CS4330: Combinatorial Methods in Bioinformatig
Practical genome

assembly based on de
Bruijn graphs

Wong Limsoon

Acknowledgement: This set of slides were
adapted from Ken Sung’s

L
o
Q.
o
(@)
=
v
——
o
=
wvi
-
L
=
o=
=
'
=
lg
e
©
=

© Copyright National University of Singapore. All Rights Reserved.

Practical issues in genome assembly

based on de Bruijn graph

Read errors De Bruijn graph becomes big,

Heterozygosity complicated, & contain many

erroneous edges
Repeats &

De Bruijn graph fragments into

Incomplete coverage
many connected COmponentS

Choice of K for constructing the de Bruijn graph

NUS Restricted

How successful practical genome
assemblers deal with these issues £

Velvet. You
read up on
the rest

Velvet e ®
Efficient in assembling short-read sequencing data

Zerbino & Birney, “Velvet: Algorithms for de novo short read assembly using de Bruijn graphs”, Genome Research,
18(5):821-829, 2008

SOAPdenovo
Suitable for large-scale genome assembly

Li et al., “De novo assembly of human genomes with massively parallel short read sequencing”, Genome
research, 20(2):265-272, 2010

SPAdes (aka St. Petersburg genome assembiler)

Can handle diverse sequencing data types, including
short reads, long reads, and mate-pair reads

Bakevich et al. “SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing’,
Journal of Computational Biology, 19(5):455-477, 2012

Wong Limsoon, CS4330, AY2023/24
NUS Restricted

Velvet

https://en.wikipedia.org/wiki/VVelvet assembler

Simplification
Remove tips
Merge bubbles

Remove low-coverage edges

9)
NUS Restricted

https://en.wikipedia.org/wiki/Velvet_assembler

Step 1: Simplify the graph DB, (2)

Whenever node x has only one outgoing edge, and it
goes to a node y which has only one incoming edge,
these two nodes are merged

Akin to x &y

Do this until no further merging is possible

Exercise

Is this step “safe”?

If not, how to make it
safer?

Wong Limsoon, CS4330, AY2023/24
NUS Restricted

Step 1: Simplify the graph DBg(2)

Whenever node x has only one outgoing edge, and it
goes to a node y which has only one incoming edge,
these two nodes are merged

Akin to x &y

Do this until no further merging is possible

Step 2: Remove “tips”

“Tips” correspond to edges due to erroneous reads

Do tip removal until no further removal is possible

{5x) (4x) {4x) (3x) (2x)

(1x) (1%) (1) (1x)

A “tip” is a chain of nodes such that
Length is at most 2K
Disconnected at one end

Each node has low # of occurrences in the reads

Wong Limsoon, CS4330, AY2023/24
NUS Restricted

Exercise

Step 2: Remove “tips”

“Tips” correspond to edges due to erroneous reads

defl ned to be at most 2K’? Do tip removal until no further removal is possible

Why is the length of a tip

(5%)

(4x) (4x) 3x) (2x)

What might be other good
ChOlceS? A “tip” is a chain of nodes such that

Length is at most 2K
Disconnected at one end
Each node has low # of occurrences in the reads

CTT (o e 17C6 T
(1x) (1) {1x) (1x)

Wong Limsoon, CS4330, AY2023/24
NUS Restricted

| o
by
\

Step 3: Merge “bubbles”

“Bubbles” correspond to errors or SNPs

Use “Tour bus” algo to merge bubbles

“Bubbles” are two paths having the same starting node
and the same ending node where these two paths
represent two strings differing by very few nucleotides
(e.g., 1 nucleotide)

(5x) (4x) {4x) [4x) (4x) (5x)

(1x) lx] lx:l (1x)

'ong Limsoon, 10
NUS Restricted

Merge a bubble

* The top path represents GACTCCGAG.
* The bottom path represents GACTTCGAG.

(5x) (4x) {4x) [4x) {4x) (5x)

(1x) (1x) (1x) (1x)

* There is only one nucleotide different. We merge them.

-

(5x) (5x) {5x) (5x%) {5%) (5%)
------ GACT ACTC CTCC TCCG CCGA CGAG S

Wong Limsoon, CS4330, AY2023/24 11

NUS Restricted

Tour bus algorithm

Wong Limsoon, CS4330, AY2023/24
NUS Restricted

Algorithm Tour Bus(H, s)

Require: H is the de Bruijn graph and s is an arbitrary node in H
Ensure: A graph formed after merging the bubbles

1: Set () be a queue with one node s;

2: while Q # () do

3 u = dequeue();

4: for each child v of v do

5: if visited|v| = false then

6: Set w(v) = u; /* set u as v’s parent in the BFS tree */

7: Set visited[v] = true;

&: enqueue((), v);

9: else

10: Find the lowest common ancestor ¢ of u and v by w();

11: if the paths ¢ — w and ¢ — v are similar enough then

12: Merge the two paths and keep the path with the highest path
weight;

13: end if

14: end if

15 end for
16: end while

12

13

Wong Limsoon, CS4330, AY2023/24

NUS Restricted

Step 4: Remove erroneous connections

Remove edges with low coverage (a cutoff set by users)

14
NUS Restricted

Exercise

Step 4: Remove erroneous connections

H OW tO d e rlve a Remove edges with low coverage (a cutoff set by users)
reasonable threshold for
this step?

Wong Limsoon, CS4330, AY2023/24
NUS Restricted

| w
A
R

Assembly quality

Simulations of Tour Bus. The genome
of £. coliand 5-Mb samples of DNA
from three other species (5.
cerevisiae, C. elegans, and H. sapiens,
respectively) were used to generate
35-bp read sets of varying read
depths (X-axis of each plot). We
measured the contig length N50 (Y-
axis, log scale) after tip-clipping
(black curve) then after the
subsequent bubble smoothing (red
curve). In the first column are the
results for perfect, error-free reads. In
the second column, we inserted errors
in the reads at a rate of 1%. In the
third column, we generated a slightly
variant genome from the original by
inserting random SNPs at a rate of 1
in 500. The reads were then
generated with errors from both
variants, thus simulating a diploid
assembly.

Wong Limsoon, CS4330, AY2023/24
NUS Restricted

N50 (kbp - log scale)

10 20 30 40 50
1 l L | 1 L I L 1
+ errors

| |

E.coli

100

10
5 -
2 o
1 -

S.cere.

0.1 -1

[- |
LI L]
AN o=

C.elegans

T

0.1

LI L

=N o

111
H.sapiens

0.1 =

Coverage density

Zerbino & Birney, Genome Research, 18(5):821-829, 2008

17

Efficiency

Wong Limsoon, CS4330, AY2023/24
NUS Restricted

Table 1. Efficiency of the Velvet error-correction pipeline on the
BAC data set

Maximum Coverage Coverage
No. of N50 length (percent (percent

Step nodes (bp) (bp) >50 bp) >100 bp)
Initial 1:353,791 5 7 0 0
Simplified 945,377 5 80 4.3 0.2
Tips clipped 4898 714 5037 93.5 78.7
Tour Bus 1147 1784 7038 93.4 90.1
Coverage

cutoff 685 1958 7038 92.0 90.0
Ideal 620 2130 9045 93.7 91.9

Each line in this table represents a different stage in Velvet. The initial
graph was built directly from the BAC reads. The second was the result of
node concatenation. The next three graphs were the result of the three
consecutive steps of error correction: tip clipping, Tour Bus, and coverage
cutoff. The last graph was obtained by building the graph of the refer-
ence sequence then submitting it to Tour Bus, to simulate an error-free
and gap-free assembly.

Table 2. Efficiency of the Velvet error-correction pipeline on the
Streptococcus data set

Maximum Coverage Coverage
No. of N50 length (percent (percent

Step nodes (bp) (bp) >50 bp) >100 bp)
Initial 3,621,167 16 16 0 0
Simplified 2,222,845 16 44 0.1 0
Tips clipped 15,267 2195 7949 96.2 95.4
Tour Bus 3303 4334 17,811 96.8 96.4
Coverage

cutoff 1496 8564 29,856 96.9 96.5
Ideal 1305 9609 29,856 97.0 96.8

Zerbino & Birney, Genome Research, 18(5):821-829, 2008

18

Recall this example, where K= 3

Genome = AAGATCGATGATTT
Z={ AAGATC, GATCGAT, CGATGA, ATGATT, GATTT }

DB4(?): (TCO
@»‘@

CAAG)—(AGA>— GAT)—CATT O—(TTD
@@
Two possible Eulerian paths but can’t tell which is real
AAGATCGATGATTT
AAGATGATCGATTT

NUS Restricted

19

Consider K =4

Genome = AAGATCGATGATTT
Z={ AAGATC, GATCGAT, CGATGA, ATGATT, GATTT }

DB(R): (GAGE)—CRGAT»—~GATO—~CATCE —~(TCGR I~ CaAD
(BT AT+~ TGAT »—ATGR —GATE

A unique Eulerian path:
AAGATCGATGATTT

20

NUS Restricted

Consider K=5

Genome = AAGATCGATGATTT
Z={ AAGATC, GATCGAT, CGATGA, ATGATT, GATTT }

DB4(%); GATCE—(ATCGA—(TCGAD (CGATS)
GATTD (TGATD+—ATGAD (GATGA)

No Eulerian paths; fragmented graphs give these strings:
AAGATC, GATCGAT, CGATGA, ATGATT, GATTT

msoon, 21
NUS Restricted

How to choose suitable K

Large K

K-mers more likely to have errors
of correct K-mers is reduced
More genome coverage gaps

Small K
More likely to be repeated

Short repeats create loops and branches in de Bruijn
graph

22

NUS Restricted

Ty ST i Paived-end

¢ Construct de Bruijn for &k = ky,

4__
Instead of a fixed K, try 1 Progressive Depths
different values ulin "
_ "%
When K is small, we get J Eror Cormection

——

short but high-quality e
contigs AN

¢ Local Assembling
Use them to correct errors & 37 o \
Ny 1

in reads ¢ \ Construct de Bruijn

for larger k

Then, increment K and try — oso—s os—so—so—so—o
again O—»0—>0—*0 giaffolding

Peng, et al., “IDBA-UD: a de novo assembler for single-cell and
metagenomic sequencing data with highly uneven depth”,
Bioinformatics, 28(11): 1420-1428, 2010
Wong Limsoon, CS4330, AY2023/24 23
NUS Restricted

IDBA algorithm

Step 7 uses techniques

similar to reference
based genome assembly

Algnrlthm IDBﬁ(Ru k-.rm-'-ﬂ--: kﬂ'&ﬂ-.’[-‘)

Require: R is a set of reads and k,,;, and k,,,, are de Bruijn graph pa-

rameter
Ensure: A set of contigs
1: for k = k,in to ko do
2: Generate the de Bruijn graph Hj, for R;
Remove tips;
Merge bubbles;
Remove nodes with multiplicity < m;

All reads in R are aligned to the computed contigs;

A

same position has the correct base;
9: end for
10: Extract all maximal simple paths in Hy_ as contigs:

— Velvet

Extract all maximal simple paths in Hy as contigs;

The mismatch in the read is corrected if 80% of reads aligned to the

Wong Limsoon, CS4330, AY2023/24

NUS Restricted

24

Low-coverage regions remain problematic

ACGATCGTAGCTGA....|.AACTG. .|. .TACTT...
A region is covered by two reads ..AACT and ACTG...

At K = 3, DB,(Z) shows a path AAC - ACT - CTG but
cannot output the contig ... AACTG ...

AACTG /s not in any read
ACT has 2 incoming & 2 outgoing edges due to TACTT

Similar problems existat K =4, 5, ...

25
NUS Restricted

IDBA-UD ~ IDBA + local assembly

.

.

ACGATCGTAGCTGA. ... | .AACTG. .|. . TACTT. ..

Using information from paired-end read mapping, the two
copies of ACT can be separated

u W uv Vvw
>>VQ<:2 -—) ® Gl
i % S e

Then, ...AACTG ... can be produced

26

NUS Restricted

Performance

Table 2.
The assembly results on simulated 10x lenght-100 reads of L.plantarum (~3.3 Mb) with 1% error rate

k Contigs Scaffolds Time (s) Mem (M)
No. N50 Max Cov Sub.err Errno. No. N50 Max Cov Sub.err Errno.
len (%) (%) (len) len (%) (%) (len)
IDBA-UD 20-100 210 36513 201860 99.56 0.0225 104 437 83 194322 406269 99.55 0.0218 53784 63 432
SOAPdenovo 31 3346 1584 8691 98.36 0.0572 1079112k 147 121214 246514 9250 0.0483 1087283k 31 852
Velvet 21 473 13761 48489 98.09 0.0323 515k 111 111871 225438 96.81 0.0291 667k 43 526
IDBA 20-40 672 8350 37391 98.52 0.0164 33301 60 119931 308798 97.55 0.0161 39420 24 414

Peng, et al., “IDBA-UD: a de novo assembler for single-cell and
metagenomic sequencing data with highly uneven depth”,
Bioinformatics, 28(11): 1420-1428, 2010
Wong Limsoon, CS4330, AY2023/24 27
NUS Restricted

Limitations

De Bruijn graph is big

Need lots of memory to run

Cannot use connectivity of paired-end reads before
scaffolding

SPAdes uses paired de Bruijn graph to capture this info

If there are long repeats, this approach may fail to get
long contigs

28

Exercise

IDBA tries increasingly bigger values for K

l.e., it must assemble the genome multiple times

Would it be possible to
guess a good value for K

Hypothesis a la KmerGenie

Empirical evidence from KmerGenie

by J u St ta k| ng a q u | Ck IOO k When a value K* of K maximizes the set of genomic K-
mer species observed in a read set 2 for a genome G,
then K* is the best value for producing the genome
at th e read Set? assembly from z for G
H OW’? A genomic K-mer species is a K-mer species that

indeed appears in the genome G

R
Wong Limsoon, CS4330, AY2023/24 - A
T

NUS Restricted

Must read

Velvet

Zerbino & Birney, “Velvet: Algorithms for de novo short read assembly using de
Bruijn graphs”, Genome Research, 18(5):821-829, 2008

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2336801/

IDBA-UD

Peng, et al., “IDBA-UD: a de novo assembler for single-cell and metagenomic
sequencing data with highly uneven depth”, Bioinformatics, 28(11): 1420-1428,
2010

https://pubmed.ncbi.nlm.nih.gov/22495754/

Wong Limsoon, C$4330, AY2023/24
NUS Restricted

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2336801/
https://pubmed.ncbi.nlm.nih.gov/22495754/

Good to read

SOAPdenovo

Li et al., “De novo assembly of human genomes with massively parallel short read
sequencing”, Genome research, 20(2):265-272, 2010

https://pubmed.ncbi.nlm.nih.gov/20019144/

SPAdes

Bakevich et al. “SPAdes: A new genome assembly algorithm and its applications to
single-cell sequencing”, Journal of Computational Biology, 19(5):455-477, 2012

https://pubmed.ncbi.nlm.nih.gov/22506599/

KmerGenie

Chikni & Medvedey, “Informed and automated k-mer size selection for genome
assembly”, Bioinformatics, 30(1):31-37, 2014

https://pubmed.ncbi.nlm.nih.gov/23732276/

Wong Limsoon, C$4330, AY2023/24
NUS Restricted

https://pubmed.ncbi.nlm.nih.gov/20019144/
https://pubmed.ncbi.nlm.nih.gov/22506599/
https://pubmed.ncbi.nlm.nih.gov/23732276/

	Slide 1: CS4330: Combinatorial Methods in Bioinformatics Practical genome assembly based on de Bruijn graphs
	Slide 2: Practical issues in genome assembly based on de Bruijn graph
	Slide 3: How successful practical genome assemblers deal with these issues
	Slide 4: Velvet
	Slide 5: Step 1: Simplify the graph DBK(R)
	Slide 6: Exercise
	Slide 7: Step 2: Remove “tips”
	Slide 8: Exercise
	Slide 10: Step 3: Merge “bubbles”
	Slide 11: Merge a bubble
	Slide 12: Tour bus algorithm
	Slide 13: Example
	Slide 14: Step 4: Remove erroneous connections
	Slide 15: Exercise
	Slide 17: Assembly quality
	Slide 18: Efficiency
	Slide 19: Recall this example, where K = 3
	Slide 20: Consider K = 4
	Slide 21: Consider K = 5
	Slide 22: How to choose suitable K
	Slide 23: IDBA
	Slide 24: IDBA algorithm
	Slide 25: Low-coverage regions remain problematic
	Slide 26: IDBA-UD  IDBA + local assembly
	Slide 27: Performance
	Slide 28: Limitations
	Slide 29: Exercise
	Slide 35: Must read
	Slide 36: Good to read

