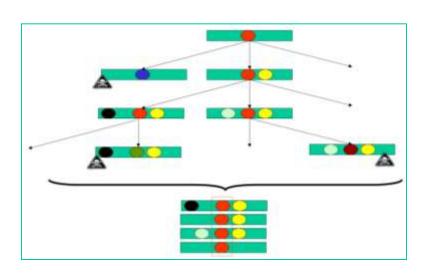
CS4220: Knowledge Discovery Methods for Bioinformatics Unit 7: Protein Function Prediction

Limsoon Wong

Protein function prediction w/o informative sequence homologs



- Basic protein function prediction
- "Guilt by association" of other properties
- Protein function prediction from PPIs
- "Guilt by association" of multiple types of information

Basic Protein Function Prediction

Limsoon Wong

National University of Singapore

A protein is a ...

- A protein is a large complex molecule made up of one or more chains of amino acids
- Protein performs a wide variety of activities in the cell

Function Assignment to Protein Sequence

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR
YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
VT

 How do we attempt to assign a function to a new protein sequence?

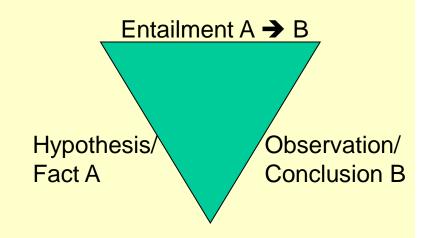
> I hope you remember most of what I am going to tell you in the next ~10 slides. If not, dig out your old CS2220 lecture notes or slides!

Invariant and Abductive Reasonin

- Function is determined by 3D struct of protein & environment protein is in
- Constraints imposed by 3D struct & environment give rise to "invariant" properties observed in proteins having the ancestor with that function

⇒ Abductive reasoning

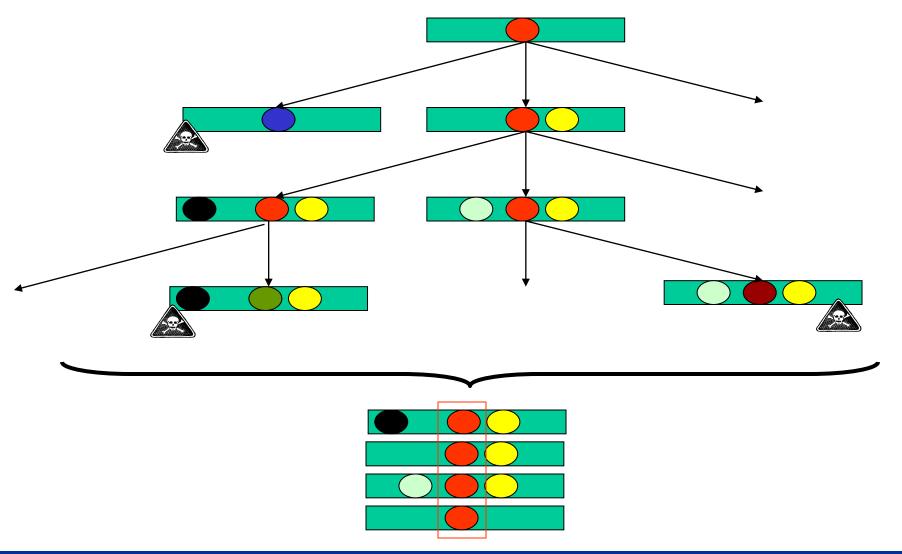
 If those invariant properties are seen in a protein, then the protein is homolog of this protein



⇒ "Guilt by association"

National University of Singapore

In the course of evolution...



Guilt-by-Association

Compare *T* with seqs of known function in a db

Poor Sequence Alignment

- Poor seq alignment shows few matched positions
- ⇒ The two proteins are not likely to be homologous

Alignment by FASTA of the sequences of amicyanin and domain 1 of ascorbate oxidase

Ascorbate Oxidase ILQRGTPWADGTASISQCAINPGETFFYNDTVDTPFYHGHLGMQRSAGLYG

No obvious tch between Amicyanin and corbate Oxidase

Discard this function as a candidate

Good Sequence Alignment

- Good alignment usually has clusters of extensive matched positions
- ⇒ The two proteins are likely to be homologous

```
| Secretary | Secr
```

Assign to *T* same function as homologs

Confirm with suitable wet experiments

Guilt-by-Association: Caveats

- Ensure that the effect of database size has been accounted for
- Ensure that the function of the homology is not derived via invalid "transitive assignment"
- Ensure that the target sequence has all the key features associated with the function, e.g., active site and/or domain

Guilt by Association of Other Properties

Limsoon Wong

What if there is no useful seq homolog? National University Singapore

Guilt by other types of association!

- Domain modeling (e.g., HMMPFAM)
- Similarity of phylogenetic profiles
- Similarity of dissimilarities (e.g., SVM-PAIRWISE)
- Similarity of subcellular co-localization & other physico-chemico properties (e.g., PROTFUN)
- Similarity of gene expression profiles
- Similarity of protein-protein interaction partners
- **–** ...
- Fusion of multiple types of info

Domain Modeling

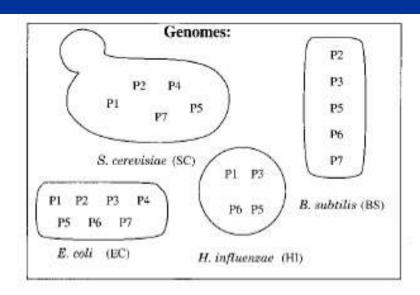
- Annotate known proteins in a database with their domains using, e.g., HMMPFAM
- Association-rule approach
 - Do association rule mining to get high-confidence rules $D_1, ..., D_k \Rightarrow F$
 - Predict unknown protein to have function F if domains D₁, ..., D_k are found in the protein
- Probabilistic approach
 - Prob of protein having D will have F, P(F|D)
 - Prob of protein having D will not have F, P(~F|D)
 - Odds ratio, $\alpha = P(F|D)/P(\sim F|D)$
 - \Rightarrow P(F|D) = α /(1 + α)

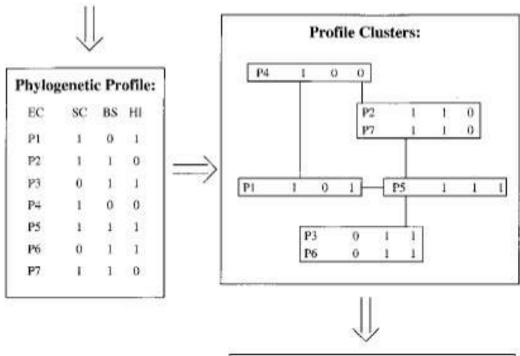
Similarity of Phylogenetic Profiles

- Proteins carry out their function within the context of biological pathways
- Genes coding for proteins participating in the same pathway are present together in genomes where the pathway is functional

By abduction,

- Genes (and hence proteins) with identical patterns of occurrence across phyla participate in the same pathway and function together
- ⇒ Phylogenetic profiling





Conclusion: P2 and P7 are functionally linked,

P3 and P6 are functionally linked

Phylogenetic Profiling: How it Works

Pellegrini et al., PNAS, 96:4285--4288, 1999

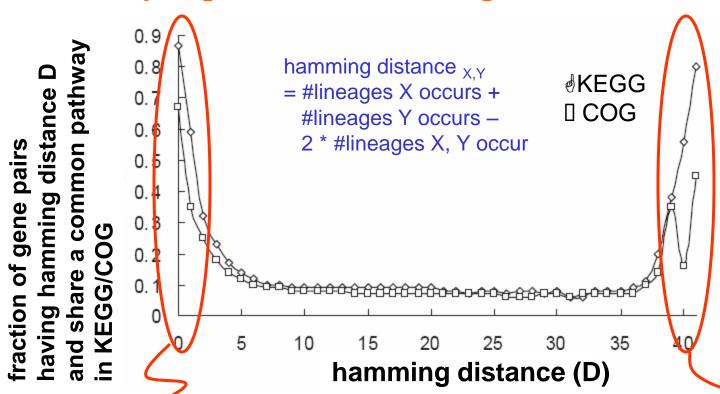
Phylogenetic Profiles: Evidence

Keyword	No. of non- homologo us proteins in group	No. neighbors in keyword group	No. neighbors in random group
Ribosome	60	197	27
Transcription	36	17	10
tRNA synthase and ligase	26	11	5
Membrane proteins*	25	89	5
Flagellar	21	89	3
Iron, ferric, and ferritin	19	31	2
Galactose metabolism	18	31	2
Molybdoterin and Molybdenum,			
and molybdoterin	12	6	1
Hypothetical [†]	1,084	108,226	8,440

 E. coli proteins grouped based on similar keywords in SWISS-PROT have similar phylogenetic profiles

Pellegrini et al., PNAS, 96:4285--4288, 1999

Phylogenetic Profiling: Evidence



 Proteins having low hamming distance (thus highly similar phylogenetic profiles) tend to share common pathways

Why do proteins having high hamming distance also have this behaviour?

Similarity of Dissimilarities

Differences of "unknown" to other fruits are same as "apple" to other fruits

"unknown" is an "apple"!

	Orange ₁	Banana ₁	
Apple ₁	Color = red vs orange	Color = red vs yellow	
-	Skin = smooth vs rough	Skin = smooth vs smooth	
	Size = small vs small	Size = small vs small	
	Shape = round vs round	Shape = round vs oblong	
Orange ₂	Color = orange vs orange	Color = orange vs yellow	
	Skin = rough vs rough	Skin = rough vs smooth	
	Size = small vs small	Size = small vs small	
	Shape = round vs round	Shape = round vs oblong	
Unknown ₁	Color = red vs orange	Color = red vs yellow	
	Skin = smooth vs rough	Skin = smooth vs smooth	
	Size = small vs small	Size = small vs small	
	Shape = round vs round	Shape = round vs oblong	

SVM-Pairwise Framework

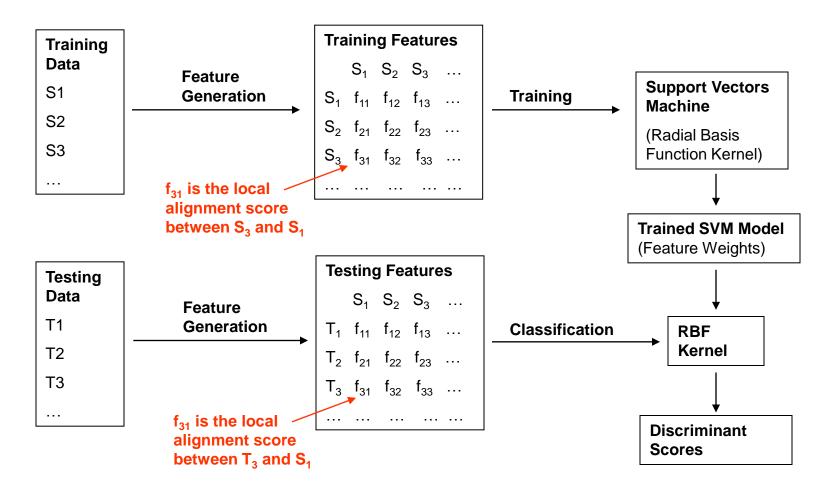
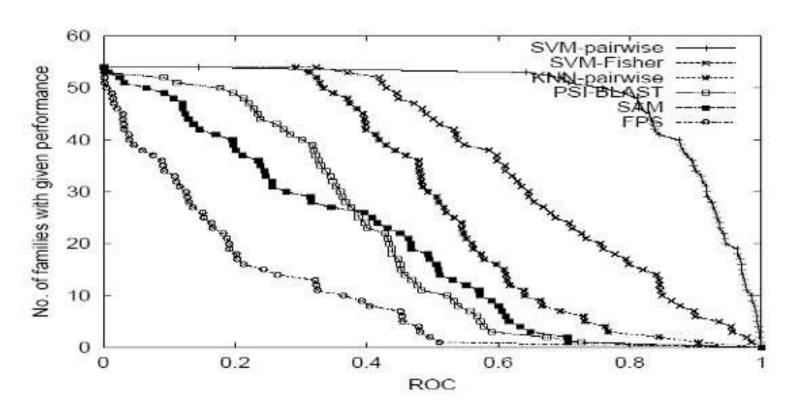


Image credit: Kenny Chua

Performance of SVM-Pairwise

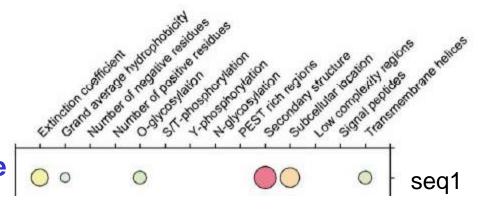


- Receiver Operating Characteristic (ROC)
 - The area under the curve derived from plotting true positives as a function of false positives for various thresholds.

The ProtFun Approach

Jensen, *JMB*, 319:1257--1265, 2002

- A protein is not alone when performing its biological function
- It operates using the same cellular machinery for modification and sorting as all other proteins do, such as glycosylation, phospharylation, signal peptide cleavage, ...
- These have associated consensus motifs, patterns, etc.

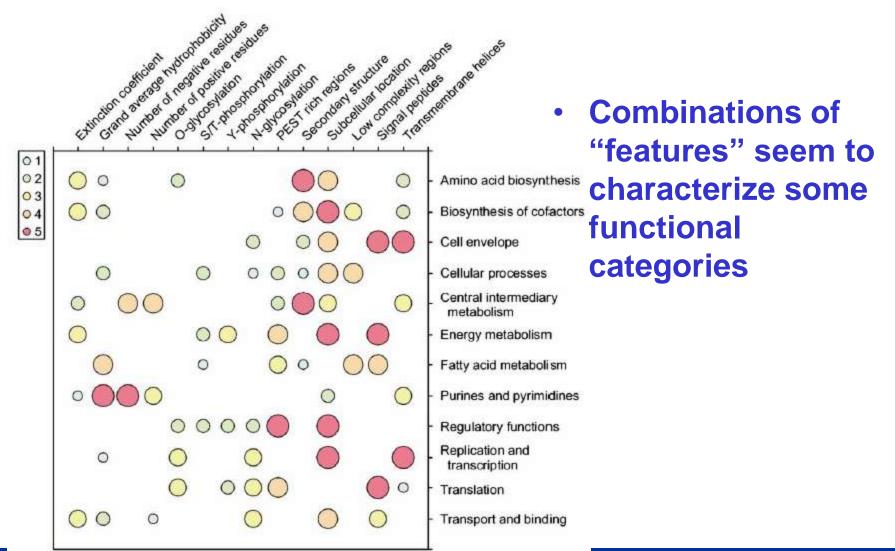


- Proteins performing similar functions should share some such "features"
- ⇒ Perhaps we can predict protein function by comparing its "feature" profile with other proteins?

ProtFun: How it Works

Abbriviation	Encoding					
ес	single value	Extinction coeffice	Extinction coefficient predicted by ExPASy ProtParam			
gravy	single value	Hydrophobicity p	Hydrophobicity predicted by ExPASy ProtParam			
nneg	single value	Number of nega	atively charged residues counted	by ExPASy ProtParam		
npos	single value	Number of posi	tively charged residues counted	by ExPASy ProtParam		
nglyc	potential in 5 bins	N-glycosylation	sites predicted by <u>NetNGlyc</u>			
oglyc	potential-threshold in 10 bins	GalNAc O-glycosylations predicted by NetOGlyc				
pest	fraction in 10 bins	PEST rich regions identified by PESTfind				
phosST	potential in 10 bins	Serine and threonine phosporylations predicted by NetPhos				
phosY	potential in 10 bins	Tyrosine phosporylations predicted by NetPhos Extract feature				
psipred	helix, sheet, coil in 5 bins	Predicted secon	profile of protein			
psort	20 probabilities	Subcellular loca	using various			
seg	fraction in 10 bins	Low-complexity	prediction methods			
signalp	meanS, maxY, log(cleavage pos)	Signal peptide p	prediction methods			
tmhmm	inside, outside, membrane in 5 bins	Transmembrane helix predictions made by <u>TMHMM</u>				
Category		Hidde units		nput features		
Amino acid biosynthesis		30	ec psipred psort tmhmm			
		30	ec psipred tmhmm			
	Assertant the second	30	ec netoglyc psipred psort			
Average the outpu			gravy psipred psort			
	the 5 componer	nt ANNs	onlyc nainred neart			

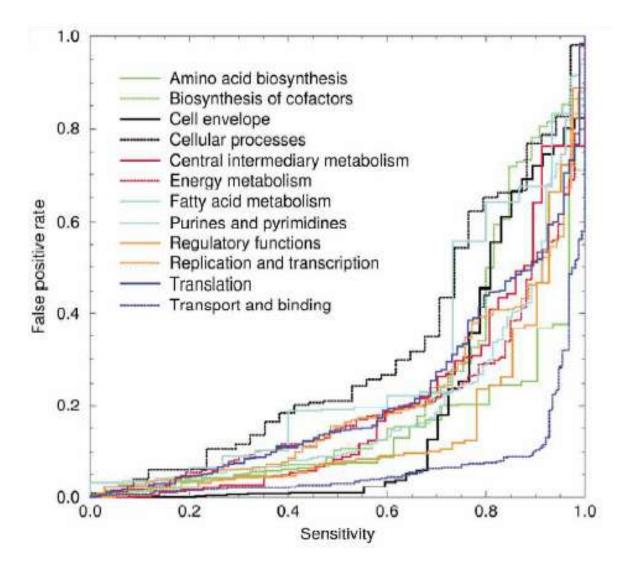
ProtFun: Evidence



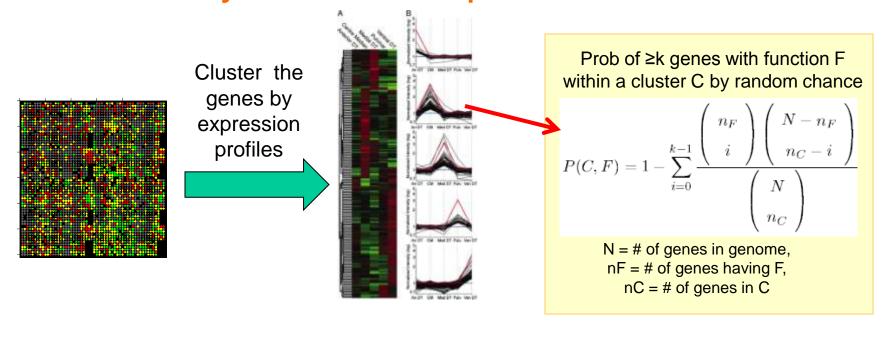
ProtFun: Example Output

	Prion	A4	TTHY	
Amino acid biosynthesis	0.011	0.011	0.011	At the seq level,
Biosynthesis of cofactors	0.041	0.161	0.034	- · · · · · · · · · · · · · · · · · · ·
Cell envelope	0.146	0.804	0.698	Prion, A4, & TTHY
Cellular processes	0.027	0.027	0.051	are dissimilar
Central intermediary metabolism	0.047	0.139	0.059	are dissimilar
Energy metabolism	0.029	0.023	0.046	
Fatty acid metabolism	0.017	0.017	0.023	
Purines and pyrimidines	0.528	0.417	0.153	ProtFun predicts
Regulatory functions	0.013	0.014	0.014	them to be cell
Replication and transcription	0.020	0.029	0.040	
Translation	0.035	0.027	0.032	envelope-related,
Transport and binding	0.831	0.827	0.812	tranport & binding
Enzyme	0.233	0.367	0.227	3
Non-enzyme	0.767	0.633	0.773	
Oxidoreductase (EC 1)	0.070	0.024	0.055	This is in agreement
Transferase (EC 2)	0.031	0.208	0.037	w/ known
Hydrolase (EC 3)	0.101	0.090	0.208	
Isomerase (EC 4)	0.020	0.020	0.020	functionality of
Ligase (EC 5)	0.010	0.010	0.010	these proteins
Lyase (EC 6)	0.017	0.078	0.017	inose proteins

ProtFun: Performance



Similarity of Gene Expression Profiles



P-value of gene G having function F is thus

$$P(G, F) = \min_{C:G \in C} P(C, F).$$

⇒ Predict G has function F when P(G, F) is small

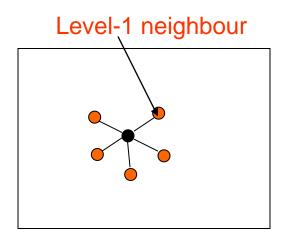
Xiao & Pan. *JBCB*, 3(6):1371-89, 2005

Direction Functional Association in P

 Prob of k genes with function F interacting with unknown gene G by random chance

$$P_I(G,F) = 1 - \sum_{i=0}^k rac{\left(egin{array}{c} n_F \ i \end{array}
ight) \left(egin{array}{c} N-1-n_F \ I_G-i \end{array}
ight)}{\left(egin{array}{c} N-1 \ I_G \end{array}
ight)}$$

N = # of genes in genome,nF = # of genes having F,IG = # of genes interacting with G

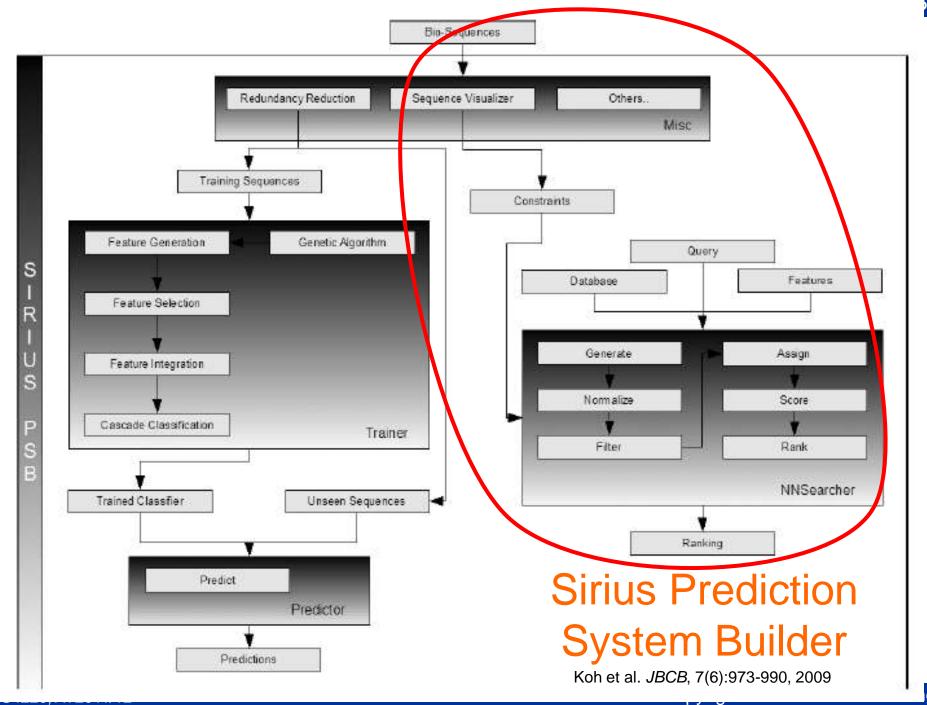


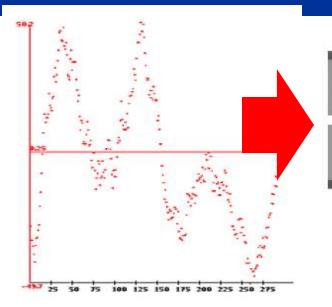
⇒ Predict G has function F when P_i(G,F) is small

Xiao & Pan. *JBCB*, 3(6):1371-89, 2005

The approaches described earlier assume you have lots of training data.

What if you have only a few training samples?





Hydrophillic membrane core Hydrophobic TM domain Hydrophillic domain

Koh et al. *JBCB*, 7(6):973-990, 2009

Table 4 Top 10 hits of NNSearch with RTN1 & RTN2 as query and

No. Sequence header sp|Q04947|RTN1_YEAST Reticulon-like protein 1 OS=Sacch GN=RTN1 sp|Q12440|RTN2_YEAST Reticulon-like protein 2 OS=Sacch GN=RTN2 sp|P20641 MP CP_YEAST Mitochandrial phosphate carrier p cerevisiae GN=MIR1 sp|Q12402|YOP1_YEAST Protein YOP1 OS=Saccharomyces sp|P50600|PRA1_YEAST Prenylated Rab acceptor 1 OS=Sa. GN=YIPa 6 sp[P00410]COX2_YEAST Cytochrome c oxidase subunit 2 O GN=COX2 sp[P@692]MET10_YEAST Sulfite reductase [NADPH] flavor OS=Sacchazomyces cerevisiae GN = MET10 sp/Q05142[IMB1_YEAST Importin subunit beta-1 OS=Seech GN=KAP95 sp|P40069|IMB4_YEAST Importin subunit beta-4 OS=Seech GN=KAP120 sp/P08029[YB85_YEAST Uncharacterized membrane protein. 10 OS=Saccharomyces cerevisiae GN=YBR205W

Sirius PSB

 Visualize & specify seq features to search for related proteins w/ low seq similarity

References

Must Read

 Friedberg. "Automated protein function prediction---the genomic challenge". Briefings in Bioinformatics, 7(3):225-242, 2006

Good to Read

- [Phylogenetic Profile] Pellegrini et al. "Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles", PNAS, 96:4285-4288, 1999
- [Domain Content] Forslund & Sonnhammer. "Predicting protein function from domain content". Bioinformatics, 24(15):1681-1687, 2008
- [ProtFun] Jensen et al. "Prediction of human protein function from post-translational modifications and localization features", *JMB*, 319:1257--1265, 2002
- [SVM-Pairwise] Li & Noble. "Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships". *JCB*, 10(6):857-868, 2003
- [Sirius PSB] Koh et al. "Sirius PSB: A Generic System for Analysis of Biological Sequences". *JBCB*, 7(6):973-990, 2009

Protein Function Prediction from PPIN

Limsoon Wong

Main Hypotheses of PPIN-Based Function Prediction

- Proteins with similar function are topologically close in PPIN
 - Direct functional association
 - Indirect functional association

A pair of proteins that participate in the same cellular processes or localize to the same cellular compartment are many times more likely to interact than a random pair of proteins

 Proteins with similar function have interaction neighborhoods that are similar

What do you get if you apply abduction here?

When proteins in the neighborhood of a protein X have similar functions to proteins in the neighborhood of a protein Y, then proteins X & Y likely operate in similar environment

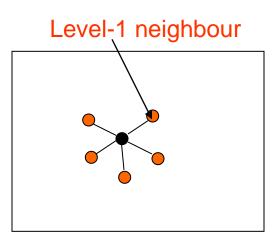
Functional Association Thru Interaction

Direct functional association:

- Interaction partners of a protein are likely to share functions w/ it
- Proteins from the same pathways are likely to interact

Indirect functional association

- Proteins that share interaction partners with a protein may also likely to share functions w/ it
- Proteins that have common biochemical, physical properties and/or subcellular localization are likely to bind to the same proteins



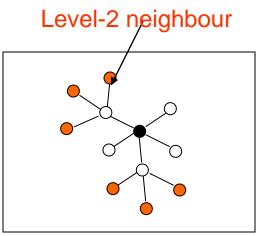
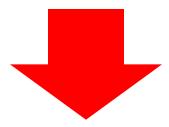


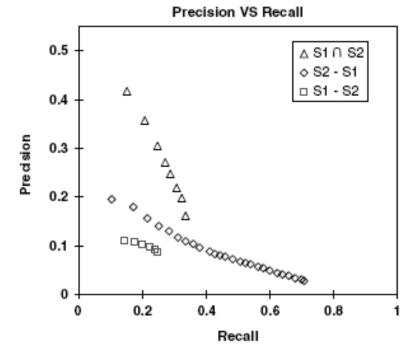
Image credit: Kenny Chua

Majority Voting

 Proteins with similar function are topologically close in PPIN



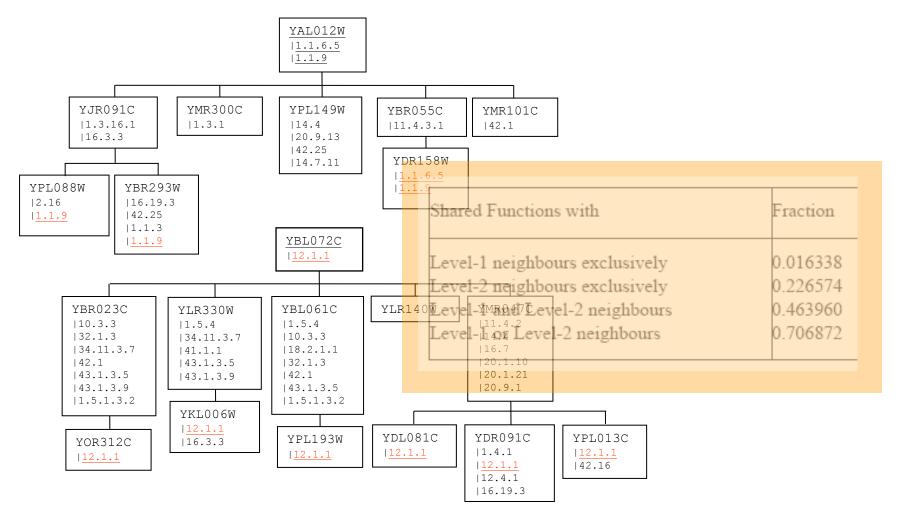
 Assign a protein a function that is over represented among its interaction partners



- Shortcomings
 - L1 is not sensitive
 - L2 is noisy

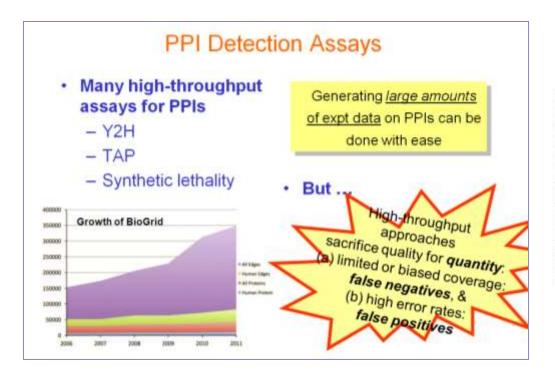
Hishigaki et al. Yeast, 18:523-531, 2001

Why is L1 not sensitive?

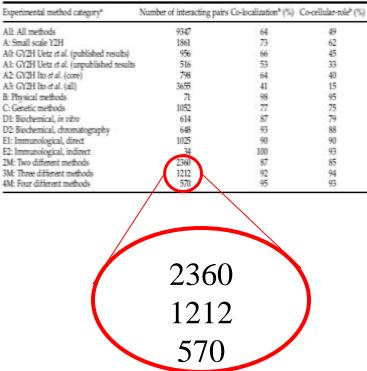


Chua et al. *Bioinformatics*, 22:1623-1630, 2006.

Why is L2 noisy?



Sprinzak et al., *JMB*, 327:919-923, 2003



Large disagreement between experiments!

Chua & Wong. Increasing the Reliability of Protein Interactomes. *Drug Discovery Today*, 13(15/16):652--658, 2008

Dealing with noise in PPIN

- Two proteins participating in same biological process are more likely to interact
- Two proteins in the same cellular compartments are more likely to interact

CD-distance & FS-Weight: Based on concept that two proteins with many interaction partners in common are likely to be in same biological process & localize to the same compartment

- **CD-distance**
- FS-Weight

Cf. ave localization coherence of protein pairs in DIP < 5% ave localization coherence of PPI in DIP < 55%



Czekanowski-Dice Distance

Functional distance between two proteins

$$D(u,v) = \frac{|N_u \Delta N_v|}{|N_u \cup N_v| + |N_u \cap N_v|} \bullet$$

- N_k is the set of interacting partners of k
- X Δ Y is symmetric diff betw two sets X and Y
- · Greater weight given to similarity

⇒ Similarity can be defined as

$$S(u,v)=1-D(u,v)=\frac{2X}{2X+(Y+Z)}$$

Brun, et al. Genome Biology, 5(1):R6, 2003

Is this a good

and v have very diff number of

measure if u

neighbours?

FS-Weighted Measure

FS-weighted measure

$$S(u,v) = \frac{2|N_u \cap N_v|}{|N_u - N_v| + 2|N_u \cap N_v|} \times \frac{2|N_u \cap N_v|}{|N_v - N_u| + 2|N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- Greater weight given to similarity

⇒ Rewriting this as

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Correlation w/ Functional Similarit

Correlation betw functional similarity & estimates

Neighbours	CD-Distance	FS-Weight
$egin{array}{l} \mathbf{S_1} \\ \mathbf{S_2} \\ \mathbf{S_1} \cup \mathbf{S_2} \end{array}$	0.224705	0.498745 0.298843 0.29629

 FS-Weight is slightly better in correlation w/ similarity for L1 & L2 neighbours

Reliability of Expt Sources

- Diff expt sources have diff reliabilities
 - Assign reliability to an interaction based on its expt sources
- Reliability betw u and v computed by:

$$r_{u,v} = 1 - \prod_{i \in E_{u,v}} (1 - r_i)$$

- r_i is reliability of expt source i,
- E_{u,v} is the set of expt sources in which interaction betw u and v is observed

Source	Reliability
Affinity Chromatography	0.823077
Affinity Precipitation	0.455904
Biochemical Assay	0.666667
Dosage Lethality	0.5
Purified Complex	0.891473
Reconstituted Complex	0.5
Synthetic Lethality	0.37386
Synthetic Rescue	1
Two Hybrid	0.265407

FS-Weighted Measure with Reliability

 Take reliability into consideration when computing FS-weighted measure:

$$S_{R}(u,v) = \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}}{\left(\sum_{w \in N_{u} - N_{v}} r_{u,w} \left(1 - r_{v,w}\right)\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}} \times \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}}{\left(\sum_{w \in N_{v} - N_{u}} r_{v,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}}$$

- N_k is the set of interacting partners of k
- r_{u,w} is reliability weight of interaction betw u and v

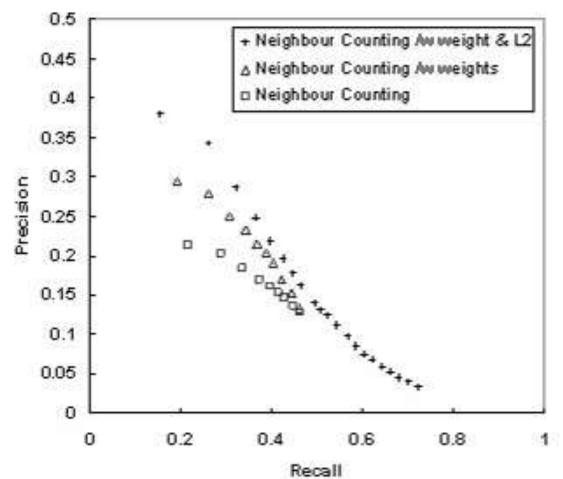
$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Integrating Reliability

 FS-Weight shows improved correlation w/ functional similarity when reliability of interactions is considered:

Neighbours	CD-Distance	FS-Weight	FS-Weight R
$egin{array}{l} S_1 \ S_2 \ S_1 \cup S_2 \end{array}$	0.224705	0.298843	0.532596 0.375317 0.363025

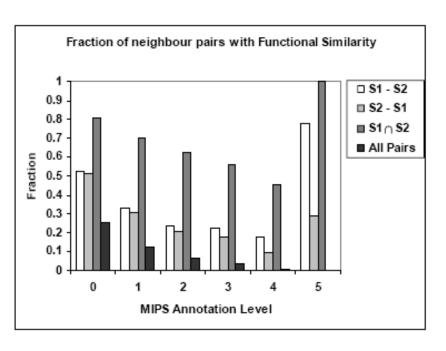
Improvement to Prediction Power by Majority Voting

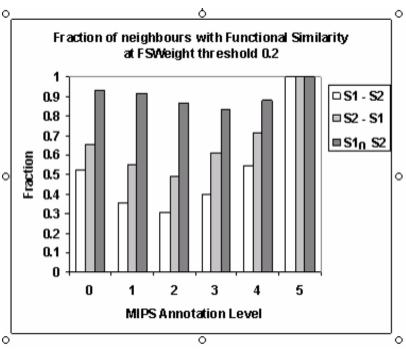


Considering only neighbours w/ FS weight > 0.2

of Singapore

Improvement to Over-Rep of Functions in Neighbours





Use L1 & L2 Neighbours for Prediction National University of Singapore

FS-weighted Averaging (FWA)

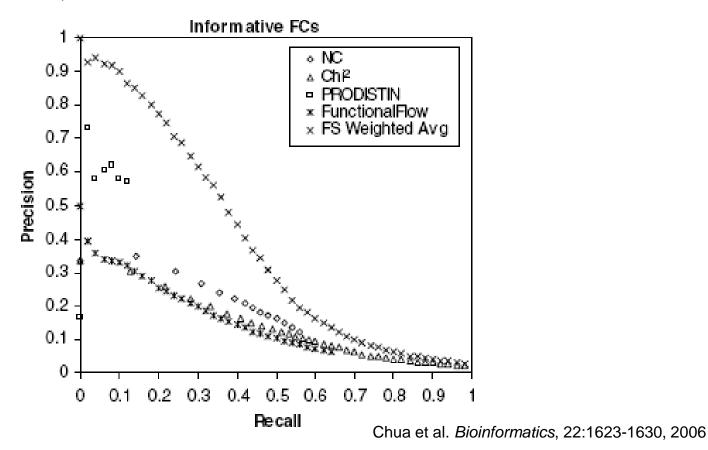
$$f_x(u) = \frac{1}{Z} \left[\lambda r_{\text{int}} \pi_x + \sum_{v \in N_u} \left(S_{TR}(u, v) \delta(v, x) + \sum_{w \in N_v} S_{TR}(u, w) \delta(w, x) \right) \right]$$

- r_{int} is fraction of all interaction pairs sharing function
- λ is weight of contribution of background freq
- $\delta(k, x) = 1$ if k has function x, 0 otherwise
- N_k is the set of interacting partners of k
- π_x is freq of function x in the dataset
- Z is sum of all weights

$$Z = 1 + \sum_{v \in N_u} \left(S_{TR}(u, v) + \sum_{w \in N_v} S_{TR}(u, w) \right)$$

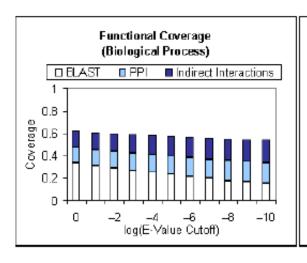
Performance of FS-Weighted Averaging National University Performance Nation

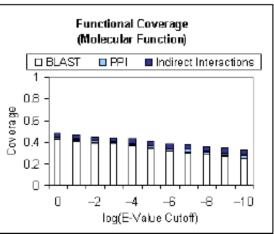
 LOOCV comparison with Neighbour Counting, Chi-Square, PRODISTIN

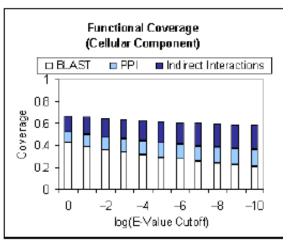


Freq of indirect functional association in other genomes

D. melanogaster





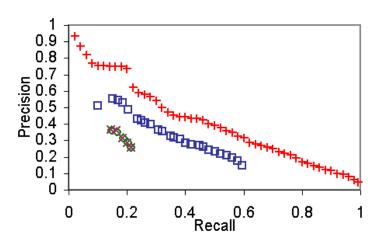


Genome	Annotation	S ₁ -S ₂	S ₂ -S ₁	$S_1 \cap S_2$	$S_1 \cup S_2$
S. cerevisiae	MIPS	0.007193	0.226574	0.463960	0.706872
D. melanogaster	GO	0.008801	0.168622	0.138138	0.315561
C. elegans	GO	0.007193	0.051237	0.061080	0.119510

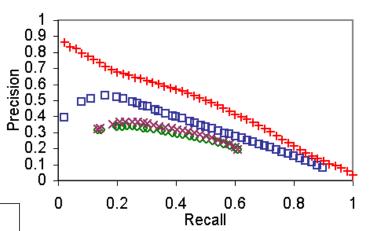
Chua et al. Using Indirect Protein Interactions for the Prediction of Gene Ontology Functions. *BMC Bioinformatics*, 8(Suppl 4):S8, 2007

Effectiveness of FSWeighted Averaging in other genomes

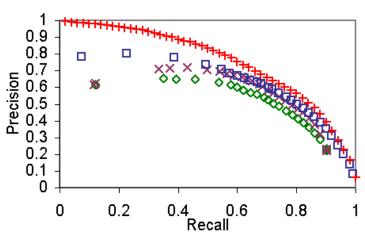
Precision vs Recall (Worm / GO Level 3)



Precision vs Recall (Fly / GO Level 3)



Precision vs Recall (Yeast / GO Level 3)



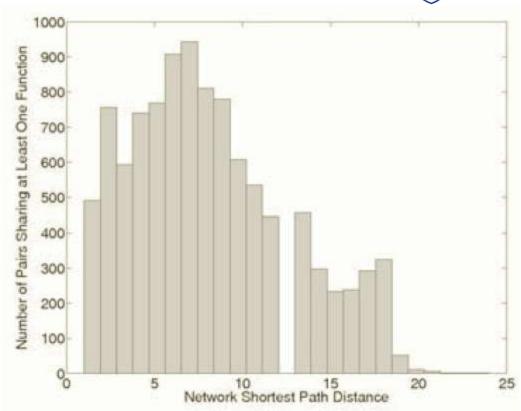
- ♦ Neighbour Counting
- ×NC (Weighted)
- □ NC (Weighted + L2)
- + Weighted Avg

Chua et al. Using Indirect Protein Interactions for the Prediction of Gene Ontology Functions. *BMC Bioinformatics*, 8(Suppl 4):S8, 2007

What have we learned?

- Proteins with similar function are topologically close in PPIN
- ⇒ Assign protein to a function that is over represented in its neighborhood
 - Indirect neighbors are useful
- PPIN is noisy
 - Not are neighbors are "real"
- ⇒ Need to clean up the PPIN before "voting"

But genes sharing annotations do not always interact...



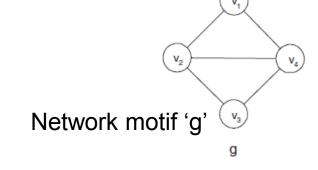
 Similar functions are sometimes at large network distances

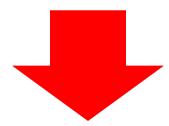
Source: Bogdanov & Singh. *TCBB*, 7:208–217, 2010

National University of Singapore

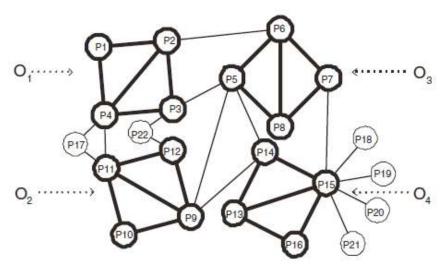
Labeled Motifs

 Proteins with similar function have interaction neighborhoods that are similar





 Assign a protein a function based on "network motif" that its neighborhood matches

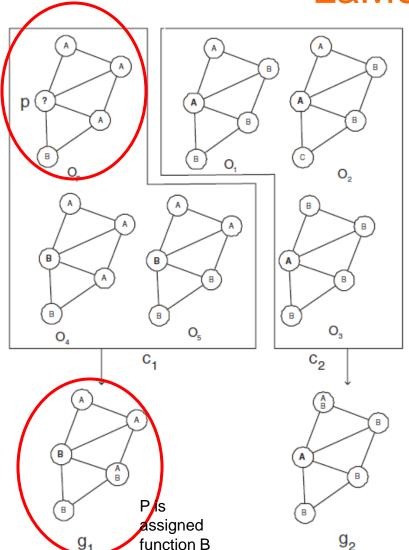


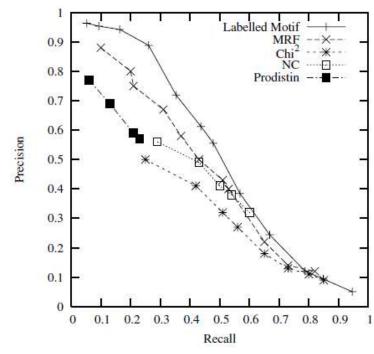
4 occurrences of 'g' in this PPIN

Image credit: Chen et al. ICDE2007, pp. 546-555

Chen et al. *ICDE2007*, pp. *546–555*

LaMoFinder





Shortcoming

Works only for proteins in subnets that can be mapped to network motifs

Pattern-Based Annotation Prediction (PAP)

- Kirac & Ozsoyoglu, RECOMB2008, pp 197-213
- Find the best pairwise graph alignment of the functionally labeled subgraph rooted at the unknown protein to functionally labeled subgraphs rooted at other nodes in the protein interaction network

Shortcoming

- Rely on topological matching of subnetworks
- ⇒Sensitive to noise & missing edges in PPIN

Functional Neighborhood Features

- Bogdanov & Singh. TCBB, 7:208–217, 2010
- Predict function of an unknown protein v by weighted voting of the k proteins having most similar functional profiles to v

- Affinity of protein u to protein v
 - $-P_{u,v}$ = Prob of random walks from u to v
- Affinity of protein v to function a
 - $-Sf_{v}(a) = \Sigma P_{u,v}$, over all proteins u having function a
- Functional profile of a protein v
 - $[Sf_v(a_1), ..., Sf_v(a_k)],$ normalized

Comparisons

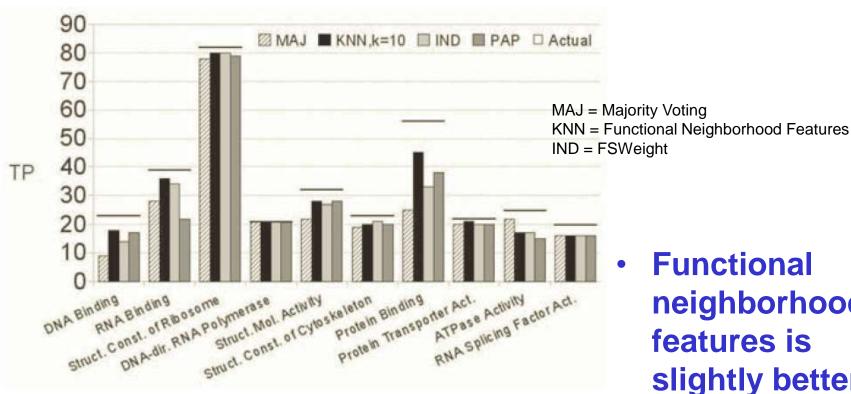


Fig. 10. Number of TP per GO molecular function (FYI, T=20). The top two functions are considered as predictions for each of the methods. The horizontal bars represent the total number of TPs for each GO term.

Functional neighborhood features is slightly better than **FSWeight**

Bogdanov & Singh. TCBB. 7:208-217, 2010

What have we learned?

- Proteins with similar function can be far apart
- If the functional neighborhood features of two proteins are similar, they may have similar function
- ⇒ Assign protein to a function based on network motif (and generalizations thereof) that it matches

References

Must Read

- Wong. "Using biological networks in protein function prediction and gene expression analysis". *Internet Math*, 7(4):274--298, 2011
- [FSWeight] Chua et al. "Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions". Bioinformatics, 22:1623-1630, 2006

Good to Read

- [Majority Voting, χ2] Hishigaki et al. "Assessment of prediction accuracy of protein function from protein-protein interaction data". Yeast, 18:523-531, 2001
- [LaMoFinder] Chen et al. "Labeling Network Motifs in Protein
 Interactomes for Protein Function Prediction". ICDE2007, 546–555
- [PAP] Kirac & Ozsoyoglu. "Protein Function Prediction based on Patterns in Biological Networks". RECOMB2008, 197–213
- [Functional Neighborhood Features] Bogdanov & Singh. "Molecular Function Prediction Using Neighborhood Features". TCBB, 7:208–217, 2010

Guilt by Association of Multiple Types of Information

Limsoon Wong

Difficulties w/ Information Fusior

Differences in nature

 E.g., sequence homology vs PPI are very different relationships

Differences in reliability

E.g., noisy datasets such as Y2H PPI and gene expression

Differences in scoring metrices

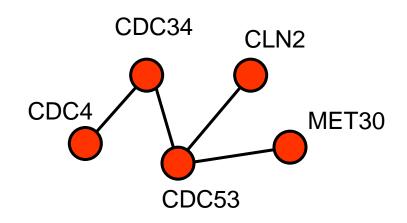
 E.g., E-Score from BLAST vs Pearson correlation between expression profiles

Motivation

- Unified scoring of multiple sources has potential
 - Lee et al., "Probabilistic functional network of yeast genes". Science, 306:1555–1558, 2004
 - Simple scoring using Log Likelihood
 - Identified many functional clusters
- ⇒ A simple, flexible, and effective way to integrate data sources that reports contributing sources in predictions to allow users to exercise judgment

Strategy – Step 1

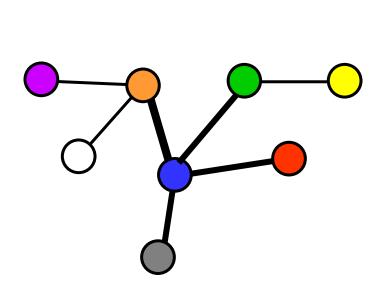
- Model data source as undirected graph G = (V,E)
 - V is a set of vertices;
 each vertex reps a
 protein
 - E is a set of edges;
 each edge (u, v)
 reps a relationship
 (e.g. seq similarity,
 interaction) betw
 proteins u and v

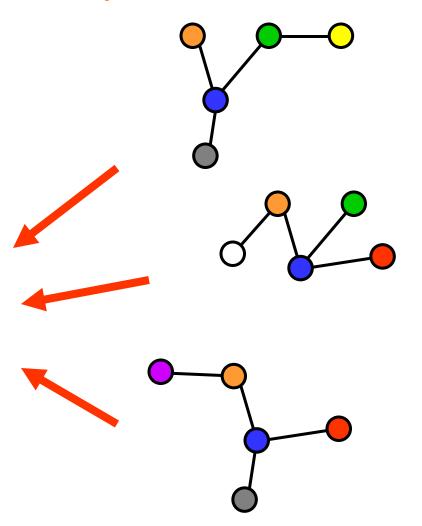


National University of Singapore

Strategy – Step 2

 Combine graphs from different data sources to form a larger graph

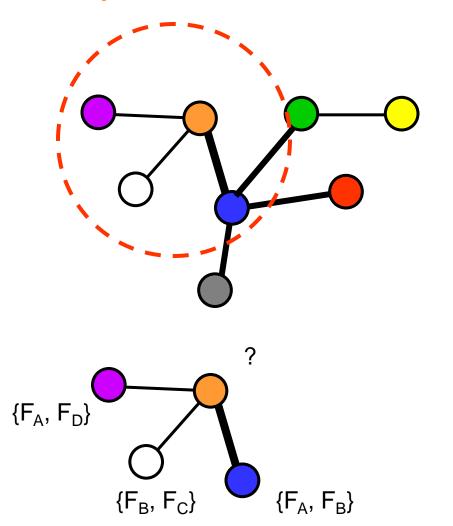




National University of Singapore

Strategy – Step 3

- Estimate edge confidence from contributing data sources
- Predict function by observing which functions occur frequently in the highconfidence neighbours



Unified Confidence Evaluation

- Subdivide each data source into subtypes to improve precision (e.g., expt sources, sub-ranges of existing scores like E-scores)
- Estimate confidence of subtype k for sharing function f by: $\sum_{i} S_{f}(u, v)$

$$p(k,f) = \frac{(u,v) \in E_k, f}{\left| E_{k,f} \right| + 1}$$

- E_{k,f} is subset of edges of subtype k where each edge has either one or both of its vertices annotated with function f
- $S_f(u,v) = 1$ if u and v shares function f, 0 otherwise

Combination of Confidence

 Combine confidence of data sources contributing to each edge:

$$r_{u,v,f} = 1 - \prod_{k \in D_{u,v}} (1 - p(k, f))$$

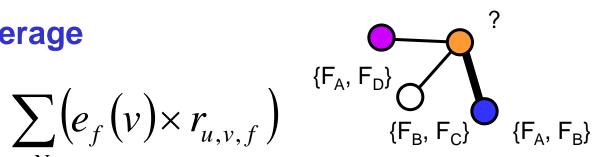
 P(k.f) is confidence of edges of subtype k sharing function f

• $D_{u,v}$ is the set of subtypes of data sources which contains the edge (u,v)

Function Prediction

Weighted Average

$$S_f(u) = \frac{\sum_{v \in N_u} (e_f(v) \times r_{u,v,f})}{1 + \sum_{v \in N_u} r_{u,v,f}}$$



- S_f(u) is score of function f for protein u
- e_f(v) is 1 if protein v has function f, 0 otherwise
- N_u is set of neighbours of u
- r_{u,v,f} is confidence of edge (u, v)

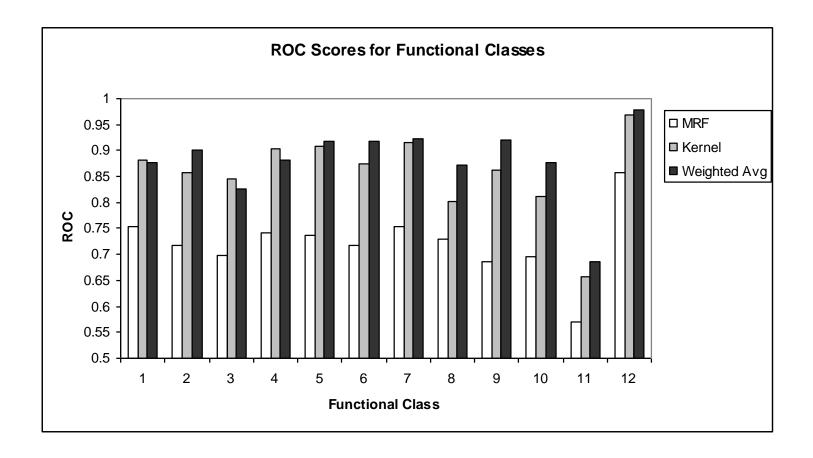
- Dataset from Deng et al, 2004
- 4 data sources (Saccharomyces cerevisiae)
 - Protein-Protein Interactions
 - 2,448 edges
 - Protein Complexes
 - 30,731 edges
 - Pfam Domains
 - 28,616 edges
 - Expression Correlation
 - 1,366 edges

12 functional classes

	Category	Size
1	Metabolism	1048
2	Energy	242
3	Cell cycle & DNA processing	600
4	Transcription	753
5	Protein synthesis	335
6	Protein fate	578
7	Cellular transport & transport mechanism	479
8	Cell rescue, defense & virulence	264
9	Interaction with the cellular environment	193
10	Cell fate	411
11	Control of cellular organization	192
12	Transport facilitation	306

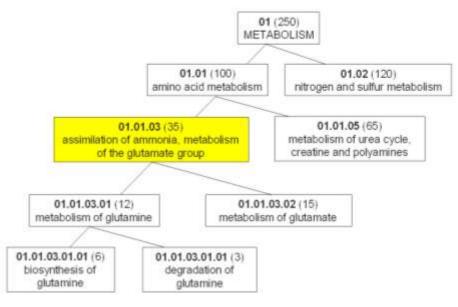
Validation Method

- Lanckriet et al, PSB 2004, pp. 300-311
- Area under ROC curve for each function
- Averaged over 3 repetitions of 5-fold cross validation



GO Terms Prediction for Yeast Protei

- Proteins from Saccharomyces Cerevesiae
 - 5448 proteins from GO Annotation (SGD)
- Functional Annotation
 - Gene Ontology
 - Hierarchical
 - 3 Namespaces (molecular function, biological process, cellular component)



- Informative GO Terms (for evaluation)
 - Zhou et al. (2002)
 - FC associated with at least 30 proteins and no subclass associated with at least 30 proteins

Data Sources

PPI

- BIND
- 12,967 unique interactions betw yeast proteins
- Score = FS weight

Protein Sequences

- Seqs from GO database
- Each yeast seq is aligned w/ rest using BLAST
- Score = $-\log(e_score)$
- Top 5 results w/ known annotations
- 19,808 unique pairs involving yeast proteins

National University of Singapore

Data Sources

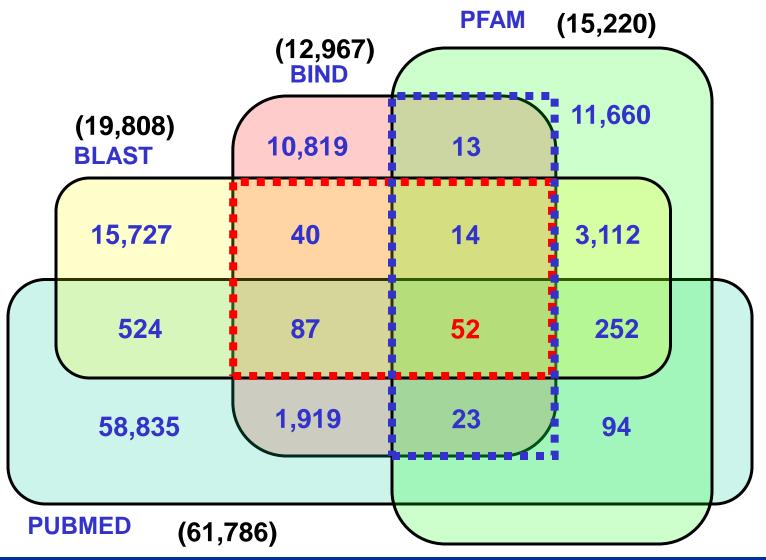
Pfam Domains

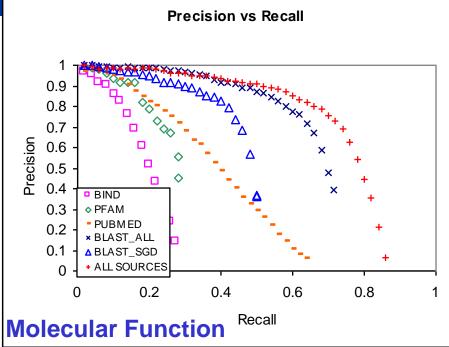
- SwissPfam database
- Pfam domains for SwissProt & TrEMBL proteins w/ E-value threshold 0.01
- Score = # of common domains
- 15,220 unique pairs involving yeast proteins

Pubmed Abstracts

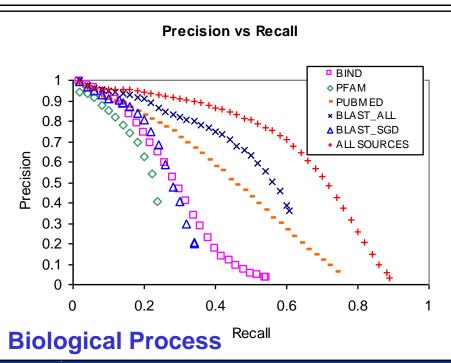
- Pubmed abstracts
 obtained by searching
 protein's name and
 aliases on Pubmed
- Limit to first 1000 abstracts returned
- Score = Fraction of abstracts w/ cooccurrence
- 61,786 unique pairs involving yeast proteins

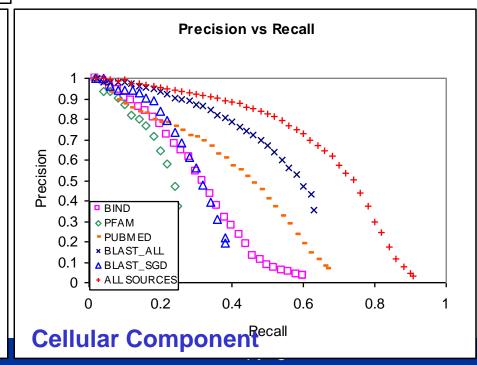
Multiple Data Sources



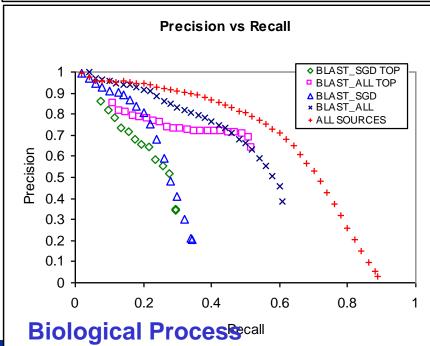


Combining all data sources outperforms any single data source

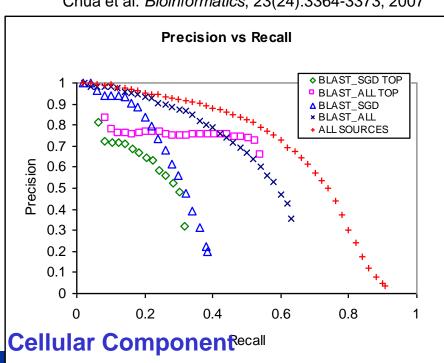








- **Weighted Averaging predicts** w/ better precision than top blast hit
- Using all data sources outperforms topblast in both sensitivity & precision

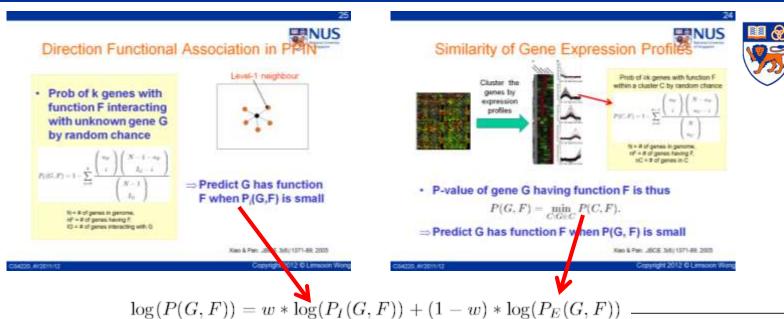


Conclusions

- A graph-based method that combines multiple sources of data sources for function prediction
- It is simple, flexible and can report data sources contributing to each prediction
- It performs comparable, if not better, than existing approaches

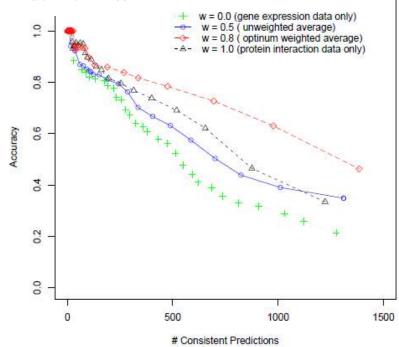
There are many other ways to integrate multiple types of information for protein function prediction...

of Singapore



Combining GE & PPI Data

Xiao & Pan. JBCB, 3(6):1371-89, 2005



General Information Fusion Methods of State of S

Markov Random Fields

- Deng et al., JCB, 11(2-3):463-75, 2004
- Maximum Likelihood
- Model data sources as binary relation betw proteins

Kernel Fusion

- Lanckriet et al., PSB 2004, pp. 300-311
- Discriminative approach
- Models each data source w/ diff feature vectors
- Weighted linear combination of kernels via semidefinite programming

References

Must Read

 Chua et al. "An efficient strategy for extensive integration of diverse biological data for protein function prediction". *Bioinformatics*, 23(24):3364-3373, 2007

Good to Read

- Deng et al. "An integrated probabilistic model for functional prediction of proteins". *JCB*, 11(2-3):463-75, 2004.
- Lanckriet et al. "Kernel-based data fusion and its application to protein function prediction in yeast". PSB 2004, pp. 300-311.
- Martin et al. "GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes". *BMC Bioinformatics*. 5:178, 2004
- Xiao & Pan. "Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data". *JBCB*, 3(6):1371-89, 2005

Acknowledgements

Kenny Chua

 A large part of this lecture is based on work done by my past student, Kenny Chua