CS4220: Knowledge Discovery Methods for Bioinformatics Unit 2: Essence of Data Mining

Limsoon Wong

Lecture Outline

2

- Clustering, aka unsupervised learning
- Association rule mining
- Classification, aka supervised learning
- Class-imbalance learning

Objective of Cluster Analysis

- Find groups of objects s.t. objects in a group are
 - Similar (or related) to one another
 - Diff from (or unrelated to) objects in other groups

Supervised vs. Unsupervised Learning Singapore

- Supervised learning (aka classification)
 - Training data (observations, measurements, etc.) are accompanied by class
 - New data is classified based on training data
- Unsupervised learning (aka clustering)
 - Class labels of training data are unknown
 - Given a set of measurements, observations, etc., aim to establish existence of classes in the data

Typical Clustering Techniques

- Partitional clustering: K-means
 - Division of data objects into non-overlapping subsets (clusters) s.t. each data object is in exactly one subset
- Hierarchical clustering: Agglomerative approach
 - A set of nested clusters organized as a hierarchical tree
- Subspace clustering and bi-/co-clustering
 - Simultaneous clustering on a subset of tuples and a subset of attributes

Partitional Clustering: K-Means

- Each cluster has a centroid
- Each point is assigned to a cluster based on closest centroid
- # of clusters, K, must be specified

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

More Details of K-Means Clustering

- Clusters produced vary from one run to another
- Centroid is the "mean" of points in the cluster
- "Closeness" is measured by Euclidean distance, cosine similarity, correlation, etc
- K-means usually converges in a few iterations
 - Often the stopping condition is changed to "until relatively few points change clusters"
- Complexity is O(n * K * i * d)

n = # of points, K = # of clusters, i = # of iterations,
 d = # of attributes

Example Iterations by K-Means

Iteration 2

CS4220, AY2011/12

Two Different K-means Clustering

Evaluating K-means Clusters

12

- Sum of Squared Error (SSE) is commonly used
 - Error of a point is its distance to nearest centroid
 - Square these errors and sum them to get SSE

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

where C_i is a cluster, m_i is its centroid

- Can reduce SSE by increasing K, the # of clusters
- A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Importance of Choosing Initial Centroid Singapore

CS4220, AY2011/12

Copyright 2011 © Limsoon Wong

2

13

Solutions to Initial Centroid Problem

- Multiple runs
 - Helps, but probability is not on your side
- Use hierarchical clustering to determine initial centroids
- Select >k initial centroids and then select the most widely separated among these initial centroids
- Use more advanced algos, like "Bisecting K-Means", that are not as susceptible to initialization issues

14

Limitations of K-means

- Has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- Also has problems when data contain outliers

Overcoming K-means' Limitations

- One solution is to use many clusters
 - Find parts of clusters
 - But need to put them together

Original Points

K-means Clusters

Hierachical Clustering

Hierarchical clustering

- Organize similar data into groups
- Form groups into a hierarchical tree structure, termed a Dendrogram
- Offer useful visual descriptions of data
- Two approaches
 - Agglomerative
 - Build the tree by finding most related objects first
 - Divisive
 - Build the tree by finding most dissimilar objects first.

Distance Matrix

- Square, symmetrical
- Element value is based on a similarity function, e.g., Euclidian distance
- Sometimes, it's called a Similarity Matrix or a Proximity Matrix

Agglomerative Hierarchical Clustering

• Basic algo is straightforward

Compute proximity matrix Let each data point be a cluster Repeat Merge the two closest clusters Update the proximity matrix Until only a single cluster remains

- Key is computing proximity of two clusters
 - Diff approaches to defining distance betw clusters distinguish the diff algos

Starting Situation

p1

p2

p3

p4

 Start with clusters of individual points and a proximity matrix

p9

CS4220, AY2011/12

Copyright 2011 © Limsoon Wong

p11

p12

p10

Intermediate Situation

 After some merging steps, we have some clusters

C3

Proximity Matrix

C4

CS4220, AY2011/12

Intermediate Situation

 We want to merge two closest clusters (C2, C5) and update the proximity matrix

C4

p1

p2

C5

CS4220, AY2011/12

C2

C3

C1

Defining Inter-Cluster Similarity

- Other methods use an objective function
 - Ward's method uses squared error

CS4220, AY2011/12

Finally, get a resulting dendrogram

Strengths of Hierarchical Clustering

- Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

25

Divisive Hierarchical Clustering

26

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

In case you don't know what a MST 8.

- To build a MST (Minimum Spanning Tree)
 - Start with a tree that consists of any point
 - In successive steps, look for the closest pair of points (p, q) s.t. p is in the current tree but q is not
 - Add q to the tree and put an edge betw p and q

Subspace Clustering

Cluster boundaries clear only the subspaces

Bi- or Co-Clustering

• Simultaneous clustering on a subset of attributes and a subset of tuples

High-Dimensional Data

- Many applications need clustering on highdimensional data
 - Text documents
 - Microarray data
- Major challenges:
 - Many irrelevant dimensions may mask clusters
 - Distance measure becomes meaningless
 - The "equi-distance" phenomenon
 - Clusters may exist only in some subspaces

The Curse of Dimensionality

30

- Data in only one dimension is relatively packed
- Adding a dimension "stretches" the points across that dimension, making them further apart
- Adding more dimensions makes the points further apart
 - High-dimensional data is sparse
 - \Rightarrow Distance measure becomes meaningless, as most data points become equi-distance to each other

Image credit: Parsons et al. *KDD Explorations,* 2004 Copyright 2011 © Limsoon Wong

CS4220, AY2011/12

CS4220, AY2011/12

However, inspect your subspace clusters carefully!

Image credit: Eamonn Keogh

A cloud of points in 3D

National Universion of Singapore

In 2D YZ we see...

In 2D XY we see ...

Limsoon Wong

CS4220, AY2011/12

CLIQUE (Clustering In QUEst)

- Automatically identify subspaces of a high dimensional data space that allow better clustering than original space
 - Agrawal et al. "Automatic Subspace Clustering of High Dimensional Data". Data Min. Knowl. Discov., 11(1):5-33, 2005

CLIQUE: The Major Steps

- Partition the data space
- Identify subspaces that contain clusters
 - Use the "Apriori Principle"
 - · Find dense units in all subspaces
 - Form connected dense units in all subspaces
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units
 - Determination of minimal cover for each cluster

Biclustering

34

Please read these two papers yourself ③

- Cheng & Church. "Biclustering of expression data". ISMB 2000
- Madeira & Oliveira. "Biclustering algorithms for biological data analysis: A survey". *TCBB*, vol.1, 2004

Biclusters = small boxes of homogeneity

A small box = A subset of attributes X A subset of tuples

A special case of biclustering: Biclique detection

35

- When the table is a binary matrix of 0s and 1s
- Convert the table into a bipartite graph

- Then, a max biclique corresponds to a bicluster
- A good algo for max biclique can be found at
 - Li et al. "Maximal biclique subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one correspondence and mining algorithms". *TKDE*, 19:1625-1637, 2007

What have we learned?

- Partitional clustering
 - K-means
- Hierarchical clustering
 - Agglomerative approach
 - Divisive approach
- Subspace clustering and bi-/co-clustering, albeit rather briefly!

- How to evaluate quality of clusters

 SSE
- A general strategy for some difficult-tocluster situations
 - Differing sizes
 - Differing densities
 - Non-globular
References

37

Must read

 Jain et al. "Data clustering: A review". ACM computing Surveys, 31(3):264-323, 1999

Good to read

- Agrawal et al. "Automatic Subspace Clustering of High Dimensional Data". Data Mining & Knowledge Discovery, 11(1):5-33, 2005
- Cheng & Church. "Biclustering of expression data". *ISMB 2000*, pp. 93-103
- Madeira & Oliveira. "Biclustering algorithms for biological data analysis: A survey". ACM TCBB, 1(1):24-45, 2004
- Li et al. "Maximal biclique subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one correspondence and mining algorithms". *TKDE*, 19:1625-1637, 2007

For those who want to go further.

- Much progress has been made in scalable clustering methods
 - Partitioning: k-means, k-medoids, CLARANS
 - Hierarchical: BIRCH, ROCK, CHAMELEON
 - Density-based: DBSCAN, OPTICS, DenClue
 - Grid-based: STING, WaveCluster, CLIQUE
 - Model-based: EM, Cobweb, SOM
 - Frequent pattern-based: pCluster
 - Constraint-based: COD, constrained-clustering

Association Rule Mining

Market Basket Analysis

- What do my customers buy?
- Which products are bought together?

 Find associations and correlations between the different items that customers buy

of Singapore

Association Rule Mining

TID	Items
T1	bread, jelly, peanut-butter
T2	bread, peanut-butter
тз	bread, milk, peanut-butter
T4	beer, bread
Т5	beer, milk

- Frequent itemsets
 - Items that often appear together
 - {bread, peanut-butter}
- Association rules
 - bread \Rightarrow peanut-butter

- Transaction db T = {t₁, ..., t_n} is a set of trans
- Each trans t_k is an itemset I = {i₁, ..., i_m}
- Find freq patterns, associations, ... among sets of items in T
- Represent these relationships as association rules X ⇒Y

What is an interesting rule?

Support count, σ

- # of occurrence of an itemset
- $-\sigma(\{bread, peanut-butter\}) = 3$

Support, s

- Fraction of transactions containing that itemset
- $s(\{bread, peanut-butter\}) = 3/5$

TID	Items
T1	bread, jelly, peanut-butter
T2	bread, peanut-butter
тз	bread, milk, peanut-butter
T4	beer, bread
T5	beer, milk

Frequent itemset

– An itemset whose support ≥ a threshold minsup

What is an interesting rule?

Association rule

- $\mathsf{X} \Rightarrow \mathsf{Y}$
- Support, s
 - # of trans containing
 X, Y
- Confidence, c
 - How often Y occurs in trans containing X

$$s = \frac{\sigma(X \cup Y)}{\# \text{ of trans.}} \quad c = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

TID	Items
T1	bread, jelly, peanut-butter
T2	bread, peanut-butter
T3	bread, milk, peanut-butter
T4	beer, bread
T5	beer, milk

TID	s	с
bread \Rightarrow peanut-butter	0.60	0.75
peanut-butter \Rightarrow bread	0.60	1.00
beer ⇒ bread	0.20	0.50
peanut-butter \Rightarrow jelly	0.20	0.33
jelly \Rightarrow peanut-butter	0.20	1.00
jelly ⇒ milk	0.00	0.00

Source: A. Puig

Apriori

- Apriori is the classic assoc rule mining algo
 - Agrawal & Srikant. "Fast algorithms for mining association rules in large databases". *VLDB 1994*, pp. 487-499
- Mines assoc rules in two steps
 - 1. Generate all freq itemsets with support \geq minsup
 - 2. Generate assoc rules using these freq itemsets

Let's work on Step 1 first...

Step 1 of Apriori: **Generate freq itemsets with support ≥ minsup**

- Given d items. There are 2^d possible itemsets
- Do we need to generate them all?

Source: A. Puig

Anti-Monotonicity

46

• Downward Closure Property:

Any subset of a frequent itemset is frequent

- ⇒ If an itemset is not frequent, none of its supersets can be frequent
- ⇒ If an itemset is not frequent, there is no need to explore its supersets

Step 1 of Apriori: **Generate freq itemsets with support ≥ minsup**

 By anti-monotonicity, if B's support < minsup, we can prune all its supersets. I.e., no need to generate these itemsets

Source: A. Puig

Source: A. Puig

Apriori's Step 1 in Pseudo Codes

□ **k=1**

- Generate frequent itemsets of length 1
- Repeat until no frequent itemsets are found
 - k := k+1
 - Generate itemsets of size k from the k-1 frequent itemsets
 - Compute the support of each candidate by scanning DB

```
Algorithm Apriori(T)

C_1 \leftarrow \text{init-pass}(T);

F_1 \leftarrow \{f \mid f \in C_1, f.\text{count}/n \ge minsup\};

for (k = 2; F_{k-1} \neq \emptyset; k++) do

C_k \leftarrow \text{candidate-gen}(F_{k-1});

for each transaction t \in T do

for each candidate c \in C_k do

if c is contained in t then

c.count++;

end

end

F_k \leftarrow \{c \in C_k \mid c.count/n \ge minsup\}

end

return F \leftarrow \bigcup_k F_k;
```


of Singapore

Copyright 2011 © Limsoon Wong

CS4220, AY2011/12

Example Run of Apriori's Step 1

Source: A. Puig

Apriori

50

- Apriori is the classic assoc rule mining algo
 - Agrawal & Srikant. "Fast algorithms for mining association rules in large databases". *VLDB 1994*, pp. 487-499
- Mines assoc rules in two steps
 - 1. Generate all freq itemsets with support ≥ minsup
 - 2. Generate assoc rules using these freq itemsets

Now that we have settled Step 1, Let's work on Step 2 next...

Step 2 of Apriori: Generate association rules using freq itemsets

- Given a frequent itemset L
 - Find all non-empty subsets F of L
 - Output each rule F \Rightarrow {L-F} that satisfies the threshold on confidence
- Example: L = {A, B, C}
 - The candidate itemsets are: AB \Rightarrow C, AC \Rightarrow B, BC \Rightarrow A, A \Rightarrow BC, B \Rightarrow AC, C \Rightarrow AB

– In general, there are $2^{|L|} - 2$ candidates!

Can we be more efficient?

- Confidence of rules generated from the same itemset does have the anti-monotone property
 – c(ABC ⇒D) ≥ c(AB ⇒CD) ≥ c(A ⇒BCD)
- We can apply this property to prune rule generation

Source: A. Puig

Exercise: Prove this.

CS4220, AY2011/12

of Singapore

Shortcomings of Apriori

- Apriori scans the db multiple times
- There is often a high # of candidates
- Support counting for candidates takes a lot of time
- Newer methods try to improve on these points
 - Reduce the # of scans of the db
 - Reduce the # of candidates
 - Count the support of candidates more efficiently

Han et al. "Mining frequent patterns without candidate generation". SIGMOD 2000, pp.1–12 **FP-Growth**

54

Use it for fast support counting ٠

- To count the support of an itemset {FCM}, follow the "dotted" links on M. At each node M:n, note its support n & visit its prefix chain; if FCM is found in the prefix, add *n* to the support

Source: A. Puig

•

CS4220, AY2011/12

Li et al. "Mining Statistically Important Equivalence Classes and Delta-Discriminative Emerging Patterns". *KDD 2007*, pp. 430--439

Gr-Growth

Build FP-Tree on the db

 Visit itemsets nonredundantly by following the right-to-left top-tobottom SE-Tree order

- When visiting an itemset
 - Use the FP-tree to count its support efficiently
 - If it is frequent, output it, & visit its supersets
 - Otherwise skip visiting its supersets

How do you mine association rules across multiple tables?

Single vs. Multidimensional Association Rules

- Single-dimensional rules $buys(X, "milk") \Rightarrow buys(X, "bread")$
- Multi-dimensional rules: more than 2 dimensions or predicates ٠ $age(X, "19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")$
- Transformation into single-dimensional rules: ٠ use predicate/value pairs as items

customer(X, [age, "19-25"]) \land customer(X, [buys, "popcorn"]) \Rightarrow customer(X, [buys,"coke"])

Simplified Notation for single dimensional rules •

> ${milk} \Rightarrow {bread}$ {[age, "19-25"], [buys, "popcorn"]} ⇒ {[buys, "coke"]}

©2007/8, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

CS4220, AY2011/12

Data Mining - 10

Multidimensional association rules can be mined using the same method by transforming the problem. The items and the corresponding item values are encoded into a tuple. This results again in a finite number of possible (modified) item values, and therefore the same techniques as for singledimensional rules apply.

Source: Karl Aberer

56

What have we learned?

- Frequent itemsets & association rules
- Support & confidence
- Apriori, a classic association rule mining algo
 - Anti-monotonicity
 - Search space pruning
- Advanced methods, albeit rather briefly
 - FP-Growth
 - Gr-Growth
 - Multidimensional association rule mining

References

58

Must read

- Goethals. "Survey on frequent pattern mining", published online, 2003. <u>http://www.adrem.ua.ac.be/~goethals/publications/pubs/fpm_survey.pdf</u>
- Karl Aberer. "Data mining: A short intro (Association rules)", lecture notes, 2008. <u>http://lsirwww.epfl.ch/courses/dis/2007ws/lecture/week%2013%20Datamining-Association%20rules.pdf</u>

Good to read

- Han. Data Mining: Concepts and Techniques, Morgan Kaufman, 2000
- Agrawal et al. "Mining association rules between sets of items in large databases". SIGMOD 1993, 207-216
- Agrawal & Srikant. "Fast algorithms for mining association rules in large databases". VLDB 1994, pp. 487-499
- Han et al. "Mining frequent patterns without candidate generation".
 SIGMOD 2000, pp.1–12
- Li et al. "Mining Statistically Important Equivalence Classes and Delta-Discriminative Emerging Patterns". *KDD 2007*, pp. 430-439

For those who want to go further .

- Association rule mining has been extended in many interesting directions
 - Mining multilevel association
 - R. Srikant and R. Agrawal. "Mining generalized association rules". *VLDB 1995*
 - Mining multidimensional association
 - Mining quantitative association
 - R. Srikant and R. Agrawal. "Mining quantitative association rules in large relational tables". *SIGMOD 1996*

Classification

Classification, aka Supervised Learning Singapore

Model construction

- For describe a set of predetermined classes
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage
 - For classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classification result from the model
 - If accuracy is acceptable, use the model to classify data tuples whose class labels are unknown

Model Construction

CS4220, AY2011/12

Copyright 2011 © Limsoon Wong

Use the Model for Prediction

The Steps of Model Construction

- Training data gathering
- Feature generation
 - k-grams, colour, texture, domain know-how, ...
- Feature selection
 - Entropy, $\chi 2$, t-test, domain know-how...
- Feature integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

You should have already learned this stuff from CS2220. Here is just a quick revision...

Feature Selection

65

Purpose

 Measure the diff betw two classes, and rank the features according to the degree of the difference

Cless 1

Class 2

- Get rid of noisy & irrelevant features

- Approaches
 - Statistical tests
 - E.g., t-test, χ2-test
 - Information theory

Feature Selection (Basic Idea)
Choose a feature w/ low intra-class distance
Choose a feature w/ high inter-class distance

Class 1

Class 2

• E.g., Gini index, entropy, info gain

Class 1

Ciass 2

Feature Integration

- I hope you still remember the various classifiers you came across in CS2220
 - Decision Trees
 - Decision Trees Ensembles
 - E.g., Bagging
 - K-Nearest Neighbour
 - Support Vector Machines
 - Bayesian Approach
 - Hidden Markov Models

If not, it is time to dig out your old CS2220 lecture slides & notes ©

National University of Singapore

Measures of Classifier Performance

	predicted	predicted	
	as positive	as negative	
positive	TP	FN	
negative	FP	TN	

CS4220, AY2011/12

Sensitivity =
$$\frac{\# \text{ correct +ve predictions}}{\# +ve}$$

= $\frac{\text{TP}}{\text{TP + FN}}$
Specificity = $\frac{\# \text{ correct -ve predictions}}{\# -ve}$
= $\frac{\text{TN}}{\text{TP + FN}}$

Accuracy =
$$\frac{\# \text{ correct predictions}}{\# \text{ predictions}} = \frac{1N}{TP + FN}$$
$$= \frac{TP + TN}{TP + TN + FP + FN} Precision = \frac{\# \text{ correct +ve predictions}}{\# + \text{ve predictions}}$$
$$= \frac{TP}{TP + FP}$$

- Accuracy is not a good measure if the (class) distribution of test data has bias
- Sensitivity (SE), specificity (SP), & precision (PPV) are better; but they must be used together
- How to combine SE, SP, and/or PPV?

of Singapore

69

Combining SE, SP, and/or PPV

• Area under the ROC (AUC-ROC)

 Area under the Precision-Recall Curve (AUC-PR) F-measure or Harmonic mean (Fm₁)

$$Fm_1 = \frac{2*PPV*SE}{PPV+SE}$$

- Geometric mean (Gm) $Gm = \sqrt{SE * SP}$
- Adjusted geometric mean (AGm)

$$AGm_2 = \frac{Gm + SP * N_n}{1 + N_n}$$

 N_n is fraction of negatives in data

Evaluation

70

- Accuracy, sensitivity, precision, etc of a classifier are generally evaluated based on blind test sets
- If adequate blind test set is unavailable, evaluate the expected performance of the learning algorithm instead
 - Sampling and apply Central Limit Theorem (CLT)
 - Cross validation
 - P-value

Evaluation by Sampling & CLT

 By CLT, ave accuracy of h₁, h₂, ..., h_k is the expected accuracy of the classifier produced by the based inducer on the original samples

Evaluation by Cross Validation

1.Test	2.Train	3.Train	4.Train	5.Train
1.Train	2.Test	3.Train	4.Train	5.Train
1.Train	2.Train	3.Test	4.Train	5.Train
1.Train	2.Train	3.Train	4.Test	5.Train
1.Train	2.Train	3.Train	4.Train	5.Test

 Divide samples into k roughly equal parts

 Each part has similar proportion of samples from different classes

- Use each part to test other parts
- Total up the accuracy
References

73

Must read

- Li et al. "Data Mining Techniques for the Practical Bioinformatician", The Practical Bioinformatician, Chapter 3, pp. 35-70, WSPC, 2004
- Karl Aberer. "Data mining: A short intro (Classifiers)", lecture notes, 2008. http://lsirwww.epfl.ch/courses/dis/2007ws/lecture/week%2014%20Datamining-Clustering-Classification-Wrap-up.pdf

Good to read

Swets. "Measuring the accuracy of diagnostic systems", *Science* 240:1285--1293, 1988

Class-Imbalance Learning

Source: Batuwita & Palade, JBCB, 2012

Dataset	Positives	Negatives
miRNA	691	9248
Human promoter	471	5081
snoRNA	98	977
Drug-target	521	5019
Human-splice site-acceptor (Human acceptor)	tr=1116	tr=4672
	ts=208	ts=881
Human-splice site-donor (Human donor)	tr=1116	tr=4140
	ts=208	ts=782
Drosophila-splice site-acceptor (Dros acceptor)	tr=450	tr=1426
	ts=105	ts=355
Drosophila-splice site-donor (Dros donor)	tr=450	tr=1824
	ts=105	ts=298
E.coli protein localization sites (Ecoli)	77	259
Yeast protein localization sites (Yeast)	51	1433
tr = training, ts = testin	g	

Many classification problems in bioinformatics have very imbalanced training & testing data

–ve samples outnumber +ve samples many times

Normal classifiers don't work well on them

Class-Imbalance Learning

- Random under-sampling
 - Remove majority-class samples randomly to balance the data
- Random over-sampling
 - Duplicate minority-class samples randomly to balance the data
- Synthetic minority over-sampling technique (SMOTE)
 - Generate new synthetic minority-class samples rather than directly duplicating them
- Different error costs (DEC)
 - Modify a classifier's cost function

Basic procedure for handling classimbalanced data

77

Copyright 2011 © Limsoon Wong

Class-

imbalanced

data

Class-imbalance

learning treatment

Class-

imbalance treated data

Classifier learning

Class-

imbalance classifier 78

The basic procedure can Classimbalance be coupled to a training data tuning process to optimize classifier New classifier learning parameters parameters Classifier Classimbalance Performance testing data evaluation

CS4220, AY2011/12

Copyright 2011 © Limsoon Wong

SVM under different classimbalance treatments & performance evaluation measures

Source: Batuwita & Palade, *JBCB*, 2012

Method	Res	sults for	miRNA	dataset (%)	Results for Promoter dataset (%)				Results for snoRNA dataset (%)					
	SE	SP	Gm	dSE	dSP	SE	SP	Gm	dSE	dSP	SE	SP	Gm	dSE	dSP
N.SVM	82.78	99.45	90.73			25.69	98.75	50.37			73.27	98.05	84.76		
Under	91,03	93.02	92.02	+8.25	-6.43	70.08	20.67	75.19	+44.39	-1808	89.97	91.13	90.55	+16.70	-6.93
Over	89.93	96.53	93.17	+7.15	-2.93	68.89	82.56	75.42	+43.20	-16.19	85.75	93.23	89.41	+12.48	-4.83
SMOTE	89.15	97.04	93.01	+637	-2.41	67.88	80.57	73.95	+42.18	-18.19	85.10	93.02	88.97	+11.83	-5.04
DEC	90.02	96.30	93.11	+7.24	.3.15	67.74	82.75	74.87	+42.05	-16.00	87.78	94.58	91.11	+14.51	-3.48
	Average		+7.25	-3.73	Average		+42.95	-17.11	Average		+13.88	-5.07			
	SE	SP	Fm	dSE	dSP	SE	SP	Fm	dSE	dSP	SE	SP	Fm	dSE	dSP
N. SVM	81.92	99.59	87.41	10702	1	25.69	98.81	37.06	E.	200.00.00	71.05	98.26	7422		
Under	90.83	95.00	70.51	+8.91	-4.59	61.46	84.76	37.79	+35.76	-1405	89.41	91.50	63.43	+18.37	-6.76
Over	\$2.70	97.93	78.62	+0.78	-1.66	68.55	83.48	39.44	+43.86	-15.33	71.71	97.95	73 19	+ 0.67	-0.31
SMOTE	85.54	97.90	80.05	+3.62	-1.69	6417	82.76	36.67	+38.48	-16.05	75.49	97.91	75.44	+ 4.44	-0.35
DEC	84.66	97.33	76.89	+2.74	-2.26	66.68	84.84	40.25	+40.99	-1397	72.22	97.34	71.09	+ 1.18	-0.92
		Average			-2.55		Average		+39.52	-14.85	Average		+ 6.16	-2.08	
	SE	SP	AUC-	dSE	dSP	SE	SF	AUC.	dSE	dSP	SE	SP	AUC-	dSE	dSP
N SVM	79.52	99.73	0.9691	2	1	25.49	99.36	0.8177	ŝ.	1	71.01	98.26	0.9816		
Under	91.03	94.39	0.9678	+11.52	-5.34	69.66	81.03	0 8303	+44.17	-18.32	90.67	91.61	0.9713	+19.62	-6.65
Over	89.76	95.19	0.9805	+ 9.69	-3.88	68.94	82.43	0.8386	+43.45	-16.93	82.65	92.00	0.9858	+11.60	-6.26
SMOTE	89.21	9585	0.9771	+10.24	-4.54	68.85	80.76	0.8303	+43 37	-18.60	79.04	93.02	0.9854	+ 7.99	-5.24
DEC	90.02	95.45	0.9813	+10.50	.4.28	69.02	82.52	0.8398	+43.53	-16.84	78.01	95.08	0.9844	+ 6.96	-2.28
	Average		+10.49	-4.51	Average		+43.63	-17.67	Average		+11.54	-5.11			
	SE	SP	AUC-	dSE.	dSP.	SE	SP	AUC-	dSE	dSP	SE	SP	AUC.	dSE	dSP
N SUM	79 60	00 71	0.7734	-	(and the second s	24.62	00.34	0.6208			60.02	12.20	0.7170		
Under	90 44	04.45	0.7356	+0.94	.5.26	60.97	90.78	0.7276	+45.25	-12.57	90.03	96.51	0.7130	+10.00	12.04
Osier	2413	97.45	0.7544	+4.52	.2.26	67.31	\$1.76	0.7534	+42/19	-17.60	100.03	92.05	0.0277	+ 0.00	. 0.45
SMOTE	8113	97.45	0.7514	+5.52	.2.26	64.56	80.90	0.7524	+39.95	-18.46	77.00	02.26	0.7154	+ 716	. 0.45
DEC	81.63	00 61	0.7750	+2.02	-0.11	67.96	83.80	0.7334	+43.34	-15 55	70.52	08.40	0.7504	+ 0.58	. 0.11
		Áverag		+5.62	.2.54		Average		+42.81	-17.55	10.54	Average	0.7504	+ 5 68	3.44
	IIVelige				Livelage		- Inter				1 2300	- 3.44			
	SE	SP	AGm	dSE	dSP	SE	SF	AGm	dSE	dSP	SE	SP	AGm	ďΞE	dSP
N. SVM	82.49	99.40	94.82			25.69	98.73	73.55	2	1	72.16	98.16	90.87		
Under	90.89	9463	93.65	+8.40	-4.77	65.07	83.53	78.43	+39.38	-15 20	89.41	91.49	90.94	+17.25	-6.67
Over	89.93	96.86	95.03	+7.44	-2.54	68.51	83.49	79.40	+42.82	-15.26	80.16	95.70	91.47	+ 8.00	-2.46
SMOTE	88.75	97.31	95.04	+6.26	-2.09	64.47	82.76	77.70	+38.78	-16.00	79.10	96.82	91 98	+ 6.94	-1.33
DEC	90.02	96:30	94.64	+7.53	-3.10	66.68	84.86	79.84	+40.99	-13.90	83.33	95.29	92.07	+11.18	-2.87
	Average			+7.41	-3.01	Average		+40.49	-15.09	Average		+ 9.07	-3.86		

79

CS4220, AY2011/12

Copyright 2011 © Limsoon Wong

How to choose class-imbalance treatment?

Method	Results for miRNA dataset (%)									
	SE	SP	Gm	dSE	dSP					
N.SVM	82.78	99.45	90.73							
Under	91.03	93.02	92.02	+8.25	-6.43					
Over	89.93	96.53	93.17	+7.15	-2.93					
SMOTE	89.15	97.04	93.01	+6.37	-2.41					
DEC	90.02	96.30	93.11	+7.24	-3.15					
		Average	+7.25	-3.73						

- There are usually a lot more –ve samples; often normal classifiers (N.SVM) have low SE & high SP
 - Users generally want higher SE, w/o sacrificing too much SP
- Class-imbalance treatment aim to maximize improvement in SE (dSE) & minimize loss in SP (dSP)
- \Rightarrow Choose one that maximizes R = |dSP / dSE|

80

CS4220, AY2011/12

Copyright 2011 © Limsoon Wong

Geometric Mean $Gm = \sqrt{SE * SP}$

- Gm weighs changes in SE and SP equally
- ⇒ Gm may select sub-optimal models for imbalanced data

Example A

- ModelNormal: SE=70.00%, SP=99.00%, Gm=83.25%
- After class-imbalanced treatment under Gm
 - Model1: SE = 92%, SP = 98%, Gm = 94.95%
 - Model2: SE = 94.95%, SP = 94.95%, Gm = 94.95%
 - Model3: SE = 98%, SP = 92%, Gm = 94.95%
- All 3 treated models have the same Gm
- But Model1 (dSE=22%, dSP= -1%) is the best

Source: Batuwita & Palade, *JBCB*, 2012

 Fm works well if training set is imbalance but testing set is balanced. If testing set is also imbalanced, Fm is more sensitive to changes in PPV, leading to sub-optimal models

 Fm_1

 $\frac{2*PPV*SE}{PPV+SE}$

Example B

F-Measure

- Let -ve testing samples = 950, +ve testing samples = 50
 Let Model1 & Model2 be resulted when applying class imbalance learning for diff model parameters
 - ModelNormal: SE = 70%, SP = 99%
 - Model1: SE = 70%, SP = 99%, Then PPV = 80%, Fm = 74%
 - Model2: SE = 90%, SP = 97%, Then PPV = 62%, Fm = 73%
- Here Model2 is better; but Fm picks Model1

Source: Batuwita & Palade, *JBCB*, 2012 Copyright 2011 © Limsoon Wong

AUC-ROC

- AUC-ROC plots SE vs (1- SP) and compute area under the curve. Thus it weighs changes in SE and SP equally
- \Rightarrow Similar problem as Gm

AUC-PR

- AUC-PR plots SE vs PPV and compute area under the curve. Thus if test set is imbalanced, it is more sensitive to changes in PPV than SE
- \Rightarrow Similar problem as Fm

Adjusted Geometric Mean $AGm_2 = \frac{Gm + SP * N_n}{1 + N_n}$

 N_n = proportion of –ve samples

 AGm metric is more sensitive to changes in SP than to changes in SE. Moreover, the higher the imbalance (N_n), the higher its sensitiveness to changes in SP

CS4220, AY2011/12

Adjusted Geometric Mean

 N_{p} = proportion of –ve samples

 $AGm_2 =$

Gm + SP * N.

 $1 + N_{\mu}$

Example A – Revisited ($N_n = 95\%$) ModelNormal: SE=70.00%, SP=99.00%, Gm=83.25% After class-imbalanced treatment under Gm - Model1: SE = 92%, SP = 98%, Gm = 94.95% $- AGm = (94.95 + 98 \times 0.95)/(1 + 0.95) = 96.44\%$ - Model2: SE = 94.95%, SP = 94.95%, Gm = 94.95% $- \text{AGm} = (94.95 + 94.95 \times 0.95)/(1 + 0.95) = 94.95\%$

- Model3: SE = 98%, SP = 92%, Gm = 94.95%

 $- \text{AGm} = (94.95 + 92 \times 0.95)/(1 + 0.95) = 93.51\%$

- All 3 treated models have the same Gm ۲
- But Model1 (dSE=22%, dSP=-1%) is the best ۲
- AGm correctly picks Model1 •

Source: Batuwita & Palade, JBCB, 2012

۲

Adjusted Geometric Mean

 $1 + N_n$ N_n = proportion of -ve samples

 $AGm_2 =$

 $Gm + SP * N_n$

Example B – Revisited ($N_n = 95\%$)

- Let –ve testing samples = 950, +ve testing samples = 50
 Let Model1 & Model2 be resulted when applying class imbalance learning for diff model parameters
 - ModelNormal: SE = 70%, SP = 99%
 - Model1: SE = 70%, SP = 99%, Then PPV = 80%, Fm = 74%
 - AGm = 91%
 - Model2: SE = 90%, SP = 97%, Then PPV = 62%, Fm = 73%
 - AGm = 95%
- Here Model2 is better; but Fm picks Model1
- AGm correctly picks Model2

Source: Batuwita & Palade, *JBCB*, 2012

What have we learned?

- Class-imbalance problems
- Class-imbalance treatment procedure
- Better appreciation of classifier performance measure, especially under class-imbalance situation

References

Must read

 Batuwita & Palade. "Adjusted geometric mean: A novel performance measure for imbalanced bioinformatics datasets learning", *JBCB*, 10(4):???-???, 2012. To appear.

Journal of Bioinformatics and Computational Biology © Imperial College Press

ADJUSTED GEOMETRIC-MEAN: A NOVEL PERFORMANCE MEASURE FOR IMBALANCED BIOINFORMATICS DATASETS LEARNING

RUKSHAN BATUWITA

University of Oxford, Department of Computer Science Oxford, OX1 3QD, United Kingdom manb@cs.ox.ac.uk

VASILE PALADE

University of Oxford, Department of Computer Science Oxford, OX1 3QD, United Kingdom vasile.palade@cs.ox.ac.uk

Acknowledgements

- The set of slides on clustering was mostly adapted from Jinyan Li.
- The set of slides on association rule mining was mostly adapted from Albert Puig.