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Outline

• Forgotten assumptions
– Normal distribution
– I.I.D.
– Proper design of experiment
– Domain-specific laws

• Overlooked information
– Non-associations
– Context
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NORMAL DISTRIBUTION
Forgotten assumptions
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Wisdom of the crowd

• Estimates not normally distributed
• They are lognormally distributed
⇒Subjects had problems choosing the right order 

of magnitude

Lorenz et al., PNAS, 108(22):9020-9025, 2011
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Time for Exercise #1

• Suppose you are given a set S of values (e.g. the 
age of a group of people). Choose a number or 
value x so that x would be a good representative 
of the values in S when
– S is normally distributed
– S is log-normally distributed
– S has some arbitrary distribution

• What is the general principle underlying your 
choices?
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and what held yesterday may not hold today
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2007 Financial Crisis

• All of them religiously 
check VaR (Value at Risk) 
everyday

• VaR measures the expected loss 
over a horizon assuming normality

• “When you realize that VaR is using 
tame historical data to model a 
wildly different environment, the 
total losses of Bear Stearns’ hedge 
funds become easier to understand. 
It’s like the historic data only has 
rainstorms and then a tornado 
hits.” – New York Times, 2 Jan 2009

• You can still turn things into your 
advantage if you are alert:  When VaR
numbers start to miss, either there is 
something wrong with the way VaR is 
being calculated, or the market is no 
longer normal



8

CS4220 Copyright © 2019 by Wong Limsoon

I.I.D.
Forgotten assumptions
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Experiments on social influence

• 12 groups, 12 subjects each

• Each subject solves 6 
different estimation tasks 
regarding geographical facts 
and crime statistics

• Each subject responds to 1st

question on his own

• After all 12 group members 
made estimates, everyone 
gives another estimate, 5 
consecutive times

• Different groups based their 
2nd, 3rd, 4th, 5th estimates on
– Aggregated info of others’ 

from the previous round
– Full info of others’ estimates 

from all earlier rounds
– Control, i.e. no info 

• Two questions posed for 
each of the three treatments

• Each declares his confidence 
after the 1st and final 
estimates

Lorenz et al., PNAS, 108(22):9020-9025, 2011
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Social influence effect

• Social influence diminishes diversity in groups 
⇒Groups potentially get into “group think”!
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Range reduction effect

• Group zooms into wrong estimate
• Truth may even be outside all estimates
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Social  influence diminishes wisdom 
of the crowd

• Social influence triggers convergence of 
individual estimates

• The remaining diversity is so small that the 
correct value shifts from the center to the outer 
range of estimates

⇒An expert group exposed to social influence may 
result in a set of predictions that does not even 
enclose the correct value any more!

• Conjecture:  Negative effect of social influence is 
more severe for difficult questions
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Related issue: 
People do not say 
what they really 

want to say

“In fact, the evidence is 
very strong that there is a 
genuine difference 
between people's private 
opinions and their public 
opinions.” 

Stephen King, “Conflict between public and 
private opinion”, Long Range Planning, 

14(4):90-105, August 1981
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PROPER DESIGN OF EXPT
Forgotten assumptions
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Design of experiments 

• In clinical testing, we carefully choose the sample 
to ensure the test is valid
– Independent: Patients are not related 
– Identical: Similar # of male/female, young/old, … in cases 

and controls 

• In big data analysis, and in many datamining works, people 
hardly ever do this!
– Is this sound?

Note that sex, age, … don’t 
need to appear in the 

contingency table
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Looks like treatment A is better

Looks like treatment B is better

Looks like treatment A is better

What is happening here?
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A/B sample not identical 
in other attributes

• Taking A
– Men = 100 (63%)
– Women = 60 (37%)

• Taking B
– Men = 210 (91%)
– Women = 20 (9%)

• Men taking A
– History = 80 (80%)
– No history = 20 (20%)

• Men taking B
– History = 55 (26%)
– No history = 155 (74%)
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Simpson’s paradox in an Australian 
population census

• Craft-repair/Adm-clerical sample not identical in 
other aspects

Context Comparing Groups sup Pclass=>50K p-value

Race =White
Occupation = Craft-repair 3694 22.84%

1.00 × 10-19
Occupation = Adm-clerical 3084 14.23%

Context Extra 
attribute

Comparing Groups sup Pclass=>50K

Race =White

Sex = Male
Occupation = Craft-repair 3524 23.5%

Occupation = Adm-clerical 1038 24.2%

Sex = Female
Occupation = Craft-repair 107 8.8%

Occupation = Adm-clerical 2046 9.2%
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Time for Exercise #2

• Slide #18 suggests 
that men earn more 
than women. How 
would you verify this 
hypothesis? Should 
you do a chi-square 
test using the table 
shown below?
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Related issue: Sampling bias

The reason the Tribune was mistaken is that their editor trusted the results 
of a phone survey… Telephones were not yet widespread, and those who 
had them tended to be prosperous and have stable addresses.
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DOMAIN-SPECIFIC LAWS
Forgotten assumptions
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A basic rule of human genetics



24

CS4220 Copyright © 2019 by Wong Limsoon

A suspicious contingency table

rs???
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Time for Exercise #3

• Slide #24 says the contingency table looks 
suspicious. Why?
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NON-ASSOCIATIONS
Overlooked information
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We tend to ignore non-associations

• We have many technologies to look for 
associations and correlations
– Frequent patterns
– Association rules
– …

• We tend to ignore non-associations
– We think they are not interesting / informative
– There are too many of them

• We also tend to ignore relationship between 
associations



29

CS4220 Copyright © 2019 by Wong Limsoon

We love to find correlations like this…

• Dietary fat intake correlates with breast cancer
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And like this…

• Animal fat intake correlates with breast cancer
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But not non-correlations like this…

• Plant fat intake doesn’t correlate with breast cancer



32

CS4220 Copyright © 2019 by Wong Limsoon

Yet there is much to be gained when 
we take both into our analysis

A: Dietary fat intake 
correlates with breast 
cancer

B: Animal fat intake 
correlates with breast 
cancer

C: Plant fat intake 
doesn’t correlate with 
breast cancer

⇒Given C, we can 
eliminate A from 
consideration, and 
focus on B!

The power 
of negative 

space!
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CONTEXT
Overlooked information
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We tend to ignore context

• We have many technologies to look for 
associations and correlations
– Frequent patterns
– Association rules
– …

• We tend to assume the same context for all 
patterns and set the same global threshold
– This works for a focused dataset
– But for big data where you union many things, this 

spells trouble
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Formulation of a Hypothesis 

• “For Chinese, is drug A better than drug B?”

• Three components of a hypothesis:
– Context (under which the hypothesis is tested)

• Race: Chinese
– Comparing attribute

• Drug:  A or B
– Target attribute/target value

• Response: positive

• 〈{Race=Chinese},  Drug=A|B,  Response=positive〉
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The right support threshold
• 〈{Race=Chinese},  Drug=A|B,  Response=positive〉

• To test this hypothesis we need info:
– NA =support({Race=Chinese, Drug=A})
– NA

pos =support({Race=Chinese, Drug=A, Res=positive})
– NB =support({Race=Chinese, Drug=B})
– NB

pos =support({Race=Chinese, Drug=B , Res=positive})

⇒Frequent pattern mining, but be careful with 
support threshold, need to relativize to context

Context Comparing
attribute

response=
positive

response=
negative

{Race=Chinese} 
Drug=A NA

pos NA − NA
pos

Drug=B NB
pos NB − NB

pos
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The right context

• 〈{Race=Chinese},  Drug=A|B,  Response=positive〉

• If A/B treat the same single disease, this is ok

• If B treats two diseases, this is not sensible

• The disease has to go into the context

Context Comparing
attribute

response=
positive

response=
negative

{Race=Chinese} 
Drug=A NA

pos NA − NA
pos

Drug=B NB
pos NB − NB

pos
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Time for Exercise #4

• Suppose a test of a disease presents a rate of 5% 
false positives, and the disease strikes 1/1000 of 
the population. Let’s say people are tested 
randomly and a particular patient’s test is 
positive. What is the probability that he is 
stricken with the disease? 
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What have we 
learned?

• Mechanical application 
of statistical and data 
mining techniques often 
does not work

• Must understand 
statistical and data 
mining tools & the 
problem domain
– Must know how to logically 

exploit both
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Abraham Wald’s analysis of
survivability of bombers in WWII

• “It is so easy to make bad inferences with data… there’s a 
creative part of understanding quantitative data that 
requires a sort of artistic or creative approach to research.” 
---Nate Bolt

• http://www.fastcodesign.com/1671172/how-a-story-from-world-war-ii-shapes-facebook-today

Undamaged plane (left). A plane shaded everywhere bullets struck returning aircraft (right).

Look 
this 
story 
up
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