

CS4330: Combinatorial Methods in Bioinformatics

# Genome characteristics estimation using K-mers

Wong Limsoon

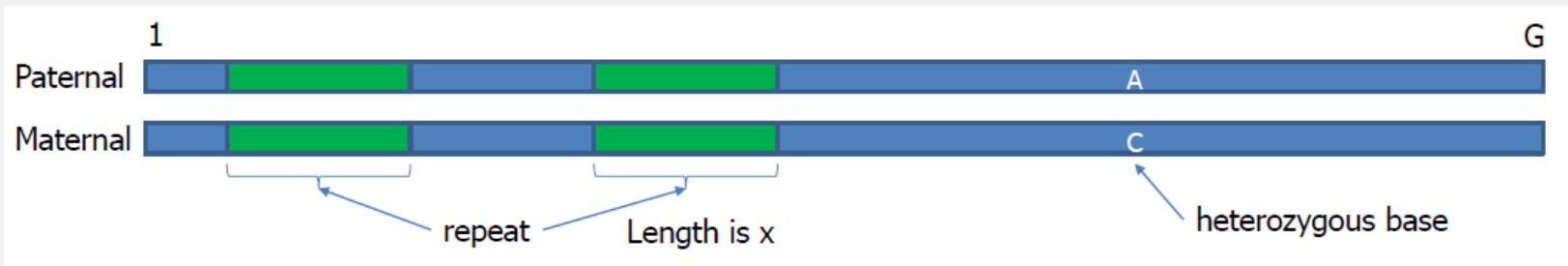
Acknowledgement: This set of slides were  
adapted from Ken Sung's



**NUS**  
National University  
of Singapore

National University of Singapore

# Genome characteristics



$$\text{Percentage of Repeat Content} = \left( \frac{\text{Total Length of Repeats}}{\text{Total Genome Length}} \right) \times 100$$

$$\text{Heterozygous Rate} = \left( \frac{\text{Number of Heterozygous Positions}}{\text{Total Number of Analyzed Positions}} \right) \times 100$$

# Exercise

|          |                                                                                     |
|----------|-------------------------------------------------------------------------------------|
| Paternal | TTCGGA <ins>AGCTACAGTCACACACACA</ins> GACGT <ins>CGATCAGCTTCATGGACAGCTTCAGTAA</ins> |
| Maternal | TTCGGA <ins>AGCTTCAGTCACACACACA</ins> GACG <ins>CCGATCAGCTTCATGGACAGCTTCAGTAA</ins> |

Green is repeat region

Red is heterozygous bases

Compute the followings:

*Genome size*

*Percentage of repeat content*

*Heterozygous rate*

# Homozygous repeat-free genome

In a homozygous repeat-free genome, most K-mers occurring in it have similar counts

Unique K-mers of a genome are K-mers occurring exactly once in the genome / in each read

Example

*In this genome, all 4-mers are “unique”*

TACTGCATGCCGCAGT  
TACT  
ACTG  
CTGC  
TGCA  
GCAT  
CATG  
ATGC  
TGCC  
GCCG  
CCGC  
CGCA  
GCAG  
CAGT

# Genome size estimation

Suppose...

$G$  = genome size, i.e. length of the haploid genome

$L$  = mean read length

$N$  = # of reads

Then,

If  $C$  = sequencing coverage is known, then  $G \approx N L / C$

But estimating  $C$  is resource demanding as the reads have to be aligned and then get the average number of reads aligned to each position in the consensus genome

# Genome size estimation by K-mers

Suppose..

$G$  = size of a homozygous repeat-free genome

$L$  = mean read length

$N$  = # of reads

$\mu$  = mean K-mer count in the reads covering a base

Then,

$\mu G \approx \text{Total K-mer counts in the reads} = N (L - K + 1)$

$\Rightarrow G \approx N (L - K + 1) / \mu$

Estimating genome size was easy for homozygous repeat-free genomes

Real genomes are hardly ever homozygous repeat-free

Needs modelling ... using K-mer spectrum

# K-mer spectrum

K-mer spectrum is distribution of K-mer counts in a given set of DNA sequences

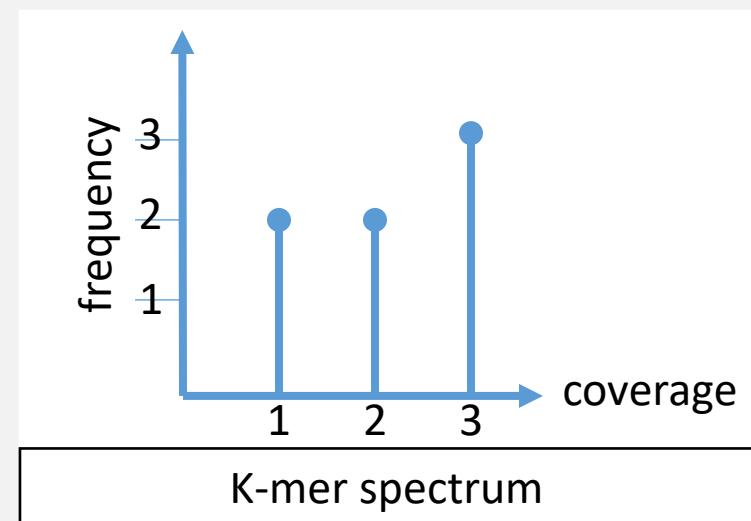
K-mer spectrum is often visualized as a histogram

*x-axis = counts of diff K-mers*

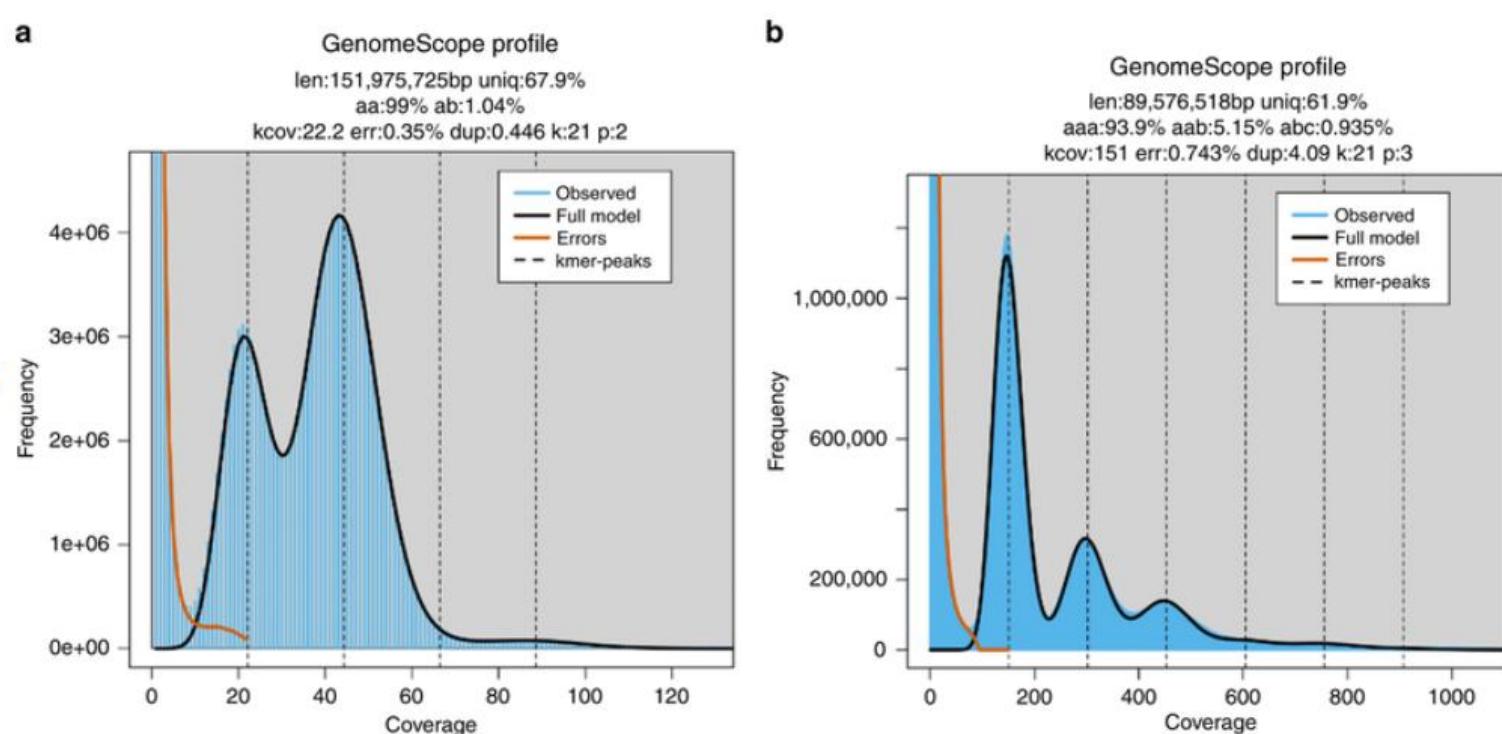
y-axis = # of  $K$ -mers with a specific count

| k-mer | count |
|-------|-------|
| ACG   | 1     |
| CGT   | 2     |
| GTC   | 3     |
| TCA   | 3     |
| CAA   | 3     |
| AAG   | 2     |
| AGT   | 1     |

Reads      K-mer counts



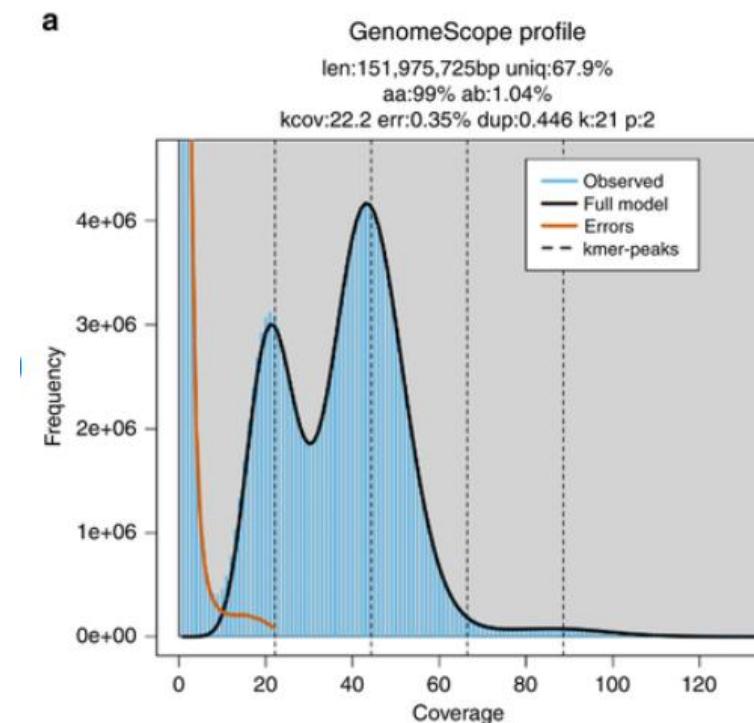
# K-mer spectra of heterozygous diploid & triploid genomes



GenomeScope plots for heterozygous species K-mer spectra and fitted models for (a) diploid *Arabidopsis thaliana* and (b) triploid *Meloidogyne enterolobii*. Note that the diploid plot has two major peaks, while the triploid plot has three major peaks. Both also have high frequency putative error k-mers with coverage near 1.

# Exercise

Given this K-mer spectrum for a diploid genome

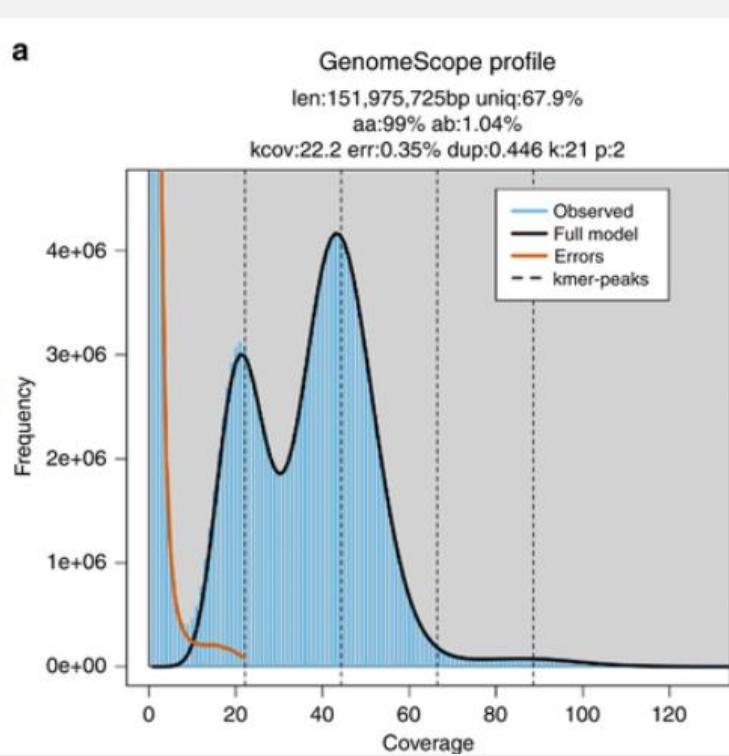


Which peak corresponds to K-mers covering homozygous bases?

Which peak corresponds to K-mers covering heterozygous bases?

What is the sequencing coverage?

# Modelling observed K-mer spectrum



GenomeScope fits a theoretical model (black curve) to the observed K-mer spectrum (blue histogram)

Genome size (~152B), heterozygous rate (1.04%), etc. are then extracted from parameters of the fitted model

Let's see how this is done...

# K-mer spectrum of a homozygous repeat-free genome

Suppose ...

And also no sequencing bias

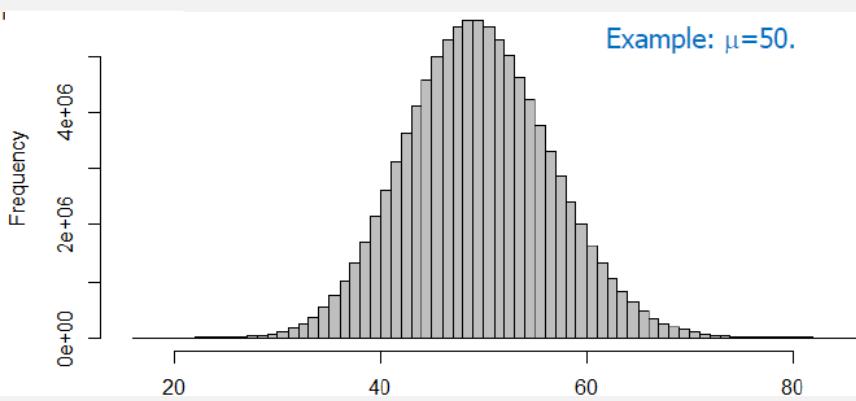
*No sequencing error, no heterozygosity, no repeat*

*K-mers are randomly extracted from the genome*

Then,

*K-mer spectrum is a Poisson distribution having  $\mu$  = the mean K-mer count*

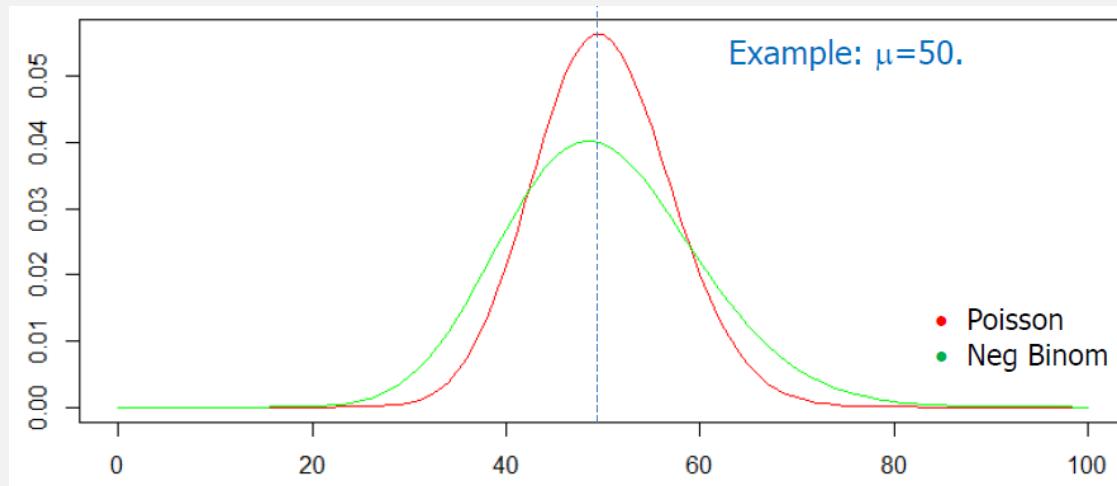
Lander & Waterman, "Genomic mapping by fingerprinting random clones: a mathematical analysis", *Genomics* 2(3):231-239, 1988



# Sometimes, Poisson( $\mu$ ) does not fit well...

Real sequencing data is a bit over-dispersed compared to Poisson, due to e.g. GC bias in sequencing

Negative binomial  $\text{NB}(\mu, \mu / \rho)$  is used instead, where  $\rho$  is a variant parameter that controls over-dispersion



# Negative binomial

Imagine a sequence of independent [Bernoulli trials](#): each trial has two potential outcomes called "success" and "failure." In each trial the probability of success is  $p$  and of failure is  $1 - p$ . We observe this sequence until a predefined number  $r$  of successes occurs. Then the random number of observed failures,  $X$ , follows the **negative binomial** (or **Pascal**) distribution:

$$X \sim \text{NB}(r, p)$$

## Probability mass function [\[ edit \]](#)

The [probability mass function](#) of the negative binomial distribution is

$$f(k; r, p) \equiv \Pr(X = k) = \binom{k + r - 1}{k} (1 - p)^k p^r$$

where  $r$  is the number of successes,  $k$  is the number of failures, and  $p$  is the probability of success on each trial.

Taken from Wikipedia

Use the pmf,  $f(c; \mu, \mu / \rho)$ , of a negative binomial to model the prob of a random K-mer having coverage  $c$ , where  $\mu$  is the observed mean K-mer coverage and  $\rho$  a fitted parameter

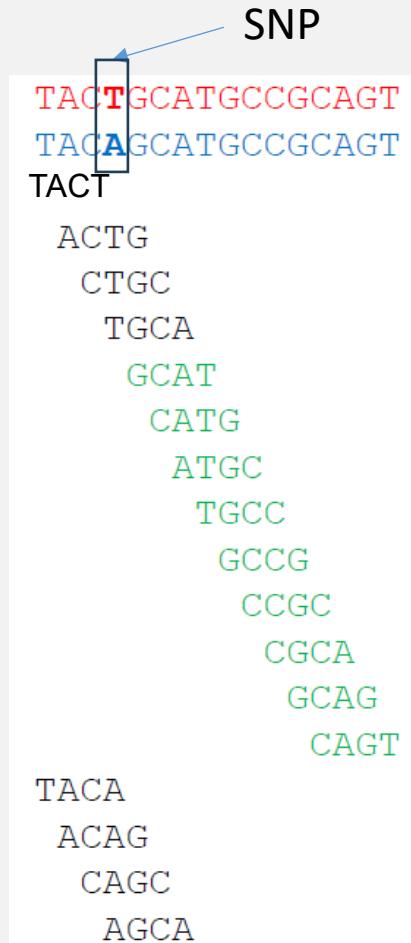
Do this separately for each kind of K-mers: homozygous, heterozygous, 2-copy repeats, 3-copy repeats

# Repeat-free diploid genome

This is a diploid genome  
where all K-mers are unique

One heterozygous base gives  
2K heterozygous K-mers

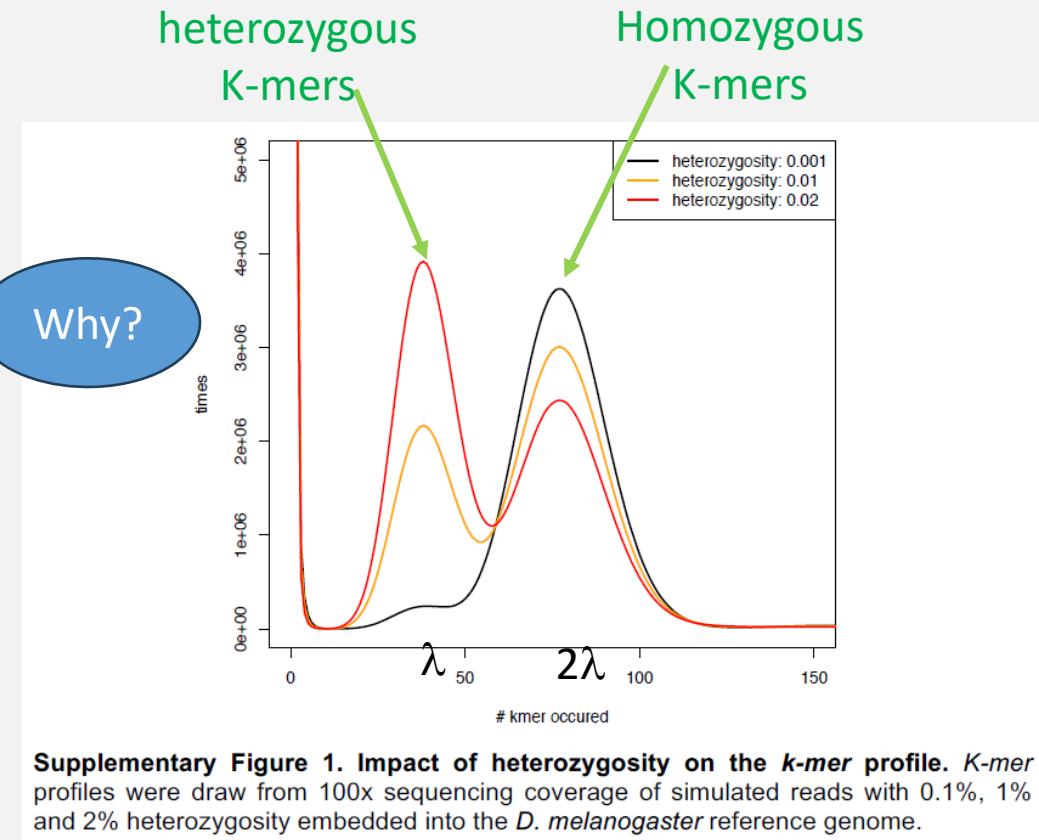
$K = 4$   
The SNP creates  $8 (= 2K)$  4-mers



# K-mer spectrum of repeat-free diploid genome

If a genome is heterozygous and repeat-free, there are two peaks at K-mer coverage  $\lambda$  and  $2\lambda$

As one heterozygous base creates  $2K$  heterozygous K-mers, the heterozygous peak grows fast



Vurture et al., "GenomeScope", *Bioinformatics* 33(14):2202-2204, 2017

# Homozygous vs heterozygous K-mers

Consider a repeat-free diploid genome

Let  $r$  = heterozygosity rate

Then,

$(1 - r)^K$  = prob that a random K-mer is homozygous

$1 - (1 - r)^K$  = prob that a random K-mer is heterozygous

# Homozygous vs heterozygous K-mers

Let  $\alpha$  = proportion of heterozygous K-mers wrt genome size

Let  $\beta$  = proportion of homozygous K-mers wrt genome size

Then,

$$\alpha = 2(1 - (1 - r)^k)$$

$$\beta = (1 - r)^k$$

If instead the diploid genome has a non-zero heterozygosity rate  $r$ , then those heterozygous bases will create additional *k-mers* beyond the original  $G$  *k-mers*. Note that if  $r$  is the probability that a given base is heterozygous, then  $1-r$  is the probability that a given base is not heterozygous (i.e. homozygous). Furthermore,  $(1-r)^k$  is the probability that a given *k-mer* is homozygous, and  $1-(1-r)^k$  is the probability that a *k-mer* is heterozygous in at least once nucleotide. As a result, there will be  $G*(1-r)^k$  homozygous *k-mers* and  $2*G*(1-(1-r)^k)$  heterozygous *k-mers*. Of the heterozygous *k-mers*,  $G*(1-(1-r)^k)$  will originate on the maternal haplotype and an additional  $G*(1-(1-r)^k)$  *k-mers* will originate on the paternal haplotype. Consequently, the total number of *k-mers* present in the diploid genome will no longer be  $G$ , but rather will depend on the rate of heterozygosity and equal  $(1+(1-(1-r)^k)*G$ . At high rates of heterozygosity near 100%, the total number of *k-mers* present in the diploid genome will equal  $2*G$  meaning that that every *k-mer* in the maternal and paternal haplotypes is different.

Vurture et al., "GenomeScope", *Bioinformatics* 33(14):2202-2204, 2017

# A model of K-mer spectrum for repeat-free diploid genome

$$F(X) = \alpha \text{NB}(X; \lambda, \lambda / \rho) + \beta \text{NB}(X; 2\lambda, 2\lambda / \rho)$$

$X$  coverage values

$\lambda$  mean heterozygous K-mer coverage

$\rho$  dispersion parameter

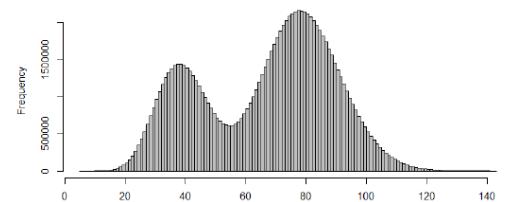
- Example:  $r=0.01, \rho=0.5$ .

- Heterozygous k-mers:  $\alpha = 2(1-(1-0.01)^{21})=0.38$ .
- Homozygous k-mers:  $\beta = (1 - 0.01)^{21}=0.81$ .

100x sequencing coverage,  $k=21$

$$0.38 * \text{NB}(40, 80) + 0.81 * \text{NB}(80, 160)$$

- Let the base coverage be  $C=100$ .  $L=100$ .  $k=21$ .
- k-mer coverage =  $C(L-k+1)/L = 80$
- Hence,  $\lambda = 80/2 = 40$ .



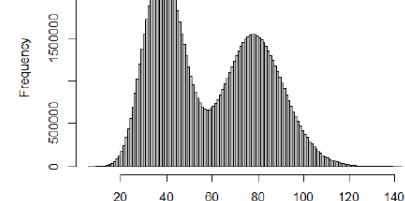
- Example:  $r=0.02, \rho=0.5$ .

- Heterozygous k-mers:  $\alpha = 2(1-(1-0.02)^{21})=0.69$ .
- Homozygous k-mers:  $\beta = (1 - 0.02)^{21}=0.65$ .

100x sequencing coverage,  $k=21$

$$0.69 * \text{NB}(40, 80) + 0.65 * \text{NB}(80, 160)$$

- Let the base coverage be  $C=100$ .  $L=100$ .  $k=21$ .
- k-mer coverage =  $C(L-k+1)/L = 80$
- Hence,  $\lambda = 80/2 = 40$ .



# Estimating genome characteristics

Once the model is fitted to the observed K-mer spectrum

Heterozygous rate is obtained as the value of  $r$  used in defining  $\alpha$  and  $\beta$

Genome size is obtained by summing total # of K-mers and dividing by  $2\lambda$ , the estimated mean coverage of homozygous K-mers

Why?

# GenomeScope

In general, a genome may have repeats

GenomeScope fits a mixture of four evenly spaced negative binomial distributions to the K-mer spectrum to model the relative abundances of heterozygous, homozygous, and two-copy repeats of various types

# GenomeScope only models 2-copy repeats

For non-repeats:

$\alpha$  = proportion of unique  
heterozygous K-mers

*Each K-mer has 1 copy*

$\beta$  = proportion of unique  
homozygous K-mers

*Each K-mer has 2 copies*

$r$  = heterozygosity rate

For 2-copy repeats:

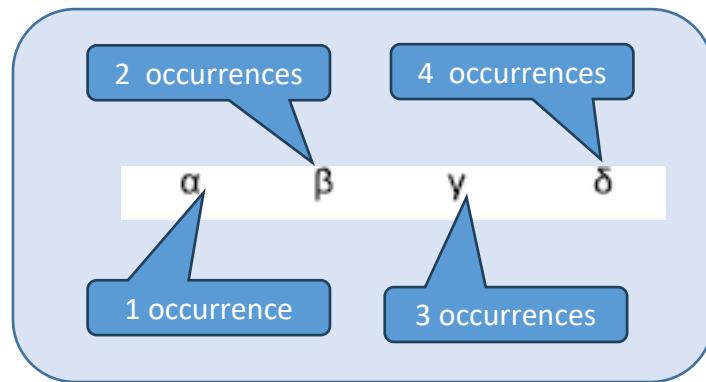
$\gamma$  = proportion of duplicated  
heterozygous K-mers

*Each K-mer has 3 copies*

$\delta$  = proportion of duplicated  
homozygous K-mers

*Each K-mer has 4 copies*

$d$  = proportion of repeat  
regions in the genome



Occurs twice:  $\beta$

Duplicated heterozygous case:

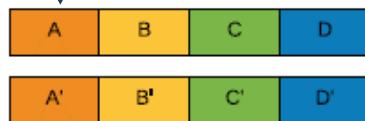


Occurs once:  $\alpha$

Occurs once:  $\alpha$

Occurs once:  $\alpha$

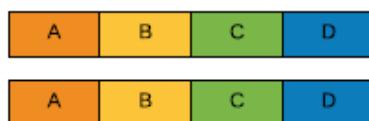
Unique heterozygous case:



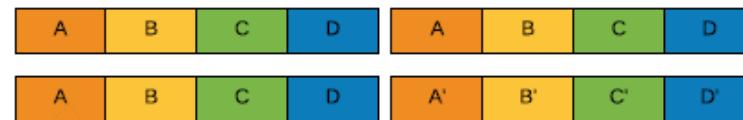
Occurs once:  $\alpha$

Occurs twice:  $\beta$

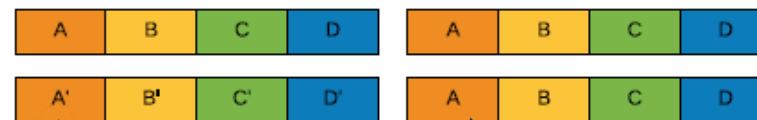
Unique homozygous case:



Duplicated homozygous and one heterozygous case:



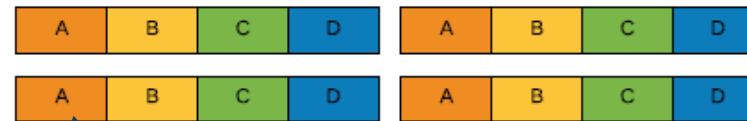
OR



Occurs once:  $\alpha$

Occurs thrice:  $\gamma$

Duplicated homozygous case:



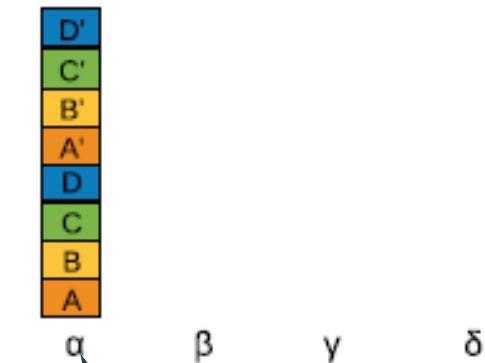
Occurs 4 times:  $\delta$

# Unique heterozygous K-mers

Unique heterozygous case:



total contribution to  $\alpha$  peak:  $2(1-d)(1-(1-r)^k)$



1 occurrence

$$\alpha = 2 (1 - d) (1 - (1 - r)^k) + \dots$$

Non-repeat

Heterozygous

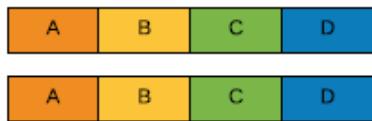
Legend:

kmer:

mutated kmer:

# Unique homozygous K-mers

Unique homozygous case:

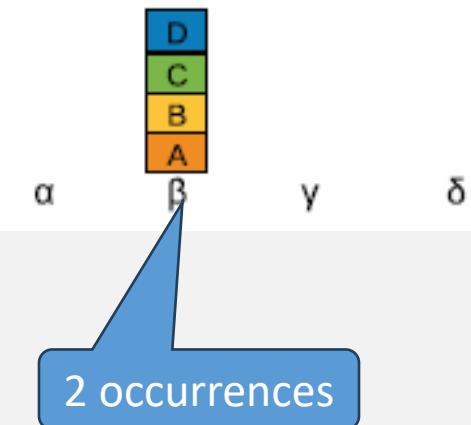


total contribution to  $\beta$  peak:  $(1-d)((1-r)^k)$

$$\beta = (1 - d) (1 - r)^k + \dots$$

Non-repeat

Homozygous



Legend:

kmer:

mutated kmer:

# Duplicated heterozygous K-mers

Duplicated heterozygous case:



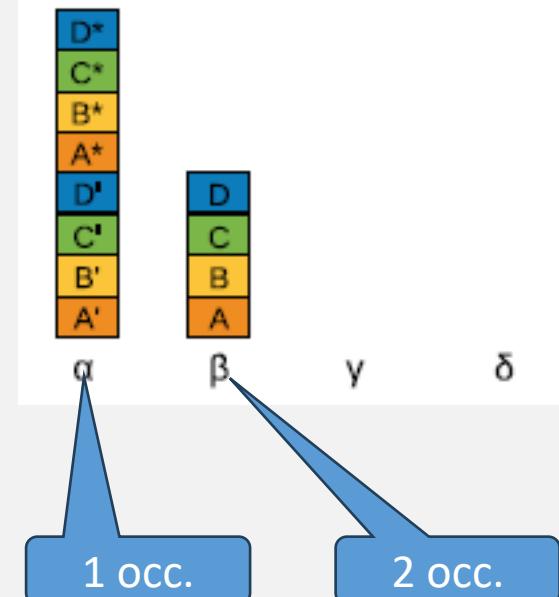
total contribution to  $\alpha$  peak  $2d(1-(1-r)^k)^2$  and  $\beta$  peak  $d(1-(1-r)^k)^2$

$$\alpha = 2 d (1 - (1 - r)^k)^2 + \dots$$

$$\beta = d (1 - (1 - r)^k)^2 + \dots$$

Repeat

Heterozygous



Legend:

kmer: X

mutated kmer: X' X\*

# Duplicated mixed homozygous heterozygous K-mers

Duplicated homozygous and one heterozygous case:



OR



total contribution to  $\alpha$  peak  $2d((1-r)^k)(1-(1-r)^k)$  and  $\gamma$  peak  $2d((1-r)^k)(1-(1-r)^k)$

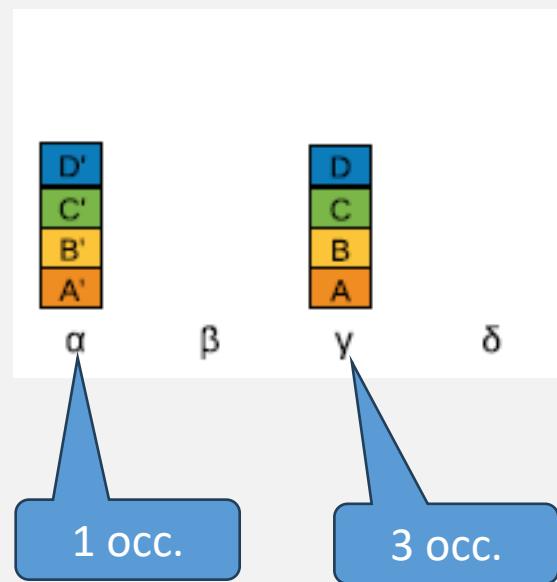
$$\alpha = 2 d (1 - r)^k (1 - (1 - r)^k) + \dots$$

$$\gamma = 2 d (1 - r)^k (1 - (1 - r)^k) + \dots$$

Repeat

Homozygous

Heterozygous



Legend:

kmer:

X

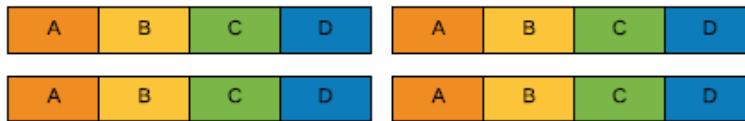
mutated kmer:

X'

X\*

# Duplicated homozygous K-mers

Duplicated homozygous case:

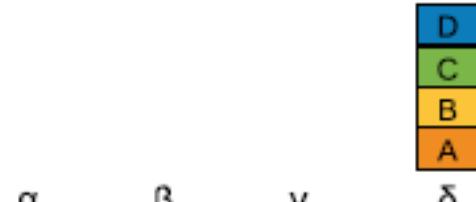


total contribution to  $\delta$  peak:  $d(1-r)^{2k}$

$$\delta = d (1 - r)^{2K} + \dots$$

Repeat

Homozygous



4 occurrences

Legend:

kmer:

X

mutated kmer:

X'

X\*

## In summary

GenomeScope fits the K-mer spectrum by a mixture of four negative binomials spaced at  $\lambda$ ,  $2\lambda$ ,  $3\lambda$ , and  $4\lambda$ :

$$F(X) = G * (\alpha \text{ NB}(X; \lambda, \lambda / \rho) + \beta \text{ NB}(X; 2\lambda, 2\lambda / \rho) + \gamma \text{ NB}(X; 3\lambda, 3\lambda / \rho) + \delta \text{ NB}(X; 4\lambda, 4\lambda / \rho))$$

$G$  is scaling parameter corresponding to genome size

$$\alpha = 2(1-d)(1-(1-r)^K) + 2d(1-(1-r)^K)^2 + 2d(1-r)^K(1-(1-r)^K)$$

$$\beta = (1 - d)(1 - r)^K + d (1 - (1 - r)^K)^2$$

$$\gamma = 2 d (1 - r)^K (1 - (1 - r)^K)$$

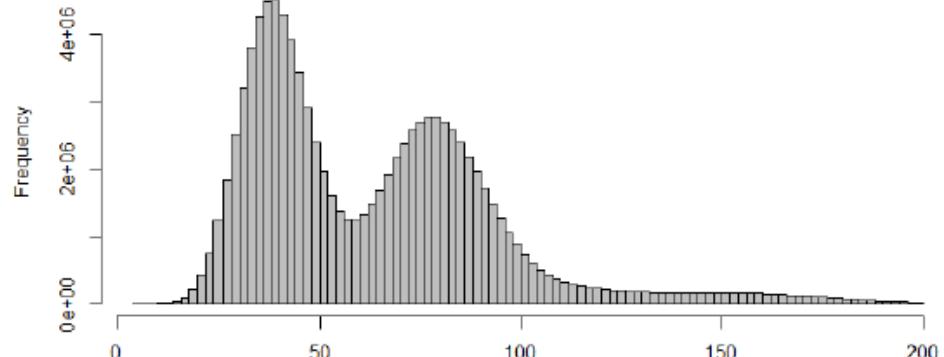
$$\delta = d (1 - r)^{2K}$$

# Example

- Example:  $r=0.02$ ,  $d=0.1$ ,  $\rho=0.5$ .
- $\alpha = 0.6914884$
- $\beta = 0.6007841$
- $\gamma = 0.04524103$
- $\delta = 0.6007841$
- Let the base coverage be  $C=100$ .  
 $L=100$ .  $k=21$ .
- $k$ -mer coverage =  $C(L-k+1)/L = 80$
- Hence,  $\lambda = 80/2 = 40$ .

100x sequencing coverage,  $k=21$

$$0.691 * \text{NB}(40, 80) + 0.397 * \text{NB}(80, 160) + 0.05 * \text{NB}(120, 240) + 0.04 * \text{NB}(160, 320)$$



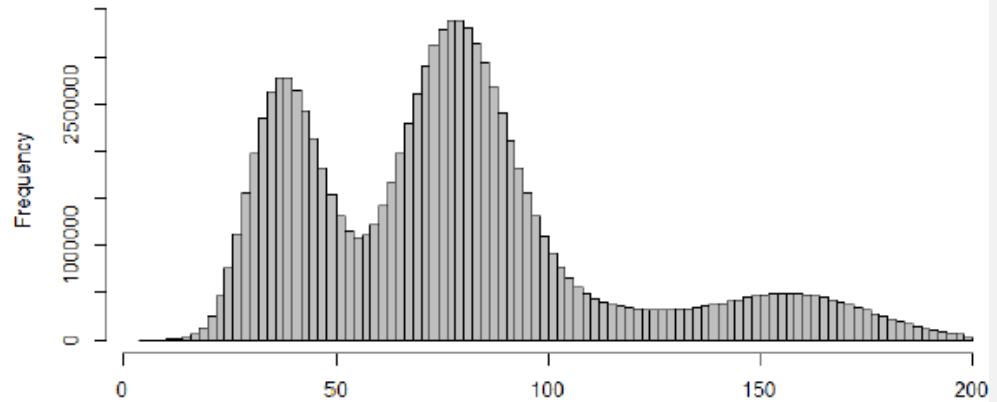
# Example

- Example:  $r=0.01$ ,  $d=0.2$ ,  $\rho=0.5$ .
- $\alpha = 0.3805443$
- $\beta = 0.655023$
- $\gamma = 0.06162746$
- $\delta = 0.1311318$

100x sequencing coverage,  $k=21$

$$0.344 * \text{NB}(40,80) + 0.655 * \text{NB}(80,160) + 0.06 * \text{NB}(120,240) + 0.131 * \text{NB}(160,320)$$

- Let the base coverage be  $C=100$ .  
 $L=100$ .  $k=21$ .
- $k$ -mer coverage =  $C(L-k+1)/L = 80$ .
- Hence,  $\lambda = 80/2 = 40$ .

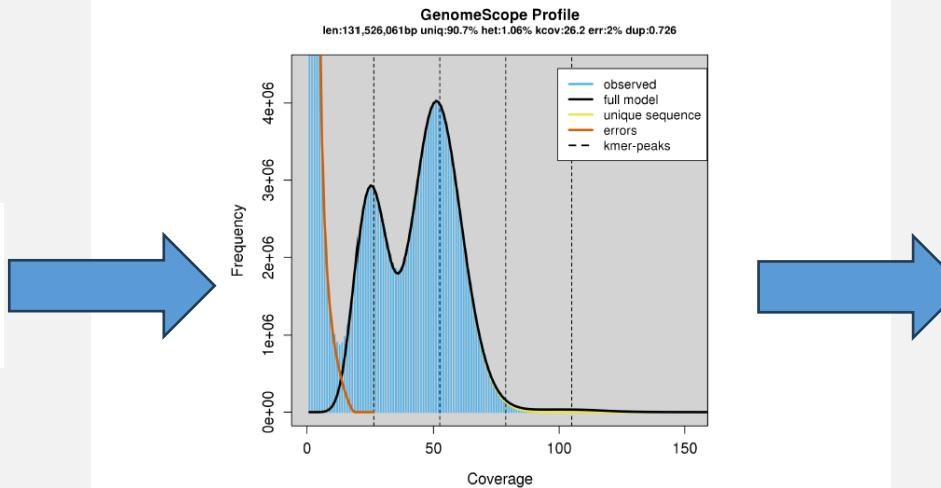


# How genome characteristics are estimated

Perform K-mer counting to get empirical K-mer spectrum

Estimate  $d$ ,  $r$ ,  $\lambda$ ,  $G$  to fit  $F(X)$  to the empirical distribution

Genome size= $G$ .  
Percentage of repeat content= $r$   
Heterozygous rate= $d$   
Coverage of haplotype= $\lambda$



**Supplementary Figure 4. Modeling results on *D. melanogaster*.** The sequencing errors are identified by low coverage  $k$ -mers not explained by the model (shown in orange). This way a single cutoff value does not need to be used nor does it assume a particular shape to the distribution of the error  $k$ -mers. See below for more details on the *D. melanogaster* analysis.

$G=131,526,061$   
 $(1-d)=90.7\%$   
 $r=1.06\%$   
 $\lambda=26.2$

GenomeScope  
modelling  
results on *D.*  
*melanogaster*

Vulture et al., *Bioinformatics* 33(14):2202-2204, 2017

# Estimation of parameters

Initial model

$d = 0, r = 0, \rho = 0.5, \lambda = \text{estKmerCov}, G = \text{estGenomeSize}$

*estKmerCov* is coverage w/ max height in K-mer spectrum, after excluding low-coverage sequencing errors and K-mers with coverage > CovMax

*estGenomeSize* = # of observed K-mers / *estKmerCov*

Iterate

Based on previous model, remove low-coverage error K-mers & K-mer with coverage > CovMax

Minimize least square error to optimize  $d, r, \rho, \lambda$

Set  $G = \# \text{ of K-mers excluding errors} / 2\lambda$

# Limitations of GenomeScope

Require decent sequencing coverage,  $> 25x$

Require low error rate  $\Rightarrow$  cannot support long-read sequencing like ONT

Cannot support polyploid genomes (this is fixed in GenomeScope2.0)

Cannot support genomes having non-uniform copy number of their chromosomes (e.g. leukemia patients)

## Good to read

The GenomeScope paper, esp. its supplementary material

G. W. Vulture et al, “GenomeScope: Fast reference-free genome profiling from short reads”, Bioinformatics 33(14):2202-2204, 2017

<https://doi.org/10.1093%2Fbioinformatics>