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Unit 1c: Essence of Knowledge Discovery
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Lecture Outline

« Clustering, aka unsupervised learning
« Association rule mining

« Classification, aka supervised learning

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Clustering




National University

Objective of Cluster Analysis 2

 Find groups of objects s.t. objects in agroup are
— Similar (or related) to one another
— Diff from (or unrelated to) objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized
_ Distinctive, apart
Cohesive, compact




The notion of a “cluster” NUS

can be ambiguous
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Supervised vs. Unsupervised Learnig™"

« Supervised learning (aka classification)

— Training data (observations, measurements, etc.)
are accompanied by class

— New data is classified based on training data

 Unsupervised learning (aka clustering)
— Class labels of training data are unknown

— Given a set of measurements, observations, etc.,
aim to establish existence of classes In the data
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Typical Clustering Techniques

« Partitional clustering: K-means

— Division of data objects into non-overlapping
subsets (clusters) s.t. each data object is In
exactly one subset

 Hierarchical clustering: Agglomerative approach

— A set of nested clusters organized as a
hierarchical tree

 Subspace clustering and bi-/co-clustering

— Simultaneous clustering on a subset of tuples and
a subset of attributes
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Partitional Clustering: K-Means

e Each cluster has a centroid

 Each point is assigned to a cluster based on
closest centroid

« # of clusters, K, must be specified

Select K points as the initial centroids.

repeat

Form K clusters by assigning all points to the closest centroid.

Recompute the centroid of each cluster.

() B T N N

until The centroids don’t change
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More Details of K-Means Clusteringp ==

 Initial centroids are often chosen randomly
— Clusters produced vary from one run to another
* Centroid is the “mean” of points in the cluster

 “Closeness” is measured by Euclidean distance,
cosine similarity, correlation, etc

« K-means usually converges in a few iterations

— Often the stopping condition is changed to “until
relatively few points change clusters”

« Complexity is O(n *K *1*d)
— n = # of points, K = # of clusters, | = # of iterations,
d = # of attributes
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Example Iterations by K-Means
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Two Different K-means Clustering
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« Sum of Squared Error (SSE) is commonly used
— Error of a point is its distance to nearest centroid
— Square these errors and sum them to get SSE
K
SSE =) > dist*(m;,x)
iI=1 xeC;

where C, is a cluster, m; is its centroid

« Canreduce SSE by increasing K, the # of clusters

A good clustering with smaller K can have a
lower SSE than a poor clustering with higher K
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Importance of Choosing Initial Centrotds™
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 Multiple runs
— Helps, but probability is not on your side

« Use hierarchical clustering to determine initial
centroids

 Select >k initial centroids and then select the
most widely separated among these initial
centroids

« Use more advanced algos, like “Bisecting K-
Means”, that are not as susceptible to
Initialization issues
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Differing Sizes

Limitations of K-means

 Has problems |
when clusters are onamarons s 0 s
Of dlffel’lng Differing Density
— bensities SN o g
— Non-globular shapes S S

Original Points K-means (3 Clusters)

Non-globular Shapes

* Also has problems m
when data contain g
outliers

Original Points K-means (2 Clusters)
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Differing Sizes

Overcoming 1T
K- m ea n S , L i m itati O n S Original Points K-means Clusters

Differing Densities
. - >;‘-{'\b }c; ( O ﬂ,y o 2 or - OA——’C‘V) +
« One solution is to (O
use many clusters 4 -

- Flnd parts Of Cl USte rS Original Points K-means Clusters

— But need to put them Nonglobular Shapes
together

Original Points K-means Clusters
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Hierachical Clustering

Hierarchical clustering
 Organize similar data into groups

« Form groups into a hierarchical tree structure,
termed a Dendrogram

« Offer useful visual descriptions of data

« Two approaches

— Agglomerative
« Build the tree by finding most related objects first
— Divisive
« Build the tree by finding most dissimilar objects first.
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Which pairs of tuples are similar B & NUS
based on the data matrix? W onal Universty

of Singapore
n features (order of 1000)

genel gene2 gene3 gened ... gene n DlStan Ce Matrlx

.

|

m tuples |

.

» Square, symmetrical

Similar?

« Element value is

Distance (similarity) Matrix

T based on a similarity
p1 function, e.q.,
w2 Euclidian distance

p3

p4

« Sometimes, it’s called
a Similarity Matrix or a

PG, j) = dist(pi, pj) Proximity Matrix

p5
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 Basic algo is straightforward

Compute proximity matrix
Let each data point be a cluster
Repeat
Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains

 Key Is computing proximity of two clusters

— Diff approaches to defining distance betw clusters
distinguish the diff algos
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Starting Situation
o Start with clusters : pl| p2 | p3| pd|pS
of individual points zz
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Intermediate Situation
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C5

« After some merging C1
steps, we have =
some clusters z
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Intermediate Situation

- We want to merge c1]cz2 | cs
two closest clusters =
N
(C2, C5) and update c2 N\

the proximity matrix

|

N
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Defining Inter-Cluster Similarity ks

Average
Linkage
Similarity?

Single Distance

Linkage Between
Centroids

Other methods use an
objectlve function

— Ward’s method uses
sqguared error

Complete
Linkage

2

3
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Finally, get a resulting dendrograns
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Strengths of Hierarchical Clustering ==

 No need to assume any particular # of clusters

— Any desired number of clusters can be obtained
by ‘cutting’ the dendogram at the proper level

« They may correspond to meaningful taxonomies

— Example in biological sciences (e.g., animal
kingdom, phylogeny reconstruction, ...)
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Divisive Hierarchical Clustering

e Start with one, all-inclusive cluster

« At each step, split a cluster until each cluster
contains a point (or there are k clusters)

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

1: Compute a minimum spanning tree for the proximity graph.

2. repeat
3: Create a new cluster by breaking the link corresponding to the largest distance
(smallest similarity).

4: until Only singleton clusters remain
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 To build a MST (Minimum Spanning Tree)

— Start with a tree that consists of any point

— In successive steps, look for the closest pair of
points (p, q) s.t. pis in the current tree but g is not

— Add g to the tree and put an edge betw p and g
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Subspace Clustering

* Cluster boundaries clear only wrt the subspaces

Bi- or Co-Clustering

« Simultaneous clustering on a subset of attributes
and a subset of tuples
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High-Dimensional Data

 Many applications need clustering on high-
dimensional data

— Text documents
— Microarray data

 Major challenges:
— Many irrelevant dimensions may mask clusters

— Distance measure becomes meaningless
 The “equi-distance” phenomenon

— Clusters may exist only in some subspaces
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Curse of Dimensionality

« Datain only one dimension is relatively packed

 Adding a dimension “stretches” the points across that
dimension, making them further apart

« Adding more dimensions makes the points further apart
— High-dimensional data is sparse

= Distance measure becomes meaningless, as most data
points become equi-distance to each other
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Image credit: Parsons et al. KDD Explorations, 2004
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Why subspace
clustering?

Dimgn=ion b

 Clusters may 3
existonly in &+
some s
Cimansion a
subspaces
£
* Subspace- Ny . :
clustering: find ¢ - 4‘»'
clusters in all 5 1. .;;._-,;5-4::%%;;,,
the subspaces °.,L_ '
) | Dimenus'h:una 1 1

Image credit: Parsons et al. KDD Explorations, 2004
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Exercise: Which dimension
combinations are best for
identifying which clusters?
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A ploud of points in 3D % NpSy
H OWEVE r’ NS peCt P - In 2D X7 we see ...

your subspace e - :
clusters carefully!

o)

In 2D YZ we see...

Image credit: Eamonn Keogh
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image of a slide from a talk by Koji Tsuda
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CLIQUE (Clustering In QUESst)

« Automatically identify subspaces of a high
dimensional data space that allow better

clustering than original space

— Agrawal et al. “Automatic Subspace Clustering of High Dimensional
Data”. Data Min. Knowl. Discov., 11(1):5-33, 2005

CLIQUE: The Major Steps

* Partition the data space
» ldentify subspaces that contain clusters

— Use the “Apriori Principle”
* Find dense units in all subspaces
* Form connected dense units in all subspaces

» Generate minimal description for the clusters

— Determine maximal regions that cover a cluster of
connected dense units

— Determination of minimal cover for each cluster

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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Biclustering

* Please read these two papers yourself ©
— Cheng & Church. “Biclustering of expression data”. ISMB 2000

— Madeira & Oliveira. “Biclustering algorithms for biological data
analysis: A survey”. TCBB, vol.1, 2004

Biclusters = small
boxes of homogeneity

A small box =
A subset of attributes X

A subset of tuples

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



A special case of biclustering: NUS
Biclique detection

of Singapore

« When the table is a binary matrix of Os and 1s
« Convert the table into a bipartite graph

Bipartite Graph Representation
7 features in the table Features 1...7
9 tuples in the table Tuples 1-9

« Then, a max biclique corresponds to a bicluster

A good algo for max biclique can be found at

— Li et al. “Maximal bicligue subgraphs and closed pattern pairs of the
adjacency matrix: A one-to-one correspondence and mining
algorithms”. TKDE, 19:1625-1637, 2007
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What have we learned?

« Partitional clustering « How to evaluate

— K-means quality of clusters
— SSE
« Hierarchical
clustering
. A general strategy for
— Agglomerative -
some difficult-to-
approach

cluster situations
— Differing sizes
— Differing densities
— Non-globular

— Divisive approach

 Subspace clustering
and bi-/co-clustering,

albeit rather briefly!
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93-103
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algorithms”. TKDE, 19:1625-1637, 2007
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For those who want to go further. = =

« Much progress has been made in scalable
clustering methods

— Partitioning: k-means, k-medoids, CLARANS
— Hierarchical: BIRCH, ROCK, CHAMELEON

— Density-based: DBSCAN, OPTICS, DenClue
— Grid-based: STING, WaveCluster, CLIQUE

— Model-based: EM, Cobweb, SOM

— Frequent pattern-based: pCluster

— Constraint-based: COD, constrained-clustering

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Association Rule Mining

National University
of Singapore

TNUS
95




EANUS
95

National University
of Singapore

Market Basket Analysis

« What do my customers buy?
 Which products are bought together?

Milk, eggs, sugar,
bread

Milk, eggs, cereal,
bread

Customer1

Customer2 Customer3

* Find associations and correlations between the
different items that customers buy

Source: A. Puig
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Association Rule Mining

T1 bread, jelly, peanut-butter

Transaction db T = {t,,

..., I} IS a set of trans
T2 | bread, peanut-butter

T3 | bread, milk, peanut-butter .
14 | beer bread Each trans t, is an

5 | beer milk itemset I ={i, ..., I,}

+ Frequent itemsets * Find freq patterns,
_ Items that often associations, ... among

appear together sets of itemsin T

— {bread, peanut-butter} Represent these
« Association rules relationships as
— bread = peanut-butter association rules X =Y

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



What Is an interesting rule?

e Support count, o
— # of occurrence of an itemset

— o({bread, peanut-butter}) = 3

T1 bread, jelly, peanut-butter
T2 | bread, peanut-butter
° SU p pO rt’ S T3 | bread, milk, peanut-butter
— Fraction of transactions T4 | beer, bread
containing that itemset 75 | beer, mik

— s({bread, peanut-butter}) = 3/5

* Frequent itemset
— An itemset whose support =2 a threshold minsup

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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What Is an interesting rule?

Associlation rule

- X=Y

T1 | bread, jelly, peanut-butter
Su p p O rt ’ S T2 | bread, peanut-butter
— # of trans Containing T3 | bread, milk, peanut-butter
X Y T4 | beer, bread
T5 | beer, milk
» Confidence, c
TID s c
o HOW Often Y OCCUrs bread = peanut-butter 0.60 0.75
INn trans COntaining X peanut-butter = bread 0.60 1.00
beer = bread 0.20 0.50
G"(‘X L }’) g{X YY) peanut-butter = jelly 0.20 0.33
# Df trans. G"(X) jelly = peanut-butter 0.20 1.00
jelly = milk 0.00 0.00

Source: A. Puig
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Apriori

« Apriori is the classic assoc rule mining algo

— Agrawal & Srikant. “Fast algorithms for mining association
rules in large databases”. VLDB 1994, pp. 487-499

« Mines assoc rules in two steps

1. Generate all freq itemsets with support = minsup
2. Generate assoc rules using these freq itemsets

Let’s work on Step 1 first...

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Step 1 of Apriori: % NU
Generate freq itemsets with
support 2 minsup

« Given d items. There are 29 possible itemsets
« Do we need to generate them all?

Source: A. Puig
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Anti-Monotonicity

« Downward Closure Property:
Any subset of a frequent itemset is frequent

= If an itemset is not frequent, none of its supersets
can be frequent

= If an itemset is not frequent, there is no need to
explore its supersets

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Step 1 of Apriori: W NUS
Generate freq itemsets with
support = minsup

Infrequent

itemset

« By anti-monotonicity, if B’s support < minsup,
we can prune all its supersets. l.e., no need to
generate these itemsets

Source: A. Puig
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Source: A. Puig % mnallujmverssy
Apriori’'s Step 1 in Pseudo Codes

of Singapore
o k=1

o Generate frequent itemsets of length 1

o Repeat until no frequent itemsets are found
B Kk =k+1
m Generate itemsets of size k from the k-1 frequent itemsets

m Compute the support of each candidate by scanning DB

Algorithm Apriori(7) Function candidate-gen(F,_,)
C, « init-pass(7); Cy <« I;
F, < {f| fe C,, f.count/n > minsup}, forall 1, 1, € Fy4
for (k=2; F., # 9; k++) do with f, ={i,, ..., ixo, I}
C, <« candidate-gen(F,_,); and f, = {i,, --. , Iy, I'k1}
for each transaction t € T do and j,_, </}, do
for each candidate ¢ € C, do C & {ly, <oesdpqs Ui
if c is contained in t then Cy <« Cpu {c};
c.count++; for each (k-1)-subset s of c do
end if (s 2 F,_;) then
end delete ¢ from C,;
F, <« {c € C,| c.count/n > minsup} end
end end
return F <« U, F; return C,;

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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Example Run of Apriori's Step 1

Database TDB ;

Tid Items ! ig i

10 A, C, D o 3

20 B, C, E © 3

30 A B CE

40 B, F —

Itemset sup Cs m
{A B}
2 ' {A Q)
1B, C} 2 | —
BE |3 og 12 60
c5 13 BE |3 3.0
: {GE | 2 {B, E}
& {C,E}

Source: A. Puig

CS4220, AY2016/17
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Apriori

« Apriori is the classic assoc rule mining algo

— Agrawal & Srikant. “Fast algorithms for mining association
rules in large databases”. VLDB 1994, pp. 487-499

« Mines assoc rules in two steps

2. Generate assoc rules using these freq itemsets

Now that we have settled Step 1,
Let’s work on Step 2 next...

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Step 2 of Apriori: % NUS
Generate association rules
using freq itemsets

« Given a frequent itemset L
— Find all non-empty subsets F of L

— Output each rule F = {L-F} that satisfies the
threshold on confidence

« Example: L ={A, B, C}

— The candidate itemsets are: AB =C, AC =B,
BC =A, A=BC, B=AC, C=AB

— In general, there are 2t — 2 candidates!

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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Can we be more efficient?

 Confidence of rules generated from the same
itemset does have the anti-monotone property

— ¢(ABC =D) = ¢(AB =CD) = ¢c(A =BCD)

 We can apply this property to prune rule
generation ac

< ABCD
confidence

— o o o o o o e R e e e e e S e e

Source: A. Puig
Copyright 2017 © Limsoon Wong




Shortcomings of Apriori

« Apriori scans the db multiple times
 There is often a high # of candidates

« Support counting for candidates takes a lot of
time

« Newer methods try to improve on these points
— Reduce the # of scans of the db
— Reduce the # of candidates

— Count the support of candidates more efficiently

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Han et al. “Mining frequent patterns without candidate generation”.

CRINUS
SIGMOD 2000, pp.1-12 Nationsl Univerery
FP-Growth

of Singapore

« Build In one scan a data structure, FP-Tree

TID ltems Sorted FIS
{FACDGIMF} | {FCAMP}

{AB.CFLMO} | {FCABM)
1B.FH.J,0} {F.B}
{B.CK.SP} IC.B,P}

L T S L L

{AF.CELPMN} | {FCAMFP}

 Use it for fast support counting

— To count the support of an itemset {FCM}, follow
the “dotted” links on M. At each node M:n, note its
support n & visit its prefix chain; if FCM Is found in
the prefix, add n to the support

Source: A. Puig
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Li et al. ‘lMining gtatistically Important Equivalence Elasses and Delta-

Discriminative Emerging Patterns”. KDD 2007, pp. 430--439 =& NUS

Gr-Growth 95

* Build FP-Tree on the db SE-Tree o g

enumeration ord%

* Visit itemsets non- /4 /l j
redundantly by following Wl 4 A .

the right-to-left top-to- A
bottom SE-Tree order ® GHE" oo™ ABe  Hbo

l

1s: dabc

Natio IU
of Sin gp

 When visiting an itemset
— Use the FP-tree to count its support efficiently
— If it Is frequent, output it, & Visit its supersets
— Otherwise skip visiting Its supersets
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How do you mine association
rules across multiple tables?

Multidimensional
Single vs. Multidimensional Association Rules association rules can be
mined using the same
Single-dimensional rules method by tranSfO_rmmg
buys(X, "milk") = buys(X, “bread") the problem. The items
and the corresponding
item values are encoded
into a tuple. This results
again in a finite number

Multi-dimensional rules: more than 2 dimensions or predicates
age(X,"19-25") A buys(X, “"popcorn”) = buys(X, “coke")

Transformation into single-dimensional rules:

use predicate/value pairs as items of possible (modified)
customer(X, [age, “19-25"]) A customer(X, [buys, "popcorn”]) item values, and
= customer(X, [buys,"coke"]) therefore the same

techniques as for single-
dimensional rules apply.

Simplified Notation for single dimensional rules

{milk} = {bread}
{lage, "19-25"], [buys, “popcorn”]} = {[buys,"coke"]}

©2007/8, Karl Aberer, EPFL-IC, Laboratoire de systémes d'informations répartis Data Mining - 10

Source: Karl Aberer
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What have we learned?

 Frequent itemsets & association rules

« Support & confidence

Apriori, a classic association rule mining algo
— Anti-monotonicity

— Search space pruning

Advanced methods, albeit rather briefly

— FP-Growth

— Gr-Growth

— Multidimensional association rule mining

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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For those who want to go further

« Association rule mining has been extended in
many interesting directions

— Mining multilevel association

* R. Srikant and R. Agrawal. “Mining generalized association
rules”. VLDB 1995

— Mining multidimensional association

— Mining gquantitative association

* R. Srikant and R. Agrawal. “Mining quantitative association
rules in large relational tables”. SIGMOD 1996

— Hypothesis exploration, testing, and analysis

* G. Liu, et al. “Towards Exploratory Hypothesis Testing and
Analysis”. ICDE 2011

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Classification




62

NUS

National Universit

Classification, aka Supervised Learntg="

« Model construction

— For describing a set of predetermined classes

« The model is represented as classification rules,
decision trees, or mathematical formulae

« Model usage
— For classifying future or unknown objects

— Estimate accuracy of the model

 The known label of test sample is compared with the
classification result from the model

— If accuracy is acceptable, use the model to classify
data tuples whose class labels are unknown

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



63

Source: Karl Aberer =& NUS
Model Construction 9 s
I Classification
J»> Algorithms
Training l
Data

- >
/ Classifier
_ (Model)

Mike |Assistant Prof 3 ~ @~
Mary |Assistant Prof 7 yes / \
Bill Professor 2 yes

Jim Associate Prof| 7 yes IF rank = ‘professor’
Dave |Assistant Prof 6 no OR years > 6

Anne |Associate Prof| 3 no THEN tenured = “yes’
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Source: Karl Aberer | | % Nnallujmv§
Use the Model for Prediction
//—\
~_

/\‘ Classifier s

— -~

Testl ng -
/ (Jeff, Professor, 4)

NAMEURANKIDUUVEARSITENURED) | red? 1

Assistant Prof 2
Merlisa |Associate Prof 7 no ,
George |Professor ) yes Y(ﬂjSJ
Joseph |Assistant Prof 7 yes JJ
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Training data gathering

Feature generation

— k-grams, colour, texture, domain know-how, ...
Feature selection

— Entropy, %2, t-test, domain know-how...
Feature integration

— SVM, ANN, PCL, CART, C4.5, kNN, ...

You should have already learned this stuff
from CS2220. Here is just a quick revision...

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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Feature Selection

 Purpose

— Measure the diff betw two classes, and rank the
features according to the degree of the difference

— Get rid of noisy & irrelevant features

Feature Selection (Basic Idea)

* Choose a feature w/ low intra-class distance
[ )
Ap p roac h €S « Choose a feature w/ high inter-class distance

— Statistical tests L 1
. E.g., t-test, y2-test | :

— Information theory
« E.g., Gini index, entropy, info gain

Class 1 Class 2 Class 1 Class 2

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Feature Integration

* I hope you still remember the various classifiers
you came across in CS2220

— Decision Trees

— Decision Trees Ensembles
 E.g., Bagging

— K-Nearest Neighbour

— Support Vector Machines

— Bayesian Approach

— Hidden Markov Models

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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predicted | predicted Sensitivity =  # correct +ve predictions

o . # +ve
as positive |as negative P
positive | TP EN e
3 +
negative || FP TN
Specificity =  # correct -ve predictions
# -ve
# correct predictions _ TN
Accuracy = — TN + EP
# predictions
TP+ TN . . #correct +ve predictions
_ Precision =
TP+TN+ FP + FN # +ve predictions
TP
~ TP+FP
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Evaluation

« Accuracy, sensitivity, precision, etc of a classifier
are generally evaluated based on blind test sets

« If adequate blind test set is unavailable, evaluate
the expected performance of the learning
algorithm instead

— Sampling and apply Central Limit Theorem (CLT)
— Cross validation
— P-value

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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Evaluation by Sampling & CLT

> Draw 1000s samples
R : *«,, With replacement

L 4

A base inducer such as C4.5

« By CLT, ave accuracy of hy, h,, ..., h is the
expected accuracy of the classifier produced by
the based inducer on the original samples

7

2

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



TINUS

aaaaaaa | University

Evaluation by Cross Validation

* Divide samples into k
roughly equal parts

« Each part has similar
proportion of
samples from
different classes

 Use each part to test
other parts

« Total up the accuracy

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Distribution Mean Standard deviation
. Sample size
Scenario A B A B A B
(1) Normal Normal 0 0 1 1 10 30 100
(2) Normal Normal 0 0.5 1 1 10 30 100
(3) Normal Normal 0 2 1 1 10 30 100

(1)

FLROO G b
twouwouwouwo

Time for
Exercise #3

(2)

Effect siz

UL bk b
thouououwo

3

SOH NN WW
mouiouowm

(=]

45 36 27 -18 -9 0 -45 -36 -27 -18 -9 0 -45 -36 -27 -18 -9 0

log,(p)
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