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Gene regulation

— Chromatin organization, transcription factor (TF),
TF binding site (TFBS), and histone code

TFBS discovery
— TFBS representation, TFBS databases, MEME

TF target-gene identification
— Gene expression, ChiP-x, BETA

TF-TF interactions
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Chromatin organization

Interphase chromatin The basic unit of chromatin

- 5 organization is the nucleosome,
which comprises 147 bp of DNA
wrapped around a core of histone
proteins

Chromosome 3

Euchromatin (loose or open
chromatin) structure is permissible
for transcription.

Heterochromatin (tight or closed
chromatin) is more compact and
refractory to factors that need to
gain access to the DNA template.

Heterochromatin
Silent

4 y

Euchromatin
“Active”

https://en.wikipedia.org/wiki/Chromatin_remodeling
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https://en.wikipedia.org/wiki/Transcription_factor

transcription factors

1 Activator proteins bind to pieces of
DNA called enhancers. Their binding
causes the DNA to bend, bringing
them near a gene promoter, even
though they may be thousands of
base pairs away.
Enhancers

Other transcription

factor proteins ‘i

Promoter

3 This protein complex makes it easier
for RNA polymerase to attach to the
promoter and start transcribing
agene.

RNA polymerase

2 Other transcription factor proteins
join the activator proteins, forming
a protein complex which binds to
the gene promoter.
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note
This diagram simplifies the DNA
greatly— promoters, enhancers,
and insulators can be dozens or even
hundreds of base pairs long.

4 Aninsulator can stop the enhancers
from binding to the promoter, if a
protein called CTCF (named for
the sequence CCCTC, which occurs
inallinsulators) binds to it.

Methyl 7
Y groupsi_/' —— Insulator

5 Methylation, the addition of
amethyl grouptothe C
nucleotides, prevents CTCF
from attaching to the insulator,

cTeF turning it off, allowing the

(CCCTCbinding factor) enhancers to bind to the promoter.
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« ~10% of genes in the human genome code for
transcription factors (TFs)

 Genes are often flanked by several binding sites
for distinct TFs, and efficient expression of each
of these genes requires the cooperative action of
several different TFs

« Combinatorial use of a subset of the ~2000 TFs
easily accounts for the unique regulation of each
gene in the human genome during development
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Mechanisms

« TFs bind to enhancer or promoter regions of DNA
adjacent to the genes that they regulate

 Depending on the TF, the transcription of the
adjacent gene is either up- or down-regulated via:

— Stabilize or block binding of RNA polymerase to DNA
— Catalyze the acetylation or deacetylation of histones

 Histone acetyltransferase (HAT) activity

— Acetylates histones=>weakens association of DNA w/ histones=>DNA
more accessible to transcription=>transcription up

 Histone deacetylase (HDAC) activity

— Deacetylates histones=>»strengthens association of DNA w/
histones=>»DNA less accessible to transcription=>» transcription down
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Histone marks

Type of Histone
modification H3K4 H3K9 H3K14 H3K27 H3K79 H4K20 H2BK5
mono-methylation | activation!®! | activation!”] activationl”! | activation!”l8] | activationl”! | activationl’]
di-methylation activation | repressionl®! repression’® | activation[€l
tri-methylation | activationl®! ' repressionl’] repression(’] ZETETL repressionl!

repressionl’]

acetylation activation!®l | activation[®!

« H3K4me3 is found in actively transcribed promoters

« H3K9me3 is found in constitutively repressed genes

« H3K27me is found in facultatively repressed genes

« H3K36me3 is found in actively transcribed gene bodies
« H3K9ac is found in actively transcribed promoters

« H3K14ac is found in actively transcribed promoters
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Active gene
H3Kame3
H3K9ac
(b)
5 Promoter
NDR
(c) PRC1 HP1

QD D P D D D A P D Q) G SOP D G0 XD D

Inactive gene

(d)

5 Promoter

Histone

http://www.cell.com/cms/attachment/610399/4879518/grl.jpg
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TFBS discovery




FNUS
Representations of TF binding site

of Singapore

« Position-specific frequency matrix (PSFM, PWM)

1 12 |3 (4 |5 |6 |7 (8 |9 |[10(11 12|13 [(14|15|16
1 (0 (1 (S5 (325 |35(23|34(14(43 (13|34 (4 |52 |3
%0(1 (0 |1 |5 (6 |0 (4 (4 (13|3 (8 |17 (512 |O
O (0O |94 |15|5 |5 (122 |7 (1 (1 (3 |1 (O |1 (B2
5 95|11 |35(|14 409 (27|11 (28|19 (32|14 (1 |1 |1
Sum 56 56 56 56 56 56 56 56 56 56 56 56 56 |56 56 | 56

- ® O >

PSFM for the transcriptional repressor LexA as derived from 56 LexA-binding sites stored in Prodoric

« Consensus seqguence

— What is the consensus sequence for the TF
binding site (TFBS) above?

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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Sequence logo

« PSFM of TFBS is often
visualized using
“sequence logo”

The information content (y-axis) of position 3 is given by

for amino acids. R; = log,(20) — (H; + €,)
for nucleic acids, R; = logy(4) — (H; + €,)

E 1 where H:‘ is the uncertainty (sometimes called the Shannon entropy) of position ¢
e Hi = =3 fai % logy fa;
E Here, fﬂ,,- is the relative frequency of base or amino acid ¢ at position ¢, and €y is the small-sample
E 0.5 correction for an alignment of 13 letters. The height of letter @ in column ¢ is given by
P A height = fa; x R;
pa— ||
0 e W - The approximation for the small-sample correction, €y, is given by:
. - - I ! 1 s-1
1 2 3 4 5 En =7 o X
" In2 2n
Position

where § is 4 for nucleotides, 20 for amino acids, and 1 is the number of sequences in the alignment.
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TFBS databases

Name Organisms Source
JASPAR Vertebrates, Plants, Fungi, Flies, and Worms | Expert curation with literature support
CIS-BP All Eukaryotes Experimentally derived motifs and predictions
CollecTF Prokaryotes Literature curation
RegPrecise Prokaryotes Expert curation
RegTransBase | Prokaryotes Expert/literature curation
RegulonDB Escherichia coli Expert curation
PRODORIC Prokaryotes Expert curation
TRANSFAC Mammals Expert/literature curation
TRED Human, Mouse, Rat Computer predictions, manual curation
DBSD Drosophila species Literature/Expert curation
HOCOMOCO | Human Literature/Expert curation

https://en.wikipedia.org/wiki/DNA_binding_site
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Jaspar example: Pax6

Summary page for ID: MA006S NAME: Pax6 from the JASPAR_CORE database _’_l

DATA SEQUENCE LOGO 2]
hame  Paxé
class | PARED
Species | Homo sapiens :
fotalie 1 137960 .
sysgroup verietrate . A
aee T pae3e7 C = I
79800 SeLEX | _Tg.;gffﬁ* (A I
—3132558 1 2 3 a 5 6 7 8 9 10 11 12 13 14
comment Make a SVG logo | 2 |
FREQUENCY MATRIX [7]
A2 2630 33 0% 1027363 ; R B
C 14 226 234 037 2 414 01 S 0}
¢ . 4 0% X X423 % 2 125 €313 .3 17 )
T (333912 1 S 1 11837 2 1 8 3 2)
Reverse complement L? i
= = Table of number of hits per 1000 base pairs
EXPECTED PREDICTIONS/BP 2] for each sequence type
Different sequence types = Threshold CpG EFD Random
= e @ CpG
3 o EPD B
% k3 @ Fadom ! g : 9
g ] 0.95 0 0 001
2 8 i 09 003 01 023
g &
o
g | 0385 028 039 067
B3 08 185 171 1.94
B 075 936 7.44 719
£ g ]
33 07 352 2642 2361
— i - S 065 105.31 7635 67.07
1 0% 08 085 08 0 07 08 06
Threshold values as fractions of the matrix scoring range 06 25349 18308 15938
(mass-min Y Temin

http://bioinfo.cnio.es/files/training/Fourth_Sequence_Analysis_2011/TFBSdetection_2011.pdf
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The high-quality transcription factor binding profile database

Browse the JASPAR_CORE database right away! |

eno The JASPAR database
{0 )2 I G o I8 W\ v/ 12 par genereg et coh-bin/jaspar_ o o "5
(Most- crio NT FTP GP 40 fai  Aw I BC R Mo Mip  a  Mail wavi hancook
_\)-—e B | [».L.H-.w,.—;] w0 Vol Class 49 SEARCH | ?
JASPAR matrix models: ANALYZE selected matrix models:
a I name. species class  Sequance logo | cLusTER | 7 | selected models using STAMP
- / Create RANDOM matrix models based on selected modals
\ 4 Aasdogss alieis 2
. \ // Ll Row1: Aacs pématenndlll Number of matrices: -»:  Format| v 3]
RaNDOMIZE | 2 |
Click here to select o e eyl e
Cos s W
L1 MADOZ RUNX? thalse RUNY - J-T I Type: | winin exc mains -3 FOMAL s )
all TFBS — rewre | 1]
uence with selected maltrix models
Homo 91 (=) (mouse, wus mscuice) ]
\ [ MADOCS  TFAP2A pricoed P2 !
.\\\_ //,
Mus
{1 MADODS  Aemt - BHLH ;
ABOA0D8S
71 MADOOS  Agemous oy MADS 3 a3 ‘
2Cagogt9ganctgograggcgogrEcagat teOgoacagograncage Al
gecgegegcaggagegagggatiecctotgacgtesttgctaggatacen vl
Reistve profle scoce threshold . &0 %
. Mo % | scan | 7
{1 MADOCE  Armi-Ahr o BHLH
NUCLEAR
{1 MADOOT A Ratas ratlas e oeorog




TFBS discovery: General strateg“'“w
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« ldentify target genes of the TF

« Extract promoters or putative binding sites

« Align and look for enriched patterns

Reference Genome

Seq. oligo expected
frequency

AAAAAAD.00024

Sequences of interest

Seq. oligo observed
frequency

AAAAAAQ.00023

AAAAAC 0.00030 AAAAAC 0.00031
|AAAAAG 0.00031 AAAAAG 0.00125 **=*
AAAAAT0.00024 AAAAAT0.00018

AAAACC 0.00028 AAAACC 0.00026

http://bioinfo.éhio.es/files/training/Fourth_Sequehée_AnaIysis_ZOll/TFBSdetection_ZOll.pdf

 Popular tool: MEME

Copyright 2017 © Limsoon Wong
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538909/ =) N U S
W National University
of Singapore
Mucleic Acids Res. 2006 Jul 1; 34(Web Server issue): W369-W3aT3. PRMCID: PMC1538909

Published enline 2006 Jul 14. doit 10.1093/nar/gkl193

MEME: discovering and analyzing DNA and protein sequence motifs

Timothy L_Bailey.” Nadya Williams, ! Chris Misleh. 1 and Wilfred W._Li*

Author information ® Article notes » Copyright and License information

This article has been cited by other articles in PMC.

ABSTRACT Go fo:

MEME (Multiple EM for Motif Elicitation) 1s one of the most widely used tools for searching for novel
‘signals’ m sets of biological sequences. Applications mclude the discovery of new transcription factor
bmding sites and protemn domams. MEME works by searching for repeated. ungapped sequence patterns that
occur in the DNA or protemn sequences provided by the user Users can perform MEME searches via the
web server hosted by the National Biomedical Computation Eesource (http://meme nbernet) and several
murror sites. Through the same web server, users can also access the Motif Alignment and Search Tool to
search sequence databases for matches to motifs encoded in several popular formats. By clicking on buttons
in the MEME output. users can compare the motifs discoverad in their mput sequences with databases of
known motifs. search sequence databases for matches to the motifs and display the motifs i various formats.
This article describes the freely accessible web server and its arclutecture. and discusses wayvs to use MEME
effectively to find new sequence patterns in biological sequences and analvze their significance.
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MEME: Main idea
MEME(dataset, W, NSITES, PASSES) {
fori=1to PASSES {
for each subsequence in dataset {

run EM for 1 iteration with starting point derived from this sequence

}

choose model of the motif with highest likelihood
run EM to convergence from starting point which generated that model
print converged model of that motif

Erase appearances of that motif from dataset

}

Bailey & Elkan, Machine Learning Journal, 21:51-83, 1995
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Choose a substring (e.g. TATAAT) in a sequence as a
starting point

letler postlion in molef
_ 1 2 3 1 5 6

l. EM (dataset, W) | Initializep A [0.17 05 017 05 05 017
; : S 01T 047 017 017 017 0.7
2. choose starting point (p) !

ot &1 ) G017 017 017 017 017 0.17
3. do | 1 0.5 0.17 05 017 017 0.5
4, reestimate z from p
h. reestimate g from 2 : _ : :
. o ; Estimate Z. Use p to find best offsets for the substring
(. b ountid (change in p < €)
i. redurn
8 Estimate p based on these offsets
P = matrix of letter probability Pi Compute log likelihood of p
Z = matrix of offset prObab'“ty Zi,j log(likelihood) = \ZZ; log(p;) + N(L— W)Y fulog(pw)

- Nlog| —— )
L W41

where N s the number of sequences in the dataset, L is the length of the sequences,
W ois the length of the shared motif, £ is the alphabet of the sequences, gy is the
(unknown) probability of letter 1 in position j of the motil, pg is the (unknown)
probability of letter [ in all non-motif positions, fi; is the observed frequency of the
letter [ in position j of the motif, and fry is the observed [ in all non-motif positions
of the sequences.

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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MEME: Sample results

Fable 10 Overview of the contents of the datasets.

datasei samples average length of samples proven CHREP sites proven Lerd sites
CREP 18 105 |5 0
Lex A 16 152 I 11
CHP/LexA 24 150 15 11
promot er 231 G MA MNA

Table 2. The models found by each pass of MEME on the CRP/LexA dataset can be
visually summarized by the consensus sequence derived from the p matrixz by choosing the
letter with the highest probability, The values of information content and log{{iteliifiood )
aive a qualitative idea of the statistical significance of the model, Higher values imply the
model is more significant.  The models found for LexA and CHP on passes 1 and 2 of
MEME have considerably higher log{{it=ffood ) and mformation content than the models
found on later passes, Note that W = 20 and NSITES — 17,

pics s starting subisequence final consensus

/
| TACTGTATATAAAACCAGTT TACTGTATATATATACAGTA  13.2006 135,174
2 TTATTTGCACGGCGTCACAC  TTTTTTGATCGGTTT == e
3 ATTATTATGTTGTTTATCAA TTTATTTTGATGTTTATCAA
| TGCGTAAGGAGAAAATACCG TGCGTAAGAAGTTAATACTG el B BAlALY
! CAAATCTTGACATGCCATTT CAAATATGGAAAGGCCATTT H.027 DA3.662

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



Pasle d0 Values of = for the model found by MEME 0 pass 1 on the B ® NUS

CHEP fLead dataset at the positions of the known Lex A sites, Vietually National University

all of the known sites have very high values of 2, compared to the rest of of Singapore

the positions in the samples, The table shows the positions of the known

sibes (sofe 2y seie 2and sife J] and the values of 2 of the model at those

positions, All other positions have values of 2, below 007, Although the

site at position 112 in the colicin b1 sequence has 2 value only 0,05, this
15 one of the four highest =, values for this sequence, No proven sites are

known for Goeed and word and 2,0 Tor all positions in those samples was

very low, less than 0,0007, ’

sampl gife = safe & T sife & ]
cloacin [PF13 I 0,99 565

colicin Bl ay IREEEE N 112 D051 514

colicin la e b 0,99 5704

colicin 1h e o asngy2

ree Tl 0999987

reclV Tl 099998 04 0EE5T0 11 0154281
s HhY 1, 9599590

wreu A | ISR RIS

o B 0,98 7T7T8E

iworH Tl 0,909972

iword) Loz 080 R550

colicin A 34= . G8A565 At 0314724

feawd Th 990902 5h O S80005 4

e AR A9 0,999978

foamed

wor

“Indicates site known ondy by sequence similarity to known sites,
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The converse:
How to find target genes of a given TF?

 Gene expression data from TF-perturbation expt
* ChIP-chip = chromatin immunoprecipation + DNA microarray

* ChIP-seq = chIP + massively parallel sequencing

 Popular tool: BETA
— http://lwww.ncbi.nlm.nih.gov/pmc/articles/PMC4135175/

* Also, DNAse-seq is a laboratory method for
Identifying accessible DNA regions (i.e. open
chromatin)

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



matrix

antibody

& genomic DNA -~
w. 18— R o

cross-link # v P N US
and shear
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|
(I purify,
ChlIP-on-chip wet-lab portion of the workflow & amplify,
and label
hybridization

o ChlP-chip

fluorescence tag
N

5

DNA chip ‘M.

POI

0o |:‘> enrichment

information extraction
Normalization and
Exploratory data analysis

DNA site

0, _—=

read-out

https://en.wikipedia.org/wiki/ChIP-on-chip
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Histone marks

Type of Histone
modification H3K4 H3K9 H3K14 H3K27 H3K79 H4K20 H2BK5
mono-methylation | activation!®! | activation!”] activationl”! | activation!”l8] | activationl”! | activationl’]
di-methylation activation | repressionl®! repression’® | activation[€l
tri-methylation | activationl®! ' repressionl’] repression(’] ZETETL repressionl!

repressionl’]

acetylation activation!®l | activation[®!

« H3K4me3 is found in actively transcribed promoters

« H3K9me3 is found in constitutively repressed genes

« H3K27me is found in facultatively repressed genes

« H3K36me3 is found in actively transcribed gene bodies
« H3K9ac is found in actively transcribed promoters

« H3K14ac is found in actively transcribed promoters

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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Active gene
H3Kame3
H3K9ac
(b)
5 Promoter
NDR
(c) PRC1 HP1
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Inactive gene

(d)

5 Promoter

Histone

http://www.cell.com/cms/attachment/610399/4879518/grl.jpg
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Mat Protoc. Author manuscript; available in PMC 2014 Aug 18 PMCID: PMC4135175
Published in final edited form as: HIHMSID: MIHMSG07 566

Mat Protoc. 2013 Dec: 8(12): 25022515,
Published online 2013 Nov 21. doi; 10.103%/nprot.2013.150

Target analysis by integration of transcriptome and ChiIP-seq data with BETA

Su Wana, ' Hanfei Sun.? Jian Ma.' Chongzhi Zang,2 Chenfei Wang, ! Juan Wang, ! Qianzi Tang, ! Clifford A Meyer 2
Yong Zhang, ! and X Shirley Liu?

Author information » Copyright and License infermation

The publisher's final edited version of this article is available at Mat Protoc
See other articles in PMC that cite the published article.

Abstract Go to:

The combmation of ChIP-seq and transcriptome analysis 15 a compelling approach to unravel the regulation
of gene expression. Several recently published methods combine transcniption factor (TF) binding and gene
expression for target prediction. but few of them provide an efficient software package for the community.
Binding and expression target analysis (BETA) 1s a software package that integrates ChIP-seq of TFs or
chromatin regulators with differential gene expression data to mfer direct target genes. BETA has three
functions: (1) to predict whether the factor has activating or repressive function: (11) to mfer the factor’s target
genes: and (11) to identify the motif of the factor and 1ts collaborators. which might modulate the factor’s
activating or repressive function. Here we descrnibe the implementation and features of BETA to demonstrate
its application to several data sets. BETA requires ~1 GB of RAM. and the procedure takes 20 mun to
complete. BETA is available open source at http://cistrome org BETA /.

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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Expression data Binding data =& N US
\ W National University
of Singapore
S’[age 1: activation and J

repressu:m prediction
m ) Main idea

Activation e - ---- NS - - - - - = | Repression

Upregulate targets Stage 2: direct targets Downregulate targets
and associated prediction and associated
peaks peaks
‘_..--""'_-___-_'_"‘-— e —
—
UP maotifs [ Stage 3: motif analysis ] DOWN motifs

Dhfferential motifs

Figure 1.

EETA workflow. Stage 1 analyzes the differential expression and ChIP-seq binding data to
predict whether a factor generally activates or represses gene expression. Stage 2 predicts
direct target genes by their upregulation or downregulation. Stage 3 conducts motif analysis
to identify putative collaborating factors that contribute to upregulation (UP) or
downregulation (DOWN).

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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Wang et al. Nature Protocol, 8:2502-2515, 2013
Tang et al. Cancer Research, 71:6940-6947, 2011 B8 & N US

 For Stage 1, i.e. direct gene-target prediction, BETA ranks
genes on the basis of both regulatory potential of factor
binding and differential expression upon factor binding,
and then it calculates the rank product of the two to predict
direct targets

 Theregulatory potential is calculated as
ko _(0.54+4A,
S =E e~ (0-5+44)
g i=1

* All binding sites (k) near the transcription start site of the
gene (g) within a user specified range (100 kb as default)
are considered. A is the exact distance between a binding
site and the TSS proportional to 100 kb (A = 0.1 means the
exact distance = 10 kb)

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



AR in LNCaP cells, b — N U S

National University

activating/repressive function prediction W !
. [ of Singapore
100 -m Static (background) B Motif score B E I A
| Upregulate (1.26e-39) .

_|m Downregulate (0.00349)

BETA output of activating/ repressive function
prediction and motif analysis of AR. (a) BETA
activating/repressive function prediction of the
AR data set from the LNCaP prostate cancer
cell line. The red and the purple lines
represent the upregulated and downregulated
genes, respectively. The dashed line indicates

Q

80

Cumulative fraction of genes (%)

0 5,000 10,000 15,000 the non-differentially expressed genes as
Rank o{ genes based on regulatory background. Genes are cumulated by the rank
C potential score (from high to low) on the basis of the regulatory potential score
from high to low. P values that represent the
significance of the UP or DOWN group
PART1: UP TARGET GENES distributions are compared wth the NON
group by the Kolmogorov-Smirnov test. (b)
Symboi DNA BindDom vaiue (T Test)| T Scorel Logo Motif scan algorithm. Motif scores in each

binding peak are compared among three
regions. The middle region consists of 200 bp
' centered on the peak summit; the left and right
T v CI regions comprise 200 bp in either direction of
o VAL ~ . . . . .
T T T T the middle region. The significance of motif
i e summit enrichment is measured by the P
value from a one-tailed t test. (c) Screenshot
of binding motif analysis on UP target regions
FOXA2| Eorkhaad Domain Family of AR. Similar motifs are grouped together,
FOXB1| Forkhead Domain Family and the motif logo of the most significant
FOXAT | Forkhead Domain Family A — —= = factor in the group is provided in the last
FOXJ1 Forkhead Domain Family column. The motif symbol, DNA-binding
domain and species are shown in the first
three columns; the t score and the P value
from the t test are shown in the middle two
columns.

NR3C1 Hormone-nuclear Receptor Family

PGR Hormone-nuclear Receptor Family
| Homo sapiens 9.67e-16 8.03
NR3C2  Hormone-r Receptor Family

Information

AR Hormone-nuclear Receptor Family

FOXC2 Forkhead Domain Family
FOXC1 Forkhead Domain Family

Information

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong
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What happens when BETA Is used w/o
gene expression data?

Some expts a student (lana Pyrogova) did
using OCT4/SOC2/Nanog data...

CS4220, AY2016/17 Copyright 2017 © Limsoon Wong



OCT4/SOX2/NANOG

(A) Enhancers are bound by
OCT4, SOX2 and NANOG
together with p300 in embryonic
stem cells. These enhancers
maintain pluripotency by
activating gene expression in ES
cells (top) or poisoning
expression for activation after
differentiation (bottom)

(B) After differentiation of the
cell, the same enhancers are
bound by p300 in developmental
tissues together with other
transcription factors. The target
gene is expressed

CS4220, AY2016/17
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A Pluripotency

active
co-activator (p300, Mediator,...)

NANOG

QCT4 Maintained

pluripotency
SOX2

poised
NANOG co-activator

=

SOX2

Maintained
pluripotency

ocT >

Differentiation
and development

co-activator

=

others —p Differentiation

Goke et al., PLoS Comput. Biol., 7(12):e1002304, 2011.
Copyright 2017 © Limsoon Wong
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Input Predicted target genes by BETA
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Strand GeneSymbol

° TF name: OCT4 #Chr TSS TTS RefseqID Score
chrl0 60002804 60099990 NM_026937 1.167  +

. Cell: ES chrls 58094046 58135082 NM_027435 1.158 -
chrl0 59987908 60003112 NM_025514 1.105 -

. Expt: ChIP-seq chrs 70539674 70592858 NM 007924 1.092 +
chr2 31572650 31617526 NM_001033389 1.064
chr2 31572650 31617526 NM_001290548 1.064

Asccl
Atad2
Anapclé
Ell

+ Fubp3
+ Fubp3

BETA pamaters
« Genome: mml10
* Distance: 100kbp

Predict target genes

Compare top 500
of these two lists

* Perturbation expression data (from W.Sikora 2013)
* Absolute expr fold change in response to TF perturbation

knsemblGeneID
Out of top 500 BETA predictions oecoaa000aEsns
based on OCT4 binding data ENSMUSG00000068048
ENSMUSG00000061082
iny’ amere 5% (:25) target ENSMUSG00000049382
) ENSMUSG00000032085
genes are confirmed by gene ENSMUSG00000023039
expression data ENaMSCo0000087 615

ExpressionFoldChange

8.
.385737772
.99106154
.980707822
. 736291716
.599653246
.40733782
.407259106
.26657795

e JE BECS IS IR B BCS I+

868013732

overlap =25 g

AA‘

CS4220, AY2016/17
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TF-TF Interactions




TF1 TF2

Basic ideas for
— identifying co-
operative TFs

Motif-PIE
 Check regulatory region
o of their common target
—eO
. — genes for
DA — Binding-site co-

occurrence enrichment

w ~ Relatively fixed binding
distance between their
@@ = binding sites

Yu et al., NAR, 34(3):917-927, 2006
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A Motif Co-Occurrence Approach for Genome-Wide Prediction of Transcription-
Factor-Binding Sites in Escherichia coli

Martha L. E!ul*,+¢,1-2~3-'jr Abigail M. h—'IcGuire,1~2~3 Nobuhisa I\.—'Iasuda,2 and George M. Church1.2:°
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Abstract Go to: v]

Various computational approaches have been developed for predicting cis-regulatory DNA elements in
prokaryotic genomes. We describe a novel method for predicting transcription-factor-binding sites in
Escherichia coli. Our method takes advantage of the principle that transcription factors frequently coregulate
gene expression. but without requiring prior knowledge of which groups of genes are coregulated. Using
position weight matrices for 49 known transcription factors, we examined spacings between pairs of matrix
hits. These pairs were assigned probabilities according to the overrepresentation of their separation distance.
The functions of many open reading frames (ORFs) downstream from predicted binding sites are unknown.
and may correspond to novel regulon members. For five predictions. knockouts with mutated replacements
of the predicted binding sites were created in E. coli MG1655. Quantitative real-time PCR (RT-PCR)
indicates that for each of the knockouts, at least one gene immediately downstream exhibits a statistically
significant change m mRNA expression. This approach may be useful in analyzing binding sites in a variety
of organisms.
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1998). The matrix pairs were ranked according to either their

most significant single spacing between 0 and 500 bp (e.g., ex- N US
actly 3 bp) or their most significant spacing bin (McGuire 2000). National Univerery
Eight different spacing bins were examined (the bins including of Singapore
separation distances 0-30 bp, 30-60 bp, 60-90 bp, 0-100 bp,

100-200 bp, 200-300 bp, 300400 bp, and 0-450 bp).

The rankings were based on the probability of obtaining the
observed number of hits for the most overrepresented bin or
spacing, given the number expected by chance for that particular
bin or spacing. This number expected by chance was determined
in the following manner:

Ex)=N,-N, - n(x-o0), (1)

where N, and N, are the number of hits in the genome using
search matrices @ and b, ¢ is a correction factor to account for the
lengths of the search matrices, and w(x) is the probability that

two randomly chosen noncoding base pairs are separated by a
distance x. w(x) was computed by tabulating the actual frequen-

Similarly, the probabilities of obtaining the observed num-
S O m e ber of hits within the eight different spacing bins was calculated:

ﬂbﬂbm]—I(N . NE,\
a

technical Pan=1- 2, |-, @)
details 1= b‘gt’w(x -0, )

binsize

obs(bin) = 2 obs(x), (5)
=0

where obs(bin) is the observed number of hits in that spacing bin.
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