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Genome sequencing technologies
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The advancement of DNA sequencing. 1st generation sequencing or Sanger sequencing involves the
fragmentation and cloning of the target DNA into plasmid vectors. The DNA is then sequenced using a cyclic
chain termination method with either radio isotopically labelled or fluorescently labelled dNTPs. The 2nd

generation sequencing technologies are all based on sequencing by synthesis. Two common methods used are
emulsion PCR and bridge PCR. Following these methods, different platforms make use of different sequencing

technologies. 3rd generation sequencing methods have been developed by many different companies and are
based on different technologies. They all involve more direct examination of the target DNA[19].
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1st generation:
Sequencing by
cyclic chain
termination

1977 — 2000s

Let’'s watch this video together


https://www.youtube.com/watch?v=ONGdehkB8jU
https://www.youtube.com/watch?v=ONGdehkB8jU

2nd or next-
generation:
Sequencing by
synthesis

2005 - 2010s

Let’'s watch this video together

You can also watch this one on
your own


https://www.youtube.com/watch?v=WNM6A9h6GJI
https://www.youtube.com/watch?v=WNM6A9h6GJI
https://www.youtube.com/watch?v=CZeN-IgjYCo
https://www.youtube.com/watch?v=CZeN-IgjYCo
https://www.youtube.com/watch?v=CZeN-IgjYCo
https://www.youtube.com/watch?v=CZeN-IgjYCo

Let's watch this video together
Important °

variation of
2nd-generation
sequencing:
Pair-end
seqguencing

Paired-End Reads Alignment to the Reference Sequence
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Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance
between each paired read is known, alignment algorithms can use this information to map the reads over
repetitive regions more precisely. This results in much better alignment of the reads, especially acraoss
difficult-to-sequence, repetitive regions of the genome.
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https://youtu.be/WneZp3fSJIk

3rd generation:

Long-read
sequencing by
“direct
inspection”

2010s and

ongoing

Let’'s watch this video together


https://www.youtube.com/watch?v=CGWZvHIi3i0
https://www.youtube.com/watch?v=CGWZvHIi3i0

GC-bias in sequencing data

coverage of a gieven reference base in a genome

Relative coverage = mean coverage of all reference bases
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GC-bias plots for the human genome. Left: the GC composition distribution of the human genome (HG19, GRCh37). un d e rIyI N g th iS

Center and right: GC-bias plots for several data sets from human NA12878. Unbiased coverage would be represented by a
horizontal line at relative coverage = 1. Center: HiSeq v3 with sample-preparation reagents from Kapa Biosystems (Table 2, p h enomenon
data set 14), Ion Torrent PGM (data set 15), and Complete Genomics data (data set 16). Right: HiSeq v3 with sample-

preparation reagents from Kapa Biosystems (data set 14, as in center panel) and HiSeq v3 with the standard Fisher et al. [31]

reagents (data set 13). Note that Illumina relative coverage exceeded the y-axis above 93% GC content. Relative coverage is

only plotted for GC percentages for which there are at least 1,000 100-base windows in the genome.
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Cost per human genome
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Speed per human genome

It took 13 years &
$2.7 billion to
sequence the 1st
human genome

Now, a human
genome can be
sequenced in 1 day
at less than $1000

n, CS4330, AY2025/26

Fastest DNA sequencing technique
helps undiagnosed patients find
answers in mere hours

A research effort led by Stanford scientists set the first Guinness World
Record for the fastest DNA sequencing technique, which was used to
sequence a human genome in just 5 hours and 2 minutes.

January 12,2022 - By Hanae Armitage

Euan Ashley and John Gorzynski were part of a team that devised a method for genome sequencing so
speedy it produced results for one study participant in just over five hours.
Steve Fisch

https://med.stanford.edu/news/all-
news/2022/01/dna-sequencing-technique.html



Sequencing error rates & read lengths

1st-gen, e.g. Sanger
Error rate ~0.01%, read length 400 — 900 nt

2nd-gen, e.g. lllumina
Error rate ~0.1%, read length 150 — 300 nt

3rd-gen, e.g. PacBio & ONT,
Error rate ~10-15%, read length 5000 - 15000 nt

Wong Limsoon, CS4330, AY2025/26 10



Base quality

Phred score is log of prob of incorrect base call, P
Qppreg = =10 10g4o(P)

P is assigned by the sequencing machine used
Note that P = 10 —Qphred/10

Qphred Error probability Accuracy
10 1in 10 90%

20 1in 100 99%

30 1in 1,000 99.9%

40 1in 10,000 99.99%

11



Phred score = —10 x log,,(P)

u
Exe rc I s e Where I is the probability that the base call is incorrect. Typically, this probability is derived from

the raw data generated during sequencing.
To compute the Phred scorg, follow these steps:

1. Determine the probability P that the base call is incorrect. This could be based on factors such
as the intensity of the signal from the sequencing instrument, the quality of the sequencing
chemistry, and other technical aspects of the sequencing process.

2. Take the negative base 10 logarithm of P.

3. Multiply the result by -10 to obtain the Phred score.

Here's an example:
If P = (.01 {ie., there's a 1% chance that the base call is incorrect),

Phred score = —10 x log,,(0.01) = —10 = (—2) = 20

If you don’t know the error rate, how would you derive or
estimate the Phred score of a sequencing project?

S
Wong Limsoon, CS4330, AY2025/26 A
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Quality control in sequencing data

Base quality score (Phred score)

. . . * Examining the distribution of read lengths helps ensure consistency across the
Read length distribution

dataset. Deviations from the expected length may indicate issues with library

preparation or sequencing.

G C CO nte nt * Analyzing the GC content distribution ensures that there are no biases that could

affect downstream analyses. An uneven distribution may indicate biases in

amplification during library preparation.

Ad a pte r' CO n ta m i n ati O n * Adapters are short DNA sequences used in library preparation. Detecting and

removing adapter contamination is crucial to prevent artifacts and

misinterpretations in downstream analyses.

E rro r' rate * Monitoring error rates, especially in low-complexity regions, helps identify

potential sequencing or library preparation artifacts.

Wong Limsoon, CS4330, AY2025/26 15



Additional quality control in sequencing

data when there is a reference genome

* PCR amplification during library preparation can introduce duplicate reads.

D u pl ICate re m Ova I Identifying and removing duplicates is essential for accurate quantification and

variant calling.

* Assessing the evenness of coverage across the genome helps identify regions with

Cove rag e u n |f0 rm Ity low or high coverage, which can impact the reliability of variant detection and

guantification.

* Evaluating the mapping quality of reads to a reference genome helps ensure

M a ppl ng q U al Ity proper alignment. Low mapping quality may indicate issues such as

contamination, misalignment, or the presence of repetitive elements.

f . * Verifying that the sequencing data aligns well with the chosen reference genome is
Re g e n OI I le CO n S I Ste n Cy important to identify potential issues such as contamination or misidentification of

the reference.

Wong Limsoon, CS4330, AY2025/26 16



FastQC, a sequencing quality control tool

Get FastQC at
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc

Exercise

ACGTAGGTA

ACGTACGTA

?:rﬁ)qzolziithnesehreni\drs] are mapped to the ACTTACGTA
N a human gehome ACGTACGTA
ACGTACGTA

Is the likely an error? ACCTACGTA
ACCTACGTA

Is the likely an error? ACCTACGTA
s there likely an error in the red column? EalSSESCIE
Is th : " ACCTACGTA
s the blue C likely an error” ACCTACGTA

ACGTACGTA



Sequencing coverage

Coverage = # bases sequenced / Size of sequenced region

The value represents how many times, on average, each
base in the target region has been sequenced

Wong Limsoon , CS4330, , AY2025/26 20



Good to read

lllumina sequencing technology

FastQC

21


https://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf
https://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
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