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Errors in reads greatly increase 

complexity of genome assembly
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The error-containing de Bruijn graph (b) is much more 
complicated than the error-free graph (c)

L. Zhao et al., “MapReduce for accurate error correction of next-
generation sequencing data”, Bioinformatics 33(23):3844-3851, 2017
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Reads containing low-freq K-mers are 

much more likely to have errors

When a genome is sampled at high 

coverage, any K-mer in the genome can 

be expected to appear in many reads

For any K-mer t, let freq(t) = # of reads 

containing t or its reverse complement 

If freq(t) is small, it is likely that some 

error has occurred in the reads 

containing t
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Exercise 
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Reads containing low-frequency K-mers are likely to 

contain sequencing errors

Reads with errors greatly increase complexity of genome 

assembly

We should discard these reads and not use them in 

genome assembly, no?
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Solid K-mers

A K-mer t is said to be solid wrt a set of sequencing 
reads R if freq(t) > M, where M is a given threshold

Solid K-mers are considered reliable due to their high 

frequency within the set of sequencing reads
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Example 
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Read set, R

AAGTGAA
 AGTGCAG
  GTGAAGT
   TGAAGTG

K-mer t is solid if freq(t) > M

E.g., M = 2, the solid K-mers are:

AAGT, ACTT, AGTG

CACT, TGAA, TTCA
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The read error correction problem
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Given a set of reads R

Let T = the set of all correct K-mers in the genome

T is often approximated by solid K-mers in R in practice

A read R is a T-string if every K-mer in R is in T

Objective: Convert every read R  R to R’ by the 

minimum # of mutations such that R’ is a T-string



Wong Limsoon, CS4330, AY2025/26

Exercise  

Read set, R

AAGTGAA
 AGTGCAG
  GTGAAGT
   TGAAGTG

T = solid K-mers, freq>1

AAGT, ACTT, AGTG

CACT, TGAA, TTCA,

CTTC, GAAG, GTGA, 
TCAC, TGCA
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Which reads in R are T-

strings?

Can you convert the 
non T-string reads to T-

strings using min # of 

mutations?
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Exercise  

Read set, R

AAGTGAA
 AGTGCAG
  GTGAAGT
   TGAAGTG

T = solid K-mers, freq>2

AAGT, ACTT, AGTG

CACT, TGAA, TTCA
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Which reads in R are T-

strings?

Can you convert the 
non T-string reads to T-

strings using min # of 

mutations?



Wong Limsoon, CS4330, AY2025/26

Recursive spectra alignment
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For a read R, find

 min t T dist(|R|,t) where dist(i,t) =

Assume no indel error in first k bases of R

Let (x,y) = 0 if x = y and (x,y) = 1 if x  y 

Base case, i = K:

Recurrence:

dist(K,t) =
Hamming(R[1..K],t) if t  T

     otherwise

minimum edit distance betw R[1..i] and 
any T-string that ends at K-mer t

min b {A,C,G,T} dist(i – 1, b • t[1..K-1]) + (R[i],t[K])

dist(i – 1, t) + 1

min b {A,C,G,T} dist(i, b • t[1..K-1]) + 1

dist(i,t) = min

match

delete

insert

Potential infinite loop! Chaisson et al., Bioinformatics 20(13):2067-2074, 2004

b • t[1..K-1]) 
must be solid K-mer
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The “dependency graph” is cyclic but 

non-negative
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R = AGTGCAG

T = { AAGT, AGTG, 

 GAAG, GTGA, 

 TGAA, TGCA }

(mis)match = slant edge

delete = vertical edge

insert = horizontal edge

R[1..4] = AGTG

R[5] = C

R[6] = A

R[7] = G
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Spectra alignment via “shortest path” of 

dependency graph
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Key lemma

dist(i,t) = length of shortest path from vs to (i,t)

Construct dependency graph; find shortest path from 
vs to (|R|,t) for some t  T

The dependency graph has O(|R| |T|) nodes and edges

Complexity of graph construction = O(|R| |T|) 

Complexity of shortest path finding = O(|R| |T|) 
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Dijkstra’s shortest path algorithm
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Source: Wikipedia
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Example 
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R = AGTGCAG

T = { AAGT, AGTG, 

 GAAG, GTGA, 

 TGAA, TGCA }

Min path length = 1

Corrected read = 
AGTGAAG

R[1..4] = AGTG

R[5] = C

R[6] = A

R[7] = G
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Exercise 
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Discuss the good, 

the bad, & the 

ugly of read error 

correction by 

spectra alignment

R[1..4] = AGTG

R[5] = C

R[6] = A

R[7] = G
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Many modern 

& popular read 

error 

correction 

tools rely on 

K-mer 

counting & 

Bloom filter
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https://pubmed.ncbi.nlm.nih.gov/21114842 

https://pubmed.ncbi.nlm.nih.gov/23202746 

https://pubmed.ncbi.nlm.nih.gov/24451628 

https://pubmed.ncbi.nlm.nih.gov/25398208 

Check out Lighter 
especially. It does not 

do K-mer counting. 

https://pubmed.ncbi.nlm.nih.gov/21114842
https://pubmed.ncbi.nlm.nih.gov/23202746
https://pubmed.ncbi.nlm.nih.gov/24451628
https://pubmed.ncbi.nlm.nih.gov/25398208
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# of solid K-mers in 

human genome
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~4.2 billion K-mers have freq = 1; assumed error K-mers

~2.8 billion K-mers have freq > 1; assumed solid K-mers

Optimal size of Bloom filter is n = -2.08 m (ln ) bits

n = -2.08 (2.8 x 109) (ln ) 

    40 x 109 bits  5 GB at  = 0.01%

    54 x 109 bits  6.7 GB at  = 0.001%

Can use Bloom filter to keep solid K-mers for correcting 

read errors for human genome

n  = size of Bloom filter
m = # of elements inserted
   = false positive rate

~420k error K-
mers will test as 
solid K-mers

~42k error K-
mers will test as 
solid K-mers



Wong Limsoon, CS4330, AY2025/26

A simple approach to Bloom filter-based 
read error correction
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Keep solid K-mers in a Bloom filter H

For a read R, mark all positions R[i.. i + K – 1] as solid if 

R[i .. i + K – 1] is found in H

If a position R[i] is not solid, replace R[i] by b  {A,C,G,T} 

provided some of the following is found in H:

b • R[i + 1 .. i + K - 1]

R[i – K .. i – 1] • b

R[i – j .. i – 1] • b • R[i + 1 .. i + K – j – 1], where 1 j  K

If more non-solid positions, repeat the last step
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Example 
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R  = AGTGCAG

T ={AAGT, ACTT,

 AGTG, CACT,

 TGAA, TTCA }

AGTG C AG

Found in T,
solid

TG A A Found in T

AGTG A AG

Replace C by A

Found in T,
solid

This last G not solid.
Leave it alone?

Use a T at lower threshold?
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Exercise 
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Sometimes different 

“b” can be substituted, 

and hits found in H

How do you select  

the more likely one?
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Reminder:

Low-frequency 

K-mers may 

not be errors

24

Zhao et al., Mining statistically-solid k-mers for accurate 
NGS error correction, BMC Genomics 19(S10):912, 2018
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Problem 
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At freq > 1

Error K-mer TGCA  T

At freq > 2

Valid K-mer GAAG  T

How to make T contain 

less error K-mers and 

more valid K-mers?
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ZEC approach 
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N(t) = { t’ | t’ is a K-mer in R, Hamming(t,t’)  1 }

C(t) = canonicalize N(t)

 = mean of { freq(t’) | t’  C(t) }

 = std dev of { freq(t’) | t’  C(t) }

Z(t) = [ freq(t) -  ] / 

 > 0 is some threshold

Define t as solid if and only if freq(t) is large or Z(t) > 

Zhao et al., BMC Genomics 19(S10):912, 2018
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State of the art 

in read error 

correction 

performance
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Zhao et al., BMC Genomics 19(S10):912, 2018

Btw, 
MEC is me ☺
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Exercise 
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Why does ZEC work 
so well?
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Exercise 

31

ZEC requires computing  
and  for each t in R

Freq of every K-mer in R 

must be kept in memory

This requires terabytes of 

memory!

How does ZEC solve this 

problem?
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Good to read

32

[Spectra alignment] M. Chaisson et al, “Fragment assembly 

with short reads”, Bioinformatics 20(13):2067-2074, 

2004. https://pubmed.ncbi.nlm.nih.gov/15059830/ 

[ZEC] L. Zhao et al., “Mining statistically-solid k-mers for 

accurate NGS error correction”, BMC Genomics 

19(S10):912, 2018. https://doi.org/10.1186/s12864-018-

5272-y 

[Lighter] L. Song et al., “Lighter: Fast and memory-efficient 

sequencing error correction without counting”, Genome 

Biology 15(11):509, 2014. 

https://pubmed.ncbi.nlm.nih.gov/25398208/ 

https://pubmed.ncbi.nlm.nih.gov/15059830/
https://doi.org/10.1186/s12864-018-5272-y
https://doi.org/10.1186/s12864-018-5272-y
https://doi.org/10.1186/s12864-018-5272-y
https://doi.org/10.1186/s12864-018-5272-y
https://doi.org/10.1186/s12864-018-5272-y
https://doi.org/10.1186/s12864-018-5272-y
https://doi.org/10.1186/s12864-018-5272-y
https://pubmed.ncbi.nlm.nih.gov/25398208/
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Good to read
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[Musket] Y. Liu et al., “Musket: A multistage k-mer 

spectrum-based error corrector for Illumina sequence 

data”, Bioinformatics 29(3):308-315, 2013. 

https://pubmed.ncbi.nlm.nih.gov/23202746/ 

[MEC] L. Zhao et al., “MapReduce for accurate error 

correction of next-generation sequencing data”, 

Bioinformatics 33(23):3844-3851, 2017. 

https://pubmed.ncbi.nlm.nih.gov/28205674/ 

https://pubmed.ncbi.nlm.nih.gov/23202746/
https://pubmed.ncbi.nlm.nih.gov/28205674/
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