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Lecture Outline

Clustering, aka unsupervised learning

Association rule mining

Classification, aka supervised learning

Class-imbalance learning
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Objective of Cluster Analysis

 Find groups of objects s.t. objects in a group are
— Similar (or related) to one another
— Diff from (or unrelated to) objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized
_ Distinctive, apart
Cohesive, compact




The notion of a “cluster” NUS

can be ambiguous
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Supervised vs. Unsupervised Learn“ﬂ?@?m

« Supervised learning (aka classification)

— Training data (observations, measurements, etc.)
are accompanied by class

— New data is classified based on training data

 Unsupervised learning (aka clustering)
— Class labels of training data are unknown

— Given a set of measurements, observations, etc.,
aim to establish existence of classes in the data
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Typical Clustering Techniques

« Partitional clustering: K-means

— Division of data objects into non-overlapping
subsets (clusters) s.t. each data object is in
exactly one subset

 Hierarchical clustering: Agglomerative approach

— A set of nested clusters organized as a
hierarchical tree

 Subspace clustering and bi-/co-clustering

— Simultaneous clustering on a subset of tuples and
a subset of attributes
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Partitional Clustering: K-Means

e Each cluster has a centroid

 Each point is assigned to a cluster based on
closest centroid

« # of clusters, K, must be specified

Select K points as the initial centroids.

repeat
Form K clusters by assigning all points to the closest centroid.

Recompute the centroid of each cluster.

() e s N

until The centroids don’t change
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More Detalls of K-Means Clusterin
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 Initial centroids are often chosen randomly
— Clusters produced vary from one run to another
* Centroid is the “mean” of points in the cluster

 “Closeness” is measured by Euclidean distance,
cosine similarity, correlation, etc

 K-means usually converges in a few iterations

— Often the stopping condition is changed to “until
relatively few points change clusters”

« Complexity is O(n *K *1 *d)
— n =# of points, K = # of clusters, | = # of iterations,
d = # of attributes
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Example Iterations by K-Means
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Two Different K-means Clustering
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Evaluating K-means Clusters ~ "

« Sum of Squared Error (SSE) is commonly used
— Error of a point is its distance to nearest centroid
— Square these errors and sum them to get SSE
K
SSE =Y > dist?(m;, x)
=1 xeC;

where C, is a cluster, m; is its centroid

 Can reduce SSE by increasing K, the # of clusters

A good clustering with smaller K can have a
lower SSE than a poor clustering with higher K
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Importance of Choosing Initial CentrSRIE™
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Solutions to Initial Centroid Proble

 Multiple runs
— Helps, but probability is not on your side

« Use hierarchical clustering to determine initial
centroids

« Select >k initial centroids and then select the
most widely separated among these initial
centroids

« Use more advanced algos, like “Bisecting K-
Means”, that are not as susceptible to
Initialization issues
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Differing Sizes

Limitations of K-means

* Has problems - N PRk
When CI USterS are Original Poi:\ts K-mea'ns (3 Clusters)

Of d Iffel’l ng Differing Density
— Sizes

— Densities
— Non-globular shapes

S s ot
Non-globular Shaj
* Also has problems . G,
when data contain { &9 1 &Y
outliers W i}
Oﬂglml‘Poims K-moam.(z Clusters)
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Differing Sizes

Overcoming ]
K-means’ Limitations orignal Ponts
Differing Densities
& o 8
* One solution is to |
use many clusters o .
- Flnd parts Of CIUSterS Orlgin;l Points K-mean; Clusters
— But need to put them ~ Nonglobular Shapes
together i, 3
” ol
5

Original Points K-means Clusters
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Hierachical Clustering

Hierarchical clustering
 Organize similar data into groups

« Form groups into a hierarchical tree structure,
termed a Dendrogram

« Offer useful visual descriptions of data

« Two approaches

— Agglomerative
« Build the tree by finding most related objects first
— Divisive
« Build the tree by finding most dissimilar objects first.
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Which pairs of tuples are similar %‘?’ NUS
based on the data matrix?

of Singapore

n features (order of 1000)

senel gene2 gene3 gened .. gene n Distance Matrix

m tuples |
J » Square, symmetrical

Similar?

* Element value is

Distance (similarity) Matrix

0 le2 les | et ls | based on a similarity
» function, e.qg.,
o2 Euclidian distance
p3
& - Sometimes, it’s called
p5

a Similarity Matrix or a
P(i, j) = dist(pi, pj) PI‘OXImIty Mat“X
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 Basic algo is straightforward

Compute proximity matrix
Let each data point be a cluster
Repeat

Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains

« Key is computing proximity of two clusters

— Diff approaches to defining distance betw clusters
distinguish the diff algos
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Starting Situation
e Start with clusters 1 p1| p2 | p3 | pa|ps
of individual points .
and a proximity »
matrix p4
O 0 =
O Proximity Matrix
O O
O
O
O
O
OO O ® © © © - © © © ©
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Intermediate Situation

C2

C3

C4
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C5

« After some merging c1
steps, we have =
some clusters z

g
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Intermediate Situation

* We want to merge c1]cz2 | c3
two closest clusters =
N
(C2, C5) and update 2N\

the proximity matrix

|

N
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Defining Inter-Cluster Similarity ~ =
Average
Linkage

Similarity?
Distance

Single
Linkage

Between
Centroids

Other methods use an
objectlve function

— Ward’s method uses
sqguared error

Complete
Linkage

2

3
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Finally, get a resulting dendrogra
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NUS
Strengths of Hierarchical Clustering” =

 NoO need to assume any particular # of clusters

— Any desired number of clusters can be obtained
by ‘cutting’ the dendogram at the proper level

« They may correspond to meaningful taxonomies

— Example in biological sciences (e.g., animal
kingdom, phylogeny reconstruction, ...)
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Divisive Hierarchical Clustering

 Start with one, all-inclusive cluster

« At each step, split a cluster until each cluster
contains a point (or there are k clusters)

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

1: Compute a minimum spanning tree for the proximity graph.

2. repeat
3: Create a new cluster by breaking the link corresponding to the largest distance
(smallest similarity).

4: until Only singleton clusters remain

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



« To build a MST (Minimum Spanning Tree)

— Start with a tree that consists of any point

— In successive steps, look for the closest pair of
points (p, q) s.t. pis in the current tree but q is not

— Add g to the tree and put an edge betw p and g

0 01 02 03 04 05 06
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Subspace Clustering

* Cluster boundaries clear only the subspaces

Bi- or Co-Clustering

« Simultaneous clustering on a subset of attributes
and a subset of tuples

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong
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High-Dimensional Data

 Many applications need clustering on high-
dimensional data

— Text documents
— Microarray data

 Major challenges:
— Many irrelevant dimensions may mask clusters

— Distance measure becomes meaningless
 The “equi-distance” phenomenon

— Clusters may exist only in some subspaces

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong
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The Curse of Dimensionality

« Datain only one dimension is relatively packed

 Adding a dimension “stretches” the points across that
dimension, making them further apart

« Adding more dimensions makes the points further apart
— High-dimensional data is sparse

= Distance measure becomes meaningless, as most data
points become equi-distance to each other
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Image credit: Parsons et al. KDD Explorations, 2004
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identifying which clusters?
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CLIQUE (Clustering In QUESst)

« Automatically identify subspaces of a high
dimensional data space that allow better

clustering than original space

— Agrawal et al. “Automatic Subspace Clustering of High Dimensional
Data”. Data Min. Knowl. Discov., 11(1):5-33, 2005

CLIQUE: The Major Steps

* Partition the data space
+ ldentify subspaces that contain clusters
— Use the "Apriori Principle”

* Find dense units in all subspaces

+ Generate minimal description for the clusters

— Determine maximal regions that cover a cluster of
connected dense units

— Determination of minimal cover for each cluster

CS4220,AY2011/12 Copyright 2011 © Limsoon Wong
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Biclustering

* Please read these two papers yourself ©
— Cheng & Church. “Biclustering of expression data”. ISMB 2000

— Madeira & Oliveira. “Biclustering algorithms for biological data
analysis: A survey”. TCBB, vol.1, 2004

CS4220, AY2011/12

Biclusters = small
boxes of homogeneity

A small box =
A subset of attributes X

A subset of tuples
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A special case of biclustering: o NUS
Biclique detection

of Singapore

« When the table is a binary matrix of Os and 1s
« Convert the table into a bipartite graph

Bipartite Graph Representation

7 features in the table Features 1...7

9 tuples in the table

« Then, a max biclique corresponds to a bicluster

« A good algo for max biclique can be found at

— Li et al. “Maximal bicliqgue subgraphs and closed pattern pairs of the
adjacency matrix: A one-to-one correspondence and mining
algorithms”. TKDE, 19:1625-1637, 2007

CS4220,AY2011/12 Copyright 2011 © Limsoon Wong



What have we learned?

« Partitional clustering « How to evaluate

— K-means quality of clusters
— SSE
« Hierarchical
clustering
. A general strategy for
— Agglomerative e
some difficult-to-
approach

cluster situations
— Differing sizes
— Differing densities
— Non-globular

— Divisive approach

 Subspace clustering
and bi-/co-clustering,

albeit rather briefly!
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For those who want to go further. 2

« Much progress has been made in scalable
clustering methods

— Partitioning: k-means, k-medoids, CLARANS
— Hierarchical: BIRCH, ROCK, CHAMELEON

— Density-based: DBSCAN, OPTICS, DenClue
— Grid-based: STING, WaveCluster, CLIQUE

— Model-based: EM, Cobweb, SOM

— Frequent pattern-based: pCluster

— Constraint-based: COD, constrained-clustering

CS4220,AY2011/12 Copyright 2011 © Limsoon Wong
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Market Basket Analysis

« What do my customers buy?
 Which products are bought together?

Milk, eggs, sugar,
bread

Milk, eggs, cereal,
bread

Customer1

Customer2 Customer3

* Find associations and correlations between the
different items that customers buy

Source: A. Puig
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Association Rule Mining
Transaction db T = {t,,

T1 | bread, jelly, peanut-butter . tn} iS a set Of trans
T2 | bread, peanut-butter

T3 | bread, milk t-butt .
o T PR  Each trans t, is an
T4 | beer, bread

T5 | beer, milk itemset | ={iy, ..., I,}

 Frequent itemsets  Find freq patterns,
_ Items that often associations, ... among

appear together sets of items in T

— {bread, peanut-butter} Represent these
« Association rules relationships as
— bread = peanut-butter association rules X =Y

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



What Is an interesting rule?

e Support count, o
— # of occurrence of an itemset

— o({bread, peanut-butter}) = 3

T1 | bread, jelly, peanut-butter
T2 | bread, peanut-butter
* Su Ppo rt’ S T3 | bread, milk, peanut-butter
— Fraction of transactions T4 | beer, bread
containing that itemset T6 | beer, milk

— s({bread, peanut-butter}) = 3/5

 Frequent itemset
— An itemset whose support = a threshold minsup

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



What Is an interesting rule?

e Association rule

- X=Y

T1 bread, jelly, peanut-butter
° Su p p O rt’ S T2 | bread, peanut-butter
— # Of trans Containing T3 | bread, milk, peanut-butter
X, Y T4 | beer, bread
T5 | beer, milk
« Confidence, c
TID s c
— HOW Often Y OCCUrs bread = peanut-butter 0.60 0.75
INn trans Containing X peanut-butter = bread 0.60 1.00
beer = bread 0.20 0.50
c(Xul) c(Xul) peanut-butter = jelly 0.20 0.33
5= 4 of trans. ¢ = G"(X) ?elly::» pe.anut-burter 0.20 1.00
jelly = milk 0.00 0.00

Source: A. Puig
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Apriori

« Aprioriis the classic assoc rule mining algo

— Agrawal & Srikant. “Fast algorithms for mining association
rules in large databases”. VLDB 1994, pp. 487-499

« Mines assoc rules in two steps

1. Generate all freq itemsets with support = minsup
2. Generate assoc rules using these freq itemsets

Let’'s work on Step 1 first...

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



Step 1 of Apriori: %@ Nuy
Generate freq itemsets with
support 2 minsup

« Given d items. There are 29 possible itemsets
« Do we need to generate them all?

Source: A. Puig

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



Anti-Monotonicity

« Downward Closure Property:
Any subset of a frequent itemset is frequent

= If an itemset is not frequent, none of its supersets
can be frequent

= If an itemset is not frequent, there is no need to
explore its supersets

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



Step 1 of Apriori: %@ NUS
Generate freq itemsets with
support = minsup

Infrequent

itemset

« By anti-monotonicity, if B’s support < minsup,
we can prune all its supersets. l.e., no need to
generate these itemsets

Source: A. Puig
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Source: A. Puig %& mnH§
Apriori’'s Step 1 in Pseudo Codes

of Singapore
o k=1

o Generate frequent itemsets of length 1

o Repeat until no frequent itemsets are found
B k:=k+1
m Generate itemsets of size k from the k-1 frequent itemsets

m Compute the support of each candidate by scanning DB

Algorithm Apriori(T) Function candidate-gen(F, ,)
C, « Init-pass(T), Cy « :
F,« {f| fe C,, fcount/n = minsup}, forall f,. £, € F,,
for (k=2 F.\ # &, k++)do withf, = {,, ..., lha. Ik}
C, « candidate-gen(F,.,). and £, = {i,, ... , lya. Iy}
for each transaction t « T do and/,_, </, ,do
for each candidate ¢ « C, do C&—{ly ...ibuqs Task;
if ¢ is contained in t then Cy « C,u {c).
c.count++, for each (k-1)-subset s of c do
end if(s ¢ F,_,) then
end delete ¢ from C,;
F, « {¢c € C, | c.count/n = minsup) end
end end
return F «- |, F,, return C,;

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong
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Example Run of Apriori's Step 1

Database TDB

L‘I
Tid Items ig i
10 A, C,D < :
20 B, C, E 5! :
30 | ABCE
0 i
4 B, E —

Itemset sup C, m
Ly

. ?' E'i

A, C

gg’ g g — B | 2 A B
513 BE | 3 {8, C}

- {CE} | 2 {B, E}

& {C,E}

Source: A. Puig

CS4220,AY2011/12 Copyright 2011 © Limsoon Wong



EANUS
95

National University
of Singapore

Apriori

« Aprioriis the classic assoc rule mining algo

— Agrawal & Srikant. “Fast algorithms for mining association
rules in large databases”. VLDB 1994, pp. 487-499

« Mines assoc rules in two steps

2. Generate assoc rules using these freq itemsets

Now that we have settled Step 1,
Let’'s work on Step 2 next...

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



Step 2 of Apriori: %&’ NUS
Generate association rules
using freq itemsets

« Given a frequent itemset L
— Find all non-empty subsets F of L

— Output each rule F = {L-F} that satisfies the
threshold on confidence

« Example: L ={A, B, C}

— The candidate itemsets are: AB =C, AC =B,
BC =A, A=BC, B=AC, C =AB

— In general, there are 2Itl — 2 candidates!

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong
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Can we be more efficient?

 Confidence of rules generated from the same
itemset does have the anti-monotone property

— ¢(ABC =D) = ¢(AB =CD) = ¢(A =BCD)

 We can apply this property to prune rule
generation ac

< ABCD
confidence

— o o o o o o e R e e e e e S e e

Source: A. Puig
Copyright 2011 © Limsoon Wong




Shortcomings of Apriori

« Apriori scans the db multiple times
 There is often a high # of candidates

« Support counting for candidates takes a lot of
time

« Newer methods try to improve on these points
— Reduce the # of scans of the db
— Reduce the # of candidates

— Count the support of candidates more efficiently

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



Han et al. “Mining frequent patterns without candidate generation”.

SIGMOD 2000, pp.1-12
FP-Growth

« Build in one scan a data structure, FP-Tree

TID ltems Sorted FIS
{FACDGIMPF} | {FCAMP}

{ABCFLMO} |{FCABM
{B.FH.J,0} {F.B}
{B.CK.S.P) IC.B.P}

L T O e o

{AF.CELPMN} | {F.CAMF}

 Use it for fast support counting

— To count the support of an itemset {FCM}, follow
the “dotted” links on M. At each node M:n, note its
support n & visit its prefix chain; if FCM Is found in
the prefix, add n to the support

Source: A. Puig
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Li et al. "Mining !tatistically Important Equivalence Elasses and Delta-

Discriminative Emerging Patterns”. KDD 2007, pp. 430--439 NUS

G r- G rOWt h WP,/ National University

Y/ of singapore

* Build FP-Tree on the db SE-Tree '

enumeration order

A . »

- Visit itemsets non- |" A g =S
redundantly by following b w e i e
the right-to-left top-to- | l
bottom SE-Tree order « dab deo™ abS  *abe

v

'+ dabc

 When visiting an itemset
— Use the FP-tree to count its support efficiently

— If it Is frequent, output it, & visit its supersets
— Otherwise skip visiting its supersets

CS4220,AY2011/12 Copyright 2011 © Limsoon Wong
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How do you mine association
rules across multiple tables?

Multidimensional
association rules can be
mined using the same
Single-dimensional rules method by transforming
buys(X, "milk") = buys(X, “bread") the problem. The items
and the corresponding
item values are encoded
into a tuple. This results
again in a finite number

Single vs. Multidimensional Association Rules

Multi-dimensional rules: more than 2 dimensions or predicates
age(X,"19-25") A buys(X, “"popcorn”) = buys(X, “coke")

Transformation into single-dimensional rules:

use predicate/value pairs as items of possible (modified)
customer(X, [age, “19-25"]) A customer(X, [buys, "popcorn”]) item values, and
= Cus‘romer‘(x, [buys,“COke"]) therefore the same

techniques as for single-
dimensional rules apply.

Simplified Notation for single dimensional rules

{milk} = {bread}
{lage, "19-25"], [buys, "popcorn”]} = {[buys,"coke"]}

©2007/8, Karl Aberer, EPFL-IC, Laboratoire de systémes d'informations répartis Data Mining - 10

Source: Karl Aberer
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What have we learned?

 Frequent itemsets & association rules

e Support & confidence

« Apriori, a classic association rule mining algo
— Anti-monotonicity

— Search space pruning
Advanced methods, albeit rather briefly

— FP-Growth

— Gr-Growth

— Multidimensional association rule mining

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong
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For those who want to go further .57 ==

« Association rule mining has been extended in
many interesting directions

— Mining multilevel association

* R. Srikant and R. Agrawal. “Mining generalized association
rules”. VLDB 1995

— Mining multidimensional association

— Mining quantitative association

* R. Srikant and R. Agrawal. “Mining quantitative association
rules in large relational tables”. SIGMOD 1996
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Classification, aka Supervised Lear

« Model construction

— For describe a set of predetermined classes

« The model is represented as classification rules,
decision trees, or mathematical formulae

 Model usage
— For classifying future or unknown objects

— Estimate accuracy of the model

 The known label of test sample is compared with the
classification result from the model

— If accuracy is acceptable, use the model to classify
data tuples whose class labels are unknown
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Source: Karl Aberer - N US
Model Construction 9 o™

of Singapore

Classification

Q Algorithms
Training l
Data
~_ Y
~_
/ Classifier
_ (Model)
Mike |Assistant Prof 3 ~
Mary |Assistant Prof 7 yes / \
Bill Professor 2 yes
Jim  |Associate Prof| 7 yes IF rank = “professor’
Dave |Assistant Prof 6 no OR years > 6
Anne |Associate Prof| 3 no THEN tenured = ‘yes’
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Source: Karl Aberer | | @ ﬂmﬂl}w§
Use the Model for Prediction
/’—\
~_

/\‘ Classifier s

~— -~

Testl ng -
< e AN
/ (Jeff, Professor, 4)

NAMENRANKISITRVERRSITENURED] | red? 1

Assistant Prof 2
Merllsa Associate Prof 7 no '
George |Professor 5 yes Y(e_\sJ
Joseph |Assistant Prof I yes 9y
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NUS
The Steps of Model Constructions” ==

Training data gathering

Feature generation

— k-grams, colour, texture, domain know-how, ...

Feature selection

— Entropy, y2, t-test, domain know-how...

Feature integration
— SVM, ANN, PCL, CART, C4.5, kNN, ...

You should have already learned this stuff
from CS2220. Here is just a quick revision...
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Feature Selection

 Purpose

— Measure the diff betw two classes, and rank the
features according to the degree of the difference

— Get rid of noisy & irrelevant features

Feature Selection (Basic Idea)

« Choose a feature w/ low intra-class distance
[ J
A p p roac h €S » Choose a feature w/ high inter-class distance

— Statistical tests -.r T
- E.g., t-test, y2-test . ol BB “1
— Information theory :
« E.g., Gini index, entropy, info gain

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



Feature Integration

| hope you still remember the various classifiers
you came across in CS2220

— Decision Trees

— Decision Trees Ensembles
 E.g., Bagging

— K-Nearest Neighbour

— Support Vector Machines

— Bayesian Approach

— Hidden Markov Models
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Measures of Classifier Performance ==

6

. : itivity =  # correct +ve predictions
predicted |predicted Sensitivity - Jf/e
as positive |as negative
— TP
positive | TP EN i
Z +
negative | FP TN
Specificity =  # correct -ve predictions
# -ve
# correct predictions _ TN
Accuracy = — TP + FN
# predictions
TP+ TN . . #correct +ve predictions
_ Precision =
TP+TN+ FP + FN # +ve predictions
TP
~ TP+FP

7
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 Accuracy is not a good measure if the (class)
distribution of test data has bias

« Sensitivity (SE), specificity (SP), & precision
(PPV) are better; but they must be used together

e How to combine SE, SP, and/or PPV?

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



NUS
Combining SE, SP, and/or PPV 7 =
 Areaunder the ROC  F-measure or
(AUC-ROCQC) Harmonic mean (Fm,)
Y 2% PPV * SE
05 Fmy =
<., 07 PPV + SE
= os
2 |05 .
G Lo  Geometric mean (Gm)
o : gi: _U:::’hless
@ 0:1 . _Exceuent Gﬁl — 3 SE*SP
1 _specificity___ | * Adjusted geometric
 Areaunder the mean (AG:?) —
Precision-Recall AGm, =7 "
Curve (AUC-PR) L+ N

N,, is fraction of negatives in data
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Evaluation

« Accuracy, sensitivity, precision, etc of a classifier
are generally evaluated based on blind test sets

« If adequate blind test set is unavailable, evaluate
the expected performance of the learning
algorithm instead

— Sampling and apply Central Limit Theorem (CLT)
— Cross validation
— P-value

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong
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Evaluation by Sampling & CLT &%=

> Draw 1000s samples
R : *«,, With replacement

L 4

A base inducer such as C4.5

« By CLT, ave accuracy of hy, h,, ..., h is the
expected accuracy of the classifier produced by
the based inducer on the original samples

7

1
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Evaluation by Cross Validation

 Divide samples into k
roughly equal parts

 Each part has similar
proportion of
samples from
different classes

 Use each part to test
other parts

« Total up the accuracy
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Many

Source: Batuwita & Palade, JBCB, 2012

C I aSS Ifl Catl O n Dataset Positives | Negatives
- miFENA 691 9248
problems IN e gome
P : snoPNA 98 977
bioinformaticCs [pn, TR T
Human-splice site-acceptor (Human acceptor) ir=1116 tr=4672
h ave Ve ry ts=208 t==881
i m b al an Ce d Human-splice site-donor (Human denor) 11;;:]1: E;?}
tral n I n g & Drosophila-splice site-acceptor (Dros acceptor) =450 1:|=1—'F_f45
ts=103 t==333
te Stl n g d ata Drosophila-splice site-donor (Dros donor) =450 r=1824
ts=105 ts=208
E.coli protemn localization sites (Ecoli) [Xi 259
Yeast proteimn localization sites (Yeast) 51 1433
tr = traiming, ts = testing

« —ve samples outnumber +ve samples many times
 Normal classifiers don’t work well on them
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Class-Imbalance Learning

« Random under-sampling

— Remove majority-class samples randomly to
balance the data

« Random over-sampling

— Duplicate minority-class samples randomly to
balance the data

e Synthetic minority over-sampling technique
(SMOTE)

— Generate new synthetic minority-class samples
rather than directly duplicating them

« Different error costs (DEC)
— Modify a classifier's cost function
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Basic
procedure
for handling
class-
Imbalanced
data

Class-
imbalanced
data

lass-
imbalance
treated data

Class-
imbalance
classifier

CS4220, AY2011/12
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The basic
procedure can
be coupled to a .

tuning process to
optimize
classifier
learning .

parameters

-

./
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iVic thod Resulis for miRNA datasct (%0) Resulis for Promoter dataset {9%) Results for smoRNA datasct(%0)
SE 5P GCm dSE [ &F | SE SE Gm dSE &P Sk 5P Gm dsk dsF
N.SVI | 8278 | 2945 | 90.73 2569 | 98.15 | 037 7327 ] 9305 | 3476

nder 9103 | 9302 | 9202 25 | 643 | TOME | 2067 | 7519 | +459 | J120% | $007 | 0113 | 9055 +16.70 | 693
Crver 8093 | D653 | 9317 | 4715 | 293 | ABED | 256 | U542 | 320 | 1619 | 8575 | 93.23 | 8941 | +H12.48 | -483
SMOTE | 2815 | 2704 | 93001 | +i37 | 241 | A7E3 | &057 | 7395 | +4218 | -1819 | &5.10 | 9302 | 8R97 | +11383 | -504
DEC U.02 | BeZD | 9IAL | 724 | 305 [ 8754 ¥210 | A¥T | M0 | 1a0 | €778 | 0458 | 9111 | 41451 [ 248
Avemage 125 | 3.7} Sveregs +42.95 | -17.11 Svenge +13.68 | -5.07

SE | 59 | ¥m | &©E | &F | SE | SF | Fm | &8 | &P |SE | SP | Fm | &B | &F,
W.5VM | 8192 | 9959 | 8141 2560 | Gasl | 37106 7105 | 9826 | 7422

SVM under Tnder | 9023 [ 9500 | 7050 | +8G1 | 459 | &l a8 | 8476 | 3779 | 43576 | 1405 | 5041 | o150 | 833 | 41837 | 6.7

_ Tver | 5270 | D703 | 7863 | 072 | 186 | 2255 | &40 | D44 | #R%6 | 1532 5191 | 9795 | 1310 | + 067 | 031

different SMOTE | 2554 | 9790 | 2005 | +362 | -1.69 | 6417 | 8276 | 3667 | +36.48 | 1605 | 7549 | 9791 | 7544 | + 444 | -035

DEC | 3466 | 9733 | 1689 | +274 | -220 | o66% | 2484 | 4125 | #4099 | -1397 | 7222 | 9738 | 7109 | + 118 | .092

class- Tveragy H01 | 258 Frvoreg 3052 | 1385 Frverage T 6.16 | -2.08

: AUC | . . - — | auC. ) - ﬂ o | AUC. | . A

imbalance SE | 5P | poe | ©E [wp | s | s Q0S| @e | e | s | s [AUC lam |ase
W S | 1952 | 9973 | D9A9s 2529 | 5530 | 08177 7107 | 9325 | 0%aln

treatments & Under | 9103 | 9339 | 09675 | #1152 | 530 | 5966 | 5103 | 02303 | 44317 | 1232 | C0€7 | 0161 | 00712 | 41063 | .65

Over | 89.76 | 9510 | 09805 | + .60 | -3.88 | 6804 | €243 | 08385 | +43.45 | -1693 | £2.65 | 92.00 | 09658 | +11.60 | -6.26

performance SMOTE | 2920 | 9585 | 09771 | #1023 | 454 | 6825 | 2076 | 08303 | #4337 | -1560 | 7904 | 9302 | 0654 | + 799 | -5.24

) DEC | 9002 | 9545 | 00513 | 1050 | 422 | 5002 | 2250 | 02202 | #4252 | 1624 | 72.01 | D502 | 00eAd | + 606 | 208

eva|uat|0n Avenage +10.49 | -4.51 Bverez +43.63 | -17.67 Averaze +1L54 | -5.1

measures SE | op ‘]‘flf‘ &E |ap | s | s "‘gf‘ SE | P | SE | P |pg | &E | s
N.SUN | 7640 | 9971 | 07734 2462 | 9936 | 05298 ER03 | 9251 | 0713)

Under | S0.43 | D445 | 07356 | 94 | 536 | 8057 | €078 | 07376 | #8535 | 1857 | €003 | 3556 | 0620 | 42000 | -1294

Over | 2413 | 9745 | 07544 | +452 | -226 | 6731 | 81.76 | 07534 | +42.69 | 1760 | €9.93 | 9205 | 07154 | + 0.00 | - 0.45

SMOTE | 8513 | 9745 | 07554 | +552 26 | B4 | E000 | 07524 | 43995 | AR | 200 | 0226 | 0718 | + 206 | - 025

DEC | 5143 | D060 | 07750 | 4202 | 011 | 5706 | S350 | 07208 | #4324 | 1555 | 7050 | 98.40 | 07504 | + 0.58 | - 0.11

Average +5.62 | -2.54 Sversgs +42.81 | -17.55 Sverage + 868 | - 3.44

SE | 5P | AGm | &E | &F | SE | SF | A6m | BE | &P [SE [ SP | ACm | XE | &P

N SVNT [ 2249 [ 9941 | 94372 2560 | 873 | 7355 7206 | 9516 | 90 &7
Under 9029 [ 94”3 | 9345 +2 4] ATT | B507 | 253 TR A5 +392E | 152 | 2941 0140 | 90 +17.35 | 6867
Over | 8993 | D685 | 0503 | 744 | 2354 | 6851 | €349 | D40 | +42€2 | -1525 | e016 | 9570 | 9147 | + 2.00 | -2.46
Source: Batuwita & SMOTE | 8875 [ 9731 | @504 | +626 | -209 47| &27 | 770 | 43R 7R | -1600 | a0 | vaz2 | 918 | + 6094 | -133
Palade, JBCB, 2012 DEC | 90.02 | 96230 | 0464 | +753 | 210 | 5662 | 9496 | MHea | #0090 | 1390 | €333 | 05.00 | 9307 | H1.18 | 287
Avemage +741 | -3.01 Sveress +40.49 | -15.09 Average + 907 | -3.86

on
Fy
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Method | Results for miRNA dataset (%) [

SE | S | Gm | &E | &F
How to choose N SVM | 82.78 | 99.45 | 90.73

class-imbalance [ [o103 9302 | 9202 | +825 | 643
Over | 8993 | 9653 | 9317 | +7.15 | 293

treatment? SMOTE | 2515 | 9704 | 9301 | #4637 | 241
DEC | 9002 | 9630 | 93.11 | +724 | 3.15
Average 125 | 3.13

1 1

 There are usually a lot more —ve samples; often
normal classifiers (N.SVM) have low SE & high SP

— Users generally want higher SE, w/o sacrificing
too much SP

« Class-imbalance treatment aim to maximize
Improvement in SE (dSE) & minimize loss in SP
(dSP)

— Choose one that maximizes R = |dSP / dSE]|
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he classifier
performance
evaluation measure

has a significant
Influence on the
tuning!
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Geometric Mean  Gm=+/SE*SP

« Gm weighs changes in SE and SP equally

— Gm may select sub-optimal models for
Imbalanced data

Example A
— ModelNormal: SE=70.00%, SP=99.00%, Gm=83.25%
« After class-imbalanced treatment under Gm
— Modell: SE = 92%, SP = 98%, Gm = 94.95%
— Model2: SE = 94.95%, SP = 94.95%, Gm = 94.95%
— Model3: SE = 98%, SP = 92%, Gm = 94.95%
 All 3treated models have the same Gm
 But Modell (dSE=22%, dSP=-1%) is the best

Source: Batuwita & Palade, JBCB, 2012
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e = 2 PPV*SE - GENUS
F-Measure L = " opy . <oF

« Fm works well if training set is imbalance but
testing set is balanced. If testing set is also
Imbalanced, Fm is more sensitive to changes in
PPV, leading to sub-optimal models

Example B

 Let —ve testing samples = 950, +ve testing samples =50
Let Modell & Model2 be resulted when applying class
Imbalance learning for diff model parameters
— ModelNormal: SE = 70%, SP = 99%
— Modell: SE = 70%, SP = 99%, Then PPV = 80%, Fm = 74%
— Model2: SE = 90%, SP = 97%, Then PPV = 62%, Fm = 73%

« Here Model2 is better; but Fm picks Modell

Source: Batuwita & Palade, JBCB, 2012
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AUC-ROC

« AUC-ROC plots SE vs (1- SP) and compute area
under the curve. Thus it weighs changes in SE
and SP equally

= Similar problem as Gm

AUC-PR

« AUC-PR plots SE vs PPV and compute area under
the curve. Thus if test set is imbalanced, it is
more sensitive to changes in PPV than SE

= Similar problem as Fm

CS4220, AY2011/12 Copyright 2011 © Limsoon Wong



Source: Batuwita & Palade, JBCB, 2012
4G — Gm+SP*N
Adjusted Geometric Mean “7"2 =" 1 N

N, = proportion of —ve samples

« AGm metric is more sensitive to changes in SP
than to changes in SE. Moreover, the higher the
Imbalance (N,), the higher its sensitiveness to
changes in SP

AGm %
'
=]

@) (b)
Distribution of AGm over SE and SP when (a) N, =0.9 and (b) N,=0.5.
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A — Gm+SP*N
Adjusted Geometric Mean “7"2 7 1 v

N,, = proportion of —ve samples

Example A — Revisited (N, = 95%)
— ModelNormal: SE=70.00%, SP=99.00%, Gm=83.25%
After class-imbalanced treatment under Gm
— Modell: SE = 92%, SP = 98%, Gm = 94.95%
— AGmM = (94.95+98%0.95)/(1+0.95) = 96.44%
— Model2: SE = 94.95%, SP = 94.95%, Gm = 94.95%
— AGmM = (94.95+94.95*0.95)/(1+0.95) = 94.95%
— Model3: SE = 98%, SP = 92%, Gm = 94.95%
— AGmMm = (94.95+92*0.95)/(1+0.95) = 93.51%
All 3 treated models have the same Gm
But Modell (dSE=22%, dSP=-1%) is the best

AGm correctly picks Modell

Source: Batuwita & Palade, JBCB, 2012
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A — Gm+SP*N
Adjusted Geometric Mean “7"2 7 1 v

N,, = proportion of —ve samples

Example B — Revisited (N, = 95%)
« Let —ve testing samples =950, +ve testing samples =50

Let Modell & Model2 be resulted when applying class
Imbalance learning for diff model parameters

— ModelNormal: SE = 70%, SP = 99%

— Modell: SE = 70%, SP = 99%, Then PPV = 80%, Fm = 74%

« AGm=91%
— Model2: SE = 90%, SP = 97%, Then PPV =62%, Fm = 73%
« AGm =95%

« Here Model2 is better; but Fm picks Modell
« AGmM correctly picks Model2

Source: Batuwita & Palade, JBCB, 2012
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What have we learned?

 Class-imbalance problems
 Class-imbalance treatment procedure

« Better appreciation of classifier performance
measure, especially under class-imbalance
situation
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