwise alignment:

Dynamic programming solution

• Define an indel-similarity matrix s(.,.); e.g.,

– s(x,x) = 2

– s(x,y) = -, if x  y

• Then

This is the basic idea of the

Needleman-Wunsch algorithm

26

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Exercise #4

• What happens when  is large?

27

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Needleman-Wunsch algorithm (I)

• Consider two strings S[1..n] and T[1..m]

• Let V(i, j) be score of optimal alignment betw

S[1..i] and T[1..j]

• Basis:

– V(0, 0) = 0

– V(0, j) = V(0, j −1) − 

• Insert j times

– V(i, 0) = V(i − 1, 0) − 

• Delete i times

Source: Ken Sung

28

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Needleman-Wunsch algorithm (II)

• Recurrence: For i>0, j>0

• In the alignment, the last pair must be either

match/mismatch, delete, insert









−−

−−

+−−

=





)1,(

),1(

])[],[()1,1(

max),(

jiV

jiV

jTiSsjiV

jiV

Match/mismatch

Delete

Insert

Source: Ken Sung

xxx…xx xxx…xx xxx…x_

| | |

xxx…yy yyy…y_ yyy…yy

Match/mismatch Delete Insert

29

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example (I)

_ A G C A T G C

_ 0 −1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1

C − 2

A − 3

A − 4

T − 5

C − 6

C − 7

Source: Ken Sung

30

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example (II)

_ A G C A T G C

_ 0 −1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1 2

C − 2

A − 3

A − 4

T − 5

C − 6

C − 7

Source: Ken Sung

2

11

11

20

max

1

1

),(

max

0,1

1,0

0,0

1,1 =








−−

−−

+

=








−

−

+

=

S

S

AAsS

S

31

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example (III)

_ A G C A T G C

_ 0 −1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1 2 1

C − 2

A − 3

A − 4

T − 5

C − 6

C − 7

Source: Ken Sung

1

12

12

11

max

1

1

),(

max

1,1

2,0

1,0

2,1 =








−

−−

−+−

=








−

−

+

=

S

S

GAsS

S

32

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example (IV) / Exercise #5

_ A G C A T G C

_ 0 − 1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1 2 1 0 − 1 − 2 − 3 − 4

C − 2 1 1 ?

A − 3

A − 4

T − 5

C − 6

C − 7

3 2

Can you tell from these entries what are the

values of s(A,G), s(A,C), s(A,A), etc.?

Source: Ken Sung

33

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example (V) / Exercise #6

_ A G C A T G C

_ 0 −1 − 2 − 3 − 4 − 5 − 6 − 7

A − 1 2 1 0 − 1 − 2 − 3 -4

C − 2 1 1 3 2 1 0 -1

A − 3 0 0 2 5 4 3 2

A − 4 − 1 − 1 1 4 4 3 2

T − 5 − 2 − 2 0 3 6 5 4

C − 6 − 3 − 3 0 2 5 5 7

C − 7 − 4 − 4 − 1 1 4 4 7

Source: Ken Sung

What is the

alignment

corresponding

to this?

34

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Pseudo codes

Create the table V[0..n,0..m] and P[1..n,1..m];

V[0,0] = 0;

For j=1 to m, set V[0,j] := v[0,j − 1] −  ;

For i=1 to n, set V[i,0] := V[i − 1,0] −  ;

For j=1 to m {

For i = 1 to n {

set V[i,j] := V[i,j − 1] −  ;

set P[i,j] := (0, − 1);

if V[i,j] < V[i − 1,j] −  then

set V[i,j] := V[i − 1,j] −  ;

set P[i,j] := (− 1, 0);

if (V[i,j] < V[i − 1, j − 1] + s(S[i],T[j])) then

set V[i,j] := V[i − 1, j − 1] + s(S[i],T[j]);

set P[i,j] := (− 1, − 1);

}

}

Backtracking P[n,m] to P[0,0] to find optimal alignment;

Source: Ken Sung

35

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Analysis

• We need to fill in all entries in the nm matrix

• Each entry can be computed in O(1) time

 Time complexity = O(nm)

 Space complexity = O(nm)

Source: Ken Sung

Exercise: Write down the memoized version of

Needleman-Wunsch. What is its time/space

complexity?

36

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Problem on speed

• Aho, Hirschberg, Ullman

1976

– If we can only compare

whether two symbols are

equal or not, the string

alignment problem can

be solved in (nm) time

• Hirschberg 1978

– If symbols are ordered

and can be compared,

the string alignment

problem can be solved in

(n log n) time

• Masek and Paterson 1980

– Based on Four-Russian’s

paradigm, the string

alignment problem can

be solved in O(nm/log2

n) time

• Let d be the total number

of inserts and deletes.

Thus 0  d  n+m. If d is

smaller than n+m, can we

get a better algorithm?

Yes!

Source: Ken Sung

37

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

O(dn)-time algorithm

• The alignment should be inside the 2d+1 band

 No need to fill-in the lower and upper triangle

 Time complexity: O(dn)

2d+1

Source: Ken Sung

38

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example

• d=3

A_CAATCC

AGCA_TGC

_ A G C A T G C

_ 0 -1 -2 -3

A -1 2 1 0 -1

C -2 1 1 3 2 1

A -3 0 0 2 5 4 3

A -1 -1 1 4 4 3 2

T -2 0 3 6 5 4

C 0 2 5 5 7

C 1 4 4 7

39

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Exercise #7 /

Recursive equation for O(dn)-time algo

Write down the base cases, the

memoized version, and the non-

recursive version.

v(i – 1, j – 1) + s(S[i], S[j])

v(i, j) = max v(i – 1, j) – , if | i – j | < d

v(i, j – 1) – , if | i – j | < d

40

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Problem on space

• Dynamic programming requires O(mn) space

• When we compare two very long sequences,

space may be the limiting factor

• Can we solve the string alignment problem in

linear space?

41

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Easy, if no need to recover alignment

• When filling row 4,

it depends only on

row 3

– No need to keep

rows 1 and 2

• I.e., we only need

to keep two rows

“Cost only” algo

_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7

A -1 2 1 0 -1 -2 -3 -4

C -2 1 1 3 2 1 0 -1

A -3 0 0 2 5 4 3 2

A -4 -1 -1 1 4 4 3 2

T -5 -2 -2 0 3 6 5 4

C -6 -3 -3 0 2 5 5 7

C -7 -4 -4 -1 1 4 4 7

42

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Recovering alignment in O(n+m) space

• Use cost-only algo to find mid-point of alignment

• Divide the problem into two halves

• Recursively deduce alignments for the two halves

n/2 n/2 n/2

3n/4

n/4

mid-point

43

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

How to find mid-point

• Do cost-only dynamic programming for 1st half

– I.e., find V(S[1..n/2], T[1..j]) for all j

• Do cost-only dynamic programming for 2nd half

– i.e., find V(S[n/2+1..n], T[j+1..m]) for all j

• Determine j which maximizes the sum above

 ])..1[],..1[(])..1[],..1[(max

])..1[],..1[(

22
0

mjTnSVjTSV

mTnSV

nn

mj
+++

=



44

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example
Step 1 Step 2

Step 3Step 4: Recursive on subproblems

45

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Complexity analysis

• Space

– O(m) working memory for finding mid-point

– Once mid-point is found, can free working

memory → In each recursive call, we only

need to store the alignment path

– Alignment subpaths are disjoint → total

space required is O(n+m)

• Time? This one is for you to think about ☺

46

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Global pairwise alignment:

More Realistic Handling of Indels

• In Nature, indels of several adjacent letters are

not the sum of single indels, but the result of one

event

• So reformulate as follows:

47

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Gap penalty

• g(q):→ is the penalty of a gap of length q

• Note g() is subadditive, i.e, g(p+q)  g(p) + g(q)

• If g(k) =  + k, the gap penalty is called affine

– A penalty () for initiating the gap

– A penalty () for the length of the gap

Source: Ken Sung

48

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

N-W algo w/ general gap penalty (I)

• Global alignment of S[1..n] and T[1..m]:

– Denote V(i, j) be the score for global alignment

between S[1..i] and T[1..j]

– Base cases:

• V(0, 0) = 0

• V(0, j) = g(j)

• V(i, 0) = g(i)

Source: Ken Sung

49

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

N-W algo w/ general gap penalty (II)

• Recurrence for i>0 and j>0,













−+

−+

+−−

=

−

−

)}(),({max

)}(),({max

])[],[()1,1(

max),(

10

10

kigjkV

kjgkiV

jTiSjiV

jiV

ik

jk

 Match/mismatch

Insert T[k+1..j]

Delete S[k+1..i]

Source: Ken Sung

50

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Analysis

• We need to fill in all entries in the nm table

• Each entry can be computed in O(max{n, m}) time

 Time complexity = O(nm max{n, m})

 Space complexity = O(nm)

Source: Ken Sung

51

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Variations of pairwise alignment

• Fitting a “short’’ seq

to a “long’’ seq

• Indels at beginning

and end are not

penalized

• Find “local” alignment

• Find i, j, k, l, so that

– S(A) is maximized,

– A is alignment of ui…uj

and vk…vl

U

V

U

V

52

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Local alignment

• Given two long DNAs, both of them contain the

same gene or closely related gene

– Can we identify the gene?

• Local alignment problem: Given two strings

S[1..n] and T[1..m], among all substrings of S and

T, find substrings A of S and B of T whose global

alignment has the highest score

Source: Ken Sung

53

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Brute-force solution

• Algorithm:

– For every substring A of S, for every substring B of

T, compute the global alignment of A and B

– Return the pair (A, B) with the highest score

• Time:

– There are n2 choices of A and m2 choices of B

– Global alignment computable in O(nm) time

– In total, time complexity = O(n3m3)

• Can we do better?

Source: Ken Sung

54

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Some background / Exercise #8

• X is a suffix of S[1..n] if X=S[k..n] for some k1

• X is a prefix of S[1..n] if X=S[1..k] for some kn

• E.g.

– Consider S[1..7] = ACCGATT

– ACC is a prefix of S, GATT is a suffix of S

– Empty string is both prefix and suffix of S

Source: Ken Sung

Which other string is both a prefix and suffix of S?

55

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Dynamic programming for

local alignment problem

• Define V(i, j) be max score of global alignment of

A and B over

– all suffixes A of S[1..i] and

– all suffixes B of T[1..j]

• Then, score of local alignment is

– maxi,j V(i ,j)

Source: Ken Sung

56

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Smith-Waterman algorithm

• Basis:

V(i, 0) = V(0, j) = 0

• Recursion for i>0 and j>0:













−−

−−

+−−
=





)1,(

),1(

])[],[()1,1(

0

max),(

jiV

jiV

jTiSsjiV
jiV

Match/mismatch

Delete

Insert

Ignore initial segment

Source: Ken Sung

57

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example (I)
• Score for match = 2

• Score for insert, delete,

mismatch = −1

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0

C 0

A 0

A 0

T 0

C 0

G 0

Source: Ken Sung

58

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Example (II) / Exercise #9

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0 0 0 0 2 1 0 0

C 0 2 1 2 1 1 0 2

A 0 0 1 1 4 3 2 1

A 0 0 0 0 3 3 2 1

T 0 0 ?

C

G

1 22

• Score for match = 2

• Score for insert, delete,
mismatch = −1

Source: Ken Sung

60

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Analysis / Exercise #10

• Need to fill in all entries in the nm matrix

• Each entries can be computed in O(1) time

• Finally, finding the entry with the max value

 Time complexity = ??

 Space complexity = O(nm)

What is the time complexity?

Source: Ken Sung

61

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Local alignment with at most d indels

• Cf. global alignment with at most d index has time

complexity O(dn)

62

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Photos

Limsoon & Temple Smith Ken & Michael Waterman

Scoring function

64

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Scoring function for DNA

• For DNA, since we only have 4 nucleotides, the

score function is simple

– BLAST matrix

– Transition-transversion matrix: Give mild penalty

for replacing purine by purine. Similar for replacing

pyrimadine by pyrimadine

A C G T

A 5 -4 -4 -4

C -4 5 -4 -4

G -4 -4 5 -4

T -4 -4 -4 5

A C G T

A 1 -5 -1 -5

C -5 1 -5 -1

G -1 -5 1 -5

T -5 -1 -5 1

BLAST Matrix Transition-Transversion Matrix

65

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Scoring function for protein

• Commonly, it is devised based on two criteria:

– Chemical/physical similarity

– Observed substitution frequencies

66

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Scoring function for protein using

physical/chemical properties

• An amino acid is more likely to be substituted by

another if they have similar property [Karlin &

Ghandour, PNAS, 82:8597, 1985]

• The score matrices can be derived based on

hydrophobicity, charge, electronegativity, & size

• E.g., give higher score for substituting nonpolar

amino acid to another nonpolar amino acid

67

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Scoring function for protein

based on statistical model

• Most often used approaches

• Two popular matrices:

– Point Accepted Mutation (PAM) matrix

– BLOSUM

• Both methods define the score as the log-odds

ratio between the observed substitution rate and

the expected substitution rate

• https://en.wikipedia.org/wiki/Substitution_matrix

https://en.wikipedia.org/wiki/Substitution_matrix

68

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Point Accepted Mutation (PAM)

• PAM was developed by Dayhoff (1978)

• A point mutation means substituting one residue

by another

– It is called an accepted point mutation if the

mutation does not change the protein’s function or

is not fatal

• Two sequence S1 and S2 are said to be 1 PAM

diverged if a series of accepted point mutations

can convert S1 to S2 with an average of 1

accepted point mutation per 100 residues

69

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

PAM matrix by example (I)

• Ungapped alignment is constructed for high

similarity amino acid sequences (usually >85%)

• Below is a simplified gap-free global multiple

alignment of some highly similar amino acid seqs

– IACGCTAFK

IGCGCTAFK

LACGCTAFK

IGCGCTGFK

IGCGCTLFK

LASGCTAFK

LACACTAFK

70

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

PAM matrix by example (II)

• Build the phylogenetic tree for the sequences

IACGCTAFK

IGCGCTAFK LACGCTAFK

LACACTAFKLASGCTAFKIGCGCTLFKIGCGCTGFK

A→G I→L

A→G A→L C→S G→A

71

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

PAM-1 matrix

• Oa,b and Ea,b are observed and expected freq

– Oa,a = 99/100, as PAM-1 assumes 1 mutation per 100

residues

– For ab, Oa,b = Fa,b / (100 xy Fx,y) where Fa,b is freq

of substituting a by b or b by a

– Ea,b = fa * fb where fx is # of x divided by total residues

• E.g., FA,G = 3, FA,L=1, fA = fG = 10/63, then OA,G =

3/(100*2*6) = 0.0025, EA,G = (10/63)(10/63) = 0.0252,

(A,G) = log (0.0025 / 0.0252) = log (0.09925) = -1.0034

ba,

ba,

10
E

O
log),(=ba

72

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Exercise #11

• OA,G = 3/(100 * 2 * 6)

• Where do the 2 and 6

come from?

74

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

PAM-n matrix

• Let Ma,b = Oa,b / fa be prob that a is mutated to b

• Mn(a,b) is prob that a is mutated to b after n mutations

• PAM-n matrix is created by extrapolating PAM-1

• PAM-n matrix is computed as follows.

– At time t, suppose the residue is a

– At time t+1, prob that it becomes j is M(a,b)

– At time t+2, prob that it becomes j is M2(a,b)

– …

– At time t+n, prob that it becomes j is Mn(a,b)

 (a,b) entry of PAM-n matrix is log(fa Mn(a,b)/fa fb) =

log(Mn(a,b)/fb)

75

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

BLOSUM (BLOck SUbstition Matrix)

• PAM did not work well for aligning evolutionarily

divergent sequences since the matrix is

generated by extrapolation

• Henikoff and Henikoff (1992) proposed BLOSUM

• Unlike PAM, BLOSUM matrix is constructed

directly from the observed alignment (instead of

extrapolation)

76

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Generating conserved blocks

• In BLOSUM, the input is a set of multiple

alignments for nonredundant groups of protein

families

• Based on PROTOMAT, blocks of nongapped local

aligments are derived

• Each block represents a conserved region of a

protein family

77

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Extract frequencies from blocks

•

78

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

BLOSUM scoring function

• For each pair of aligned residues a and b, the

alignment score (a,b) = (1/)(ln pab/(papb))

– pab is prob that a and b are observed to align

together

– pa and pb are freq of residues a and b

–  is a normalization constant

• Example: pL=0.099, pA=0.074, pAL = 0.0044. With

=0.347, (A,L) = -1.47

79

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

What is BLOSUM 62?

• To reduce multiple contributions to amino acid

pair freq from the most closely related members

of a family, similar seqs are merged within block

• BLOSUM p matrix is created by merging seqs

with p% similarity

• Example

– AVAAA, AVAAA, AVAAA, AVLAA, VVAAL

– First 4 seqs have 80% similarity. Similarity of last

seq with the other 4 sequences is <62%

– For BLOSUM 62, we group first 4 seqs and get

AV[A0.75L0.25]AA, VVAAL. Then pAV = 1/5, pAL =

(0.25 + 1)/5.

80

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

BLOSUM vs PAM

• BLOSUM 80  PAM 1

• BLOSUM 62  PAM 120

• BLOSUM 45  PAM 250

• BLOSUM 62 is the

default matrix for

BLAST 2.0

Multiple sequence alignment

82

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

What is a domain

• A domain is a component of a protein that is self-

stabilizing and folds independently of the rest of

the protein chain

– Not unique to protein products of one gene; can

appear in a variety of proteins

– Play key role in the biological function of proteins

– Can be "swapped" by genetic engineering betw

one protein and another to make chimeras

• May be composed of one, more than one, or not

any structural motifs (often corresponding to

active sites)

83

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Discovering domain and active sites

• How do we find the domain and associated active

sites in the protein above?

>gi|475902|emb|CAA83657.1| protein-tyrosine-phosphatase alpha

MDLWFFVLLLGSGLISVGATNVTTEPPTTVPTSTRIPTKAPTAAPDGGTTPRVSSLNVSSPMTTSAPASE

PPTTTATSISPNATTASLNASTPGTSVPTSAPVAISLPPSATPSALLTALPSTEAEMTERNVSATVTTQE

TSSASHNGNSDRRDETPIIAVMVALSSLLVIVFIIIVLYMLRFKKYKQAGSHSNSFRLPNGRTDDAEPQS

MPLLARSPSTNRKYPPLPVDKLEEEINRRIGDDNKLFREEFNALPACPIQATCEAASKEENKEKNRYVNI

LPYDHSRVHLTPVEGVPDSHYINTSFINSYQEKNKFIAAQGPKEETVNDFWRMIWEQNTATIVMVTNLKE

RKECKCAQYWPDQGCWTYGNIRVSVEDVTVLVDYTVRKFCIQQVGDVTNKKPQRLVTQFHFTSWPDFGVP

FTPIGMLKFLKKVKTCNPQYAGAIVVHCSAGVGRTGTFIVIDAMLDMMHAERKVDVYGFVSRIRAQRCQM

VQTDMQYVFIYQALLEHYLYGDTELEVTSLEIHLQKIYNKVPGTSSNGLEEEFKKLTSIKIQNDKMRTGN

LPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASFIDGYRRRTPTCQPRPVQHTIEDFWRMIWEWK

SCSIVMLTELEERGQEKCAQYWPSDGSVSYGDINVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFH

GWPEVGIPSDGKGMINIIAAVQKQQQQSGNHPMHCHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVK

SLRLQRPHMVQTLEQYEFCYKVVQEYIDAFSDYANFK

84

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Domain/active sites as emerging patterns

• How to discover active site and/or domain?

• If you are lucky, domain has already been

modelled

– BLAST, HMMPFAM, …

• If you are unlucky, domain not yet modelled

– Find homologous seqs

– Do multiple alignment of homologous seqs

– Determine conserved positions

 Emerging patterns relative to background

 Candidate active sites and/or domains

85

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

In the course of evolution…

86

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Multiple alignment: Example

• Multiple seq alignment maximizes number of

positions in agreement across several seqs

• Seqs belonging to same “family” usually have

more conserved positions in a multiple seq

alignment

Conserved sites

87

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Multiple alignment: Naïve approach

• Let S(A) be the score of a multiple alignment A.

The optimal multiple alignment A of sequences

U1, …, Ur can be extracted from the following

dynamic programming computation of Sm1,…,mr:

• This requires O(2r) steps

Exercise for the Brave:

Propose a practical approximation

Popular tools for sequence comparison:

FASTA, BLAST, Pattern Hunter

89

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Scalability

• Increasing # of sequenced

genomes: yeast, human,

rice, mouse, fly, …

• S/w must be “linearly”

scalable to large datasets

90

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Database search

• Consider a database D of genomic sequences (or

protein sequences)

• Given a query string Q,

– Look for string S in D which is the closest match to

the query string Q

– Two meanings for closest match:

• S and Q has a semi-global alignment (forgive the

spaces at the two ends of Q)

• S and Q have a local alignment

91

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Goodness of a search algorithm

• Sensitivity

– Ability to detect “true positive”

– Measured as the probability of finding the match

given the query and the database sequence has

only x% similarity

• Specificity

– Ability to reject “false positive”

• A good search algorithm should be both sensitive

and specific

92

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Need heuristics for

sequence comparison

• Time complexity for

optimal alignment is

O(n2), where n is seq

length

 Given current size of

seq databases, use of

optimal algorithms is

not practical for

database search

• Heuristic techniques:

– BLAST

– FASTA

– Pattern Hunter

– MUMmer, ...

• Speed up:

– 20 min (optimal

alignment)

– 2 min (FASTA)

– 20 sec (BLAST)
Exercise: Describe MUMer

93

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Basic idea: Indexing & filtering

• Good alignment includes short identical, or

similar fragments

 Break entire string into substrings, index the

substrings

 Search for matching short substrings and use as

seed for further analysis

 Extend to entire string find the most significant

local alignment segment

94

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

BLAST in 3 steps
Altschul et al, JMB 215:403-410, 1990

• Similarity matching of

words (3 aa’s, 11 bases)

– No need identical words

• If no words are similar,

then no alignment

– Won’t find matches for

very short sequences

• MSP: Highest scoring pair

of segments of identical

length. A segment pair is

locally maximal if it cannot

be improved by extending

or shortening the

segments

• Find alignments w/ optimal

max segment pair (MSP)

score

• Gaps not allowed

• Homologous seqs will

contain a MSP w/ a high

score; others will be

filtered out

95

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

BLAST in 3 steps
Altschul et al, JMB 215:403-410, 1990

Step 1

• For the query, find the list of high scoring words

of length w

Image credit: Barton

96

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

BLAST in 3 steps
Altschul et al, JMB 215:403-410, 1990

Step 2

• Compare word list to db & find exact matches

Image credit: Barton

97

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

BLAST in 3 steps
Altschul et al, JMB 215:403-410, 1990

Step 3

• For each word match, extend alignment in both

directions to find alignment that score greater

than a threshold s

Image credit: Barton

98

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Spaced seeds

• 111010010100110111 is an example of a spaced seed model
with

– 11 required matches (weight=11)

– 7 “don’t care” positions

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT…

|| ||||||||| ||||| || ||||| ||||||

GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT…

111010010100110111

• 11111111111 is the BLAST seed model for comparing DNA
seqs

99

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Observations on spaced seeds

• Seed models w/ different shapes can detect

different homologies

– the 3rd base in a codon “wobbles” so a seed like

110110110… should be more sensitive when

matching coding regions

 Some models detect more homologies

− More sensitive homology search

– PatternHunter I

 Use >1 seed models to hit more homologies

– Approaching 100% sensitive homology search

– PatternHunter II Exercise: Why does

the 3rd base wobbles?

100

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

CAA?A??A?C??TA?TGG?

|||?|??|?|??||?|||?

CAA?A??A?C??TA?TGG?

111010010100110111

111010010100110111

PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

• BLAST’s seed usually

uses more than one hits to

detect one homology

 Wasteful

• Spaced seeds uses fewer

hits to detect one

homology

 Efficient

TTGACCTCACC?

|||||||||||?

TTGACCTCACC?

11111111111

11111111111

1/4 chances to have 2nd hit

next to the 1st hit 1/46 chances to have 2nd hit

next to the 1st hit

101

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

Proposition. The expected number of hits of a

weight-W length-M model within a length-L region of

similarity p is (L – M + 1) * pW

Proof.

For any fixed position, the prob of a hit is pW.

There are L – M + 1 candidate positions.

The proposition follows.

102

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Implication

• For L = 1017

– BLAST seed expects

(1017 – 11 + 1) * p11 =

1007 * p11 hits

– But ~1/4 of these overlap

each other. So likely to

have only ~750 * p11

distinct hits

– Our example spaced seed

expects (1017 – 18 + 1) *

p11 = 1000 * p11 hits

– But only 1/46 of these

overlap each other. So

likely to have ~1000 * p11

distinct hits

Spaced

seeds

likely to

be more

sensitive

& more

efficient

103

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Sensitivity of PatternHunter I

Image credit: Li

104

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Speed of PatternHunter I

• Mouse Genome

Consortium used

PatternHunter to

compare mouse

genome & human

genome

• PatternHunter did the

job in a 20 CPU-days ---

it would have taken

BLAST 20 CPU-years!

Nature, 420:520-522, 2002

105

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

How to increase sensitivity?

• Ways to increase sensitivity:

– “Optimal” seed

– Reduce weight by 1

– Increase number of spaced seeds by 1

• Intuitively, for DNA seq,

– Reducing weight by 1 will increase number of

matches 4 folds

– Doubling number of seeds will increase number of

matches 2 folds

• Is this really so?

106

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

How to increase sensitivity?

• Ways to increase

sensitivity:

– “Optimal” seed

– Reduce weight by 1

– Increase number of

spaced seeds by 1

• For L = 1017 & p = 50%

– 1 weight-11 length-18 model

expects 1000/211 hits

– 2 weight-12 length-18

models expect 2 * 1000/212

= 1000/211 hits

 When comparing regions w/

>50% similarity, using 2

weight-12 spaced seeds

together is more sensitive

than using 1 weight-11

spaced seed!

Exercise #12: Proof this claim

107

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

PatternHunter II
Li et al, GIW, 164-175, 2003

• Idea

– Select a group of

spaced seed models

– For each hit of each

model, conduct

extension to find a

homology

• Selecting optimal

multiple seeds is NP-

hard

• Algorithm to select

multiple spaced seeds

– Let A be an empty set

– Let s be the seed such

that A ⋃ {s} has the

highest hit probability

– A = A ⋃ {s}

– Repeat until |A| = K

• Computing hit

probability of multiple

seeds is NP-hard
But see also Ilie & Ilie, “Multiple spaced seeds for

homology search”, Bioinformatics, 23(22):2969-2977, 2007

108

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

One weight-12

Two weight-12

One weight-11

Sensitivity of PatternHunter II

• Solid curves: Multiple (1, 2,

4, 8,16) weight-12 spaced

seeds

• Dashed curves: Optimal

spaced seeds with weight

= 11,10, 9, 8

 “Double the seed

number” gains better

sensitivity than “decrease

the weight by 1”

se
n

si
ti

v
it

y

Image credit: Ma

109

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Expts on real data

• 30k mouse ESTs (25Mb) vs 4k human ESTs (3Mb)

– downloaded from NCBI genbank

– “low complexity” regions filtered out

• SSearch (Smith-Waterman method) finds “all”

pairs of ESTs with significant local alignments

• Check how many percent of these pairs can be

“found” by BLAST and different configurations of

PatternHunter II

110

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

In fact, at 80%

similarity, 100%

sensitivity can

be achieved

using 40

weight-9 seeds

Results

Image credit: Ma

111

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Farewell to Supercomputer Age

of sequence comparison!

Image credit: Bioinformatics Solutions Inc

112

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

About the inventor: Ming Li

• Ming Li

– Canada Research Chair

Professor of

Bioinformatics,

University Professor,

Univ of Waterloo

– Fellow, Royal Society of

Canada. Fellow, ACM.

Fellow, IEEE

Concluding remarks

114

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

What have we learned?

• General methodology

– Dynamic programming

• Dynamic programming applications

– Pairwise Alignment

• Needleman-Wunsch global alignment algorithm

• Smith-Waterman local alignment algorithm

– Multiple Alignment

• Important tactics

– Indexing & filtering (BLAST)

– Spaced seeds (Pattern Hunter)

Any question?

116

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

Acknowledgements

• Some slides on popular sequence alignment

tools are based on those given to me by Bin Ma

and Dong Xu

• Some slides on Needleman-Wunsch, Smith-

Waterman, and scoring functions are based on

those given to me by Ken Sung

117

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

References

• S. B. Needleman, C. D. Wunsch. “A general method applicable

to the search for similarities in the amino acid sequence of two

proteins”, JMB, 48:444-453, 1970

• T. F. Smith, M. S. Waterman. “Identification of common

molecular subsequences”, JMB, 147:195-197, 1981

• M. O. Dayhoff, R. M. Schwartz, B. C. Orcutt. A model of

evolutionary change in proteins. In M. O. Dayhoff (ed) Atlas of

Protein Sequence and Structure, vol 5, suppl 3, pp. 345-352,

1978

• S. Henikoff, J.Henikoff, Amino acid substitution matrices from

protein blocks. PNAS, 89(biochemistry): 10915 - 10919 , 1992

118

CS2220, AY2021/22 Copyright 2021 © Wong Limsoon

References

• S. F. Altshcul et al. “Basic local alignment search tool”, JMB, 215:403-

410, 1990

• S. F. Altschul et al. “Gapped BLAST and PSI-BLAST: A new generation

of protein database search programs”, NAR, 25(17):3389-3402, 1997

• B. Ma et al. “PatternHunter: Faster and more sensitive homology

search”, Bioinformatics, 18:440-445, 2002

• M. Li et al. “PatternHunter II: Highly sensitive and fast homology

search”, GIW, 164-175, 2003

• D. Brown et al. “Homology Search Methods”, The Practical

Bioinformatician, Chapter 10, pp 217-244, WSPC, 2004

