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Errors in reads greatly increase

complexity of genome assembly

(a) (b)
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Fig. 1 An example of NGS data jand its de Bruijn graph. The short stretches of sequences in (a) are the reads generated from an NGS platform, while the long se-
quence is the reference. The reference is often unknown but, for ease of illustration, it is shown here to demonstrate substitutions (coloured in orange), insertions
(green) or deletions (light blue) errors. There is no *-" in the real-life reference and sequenced reads, but it is shown here also for better understanding. (b) The de
Bruijn graph constructed from all the short sequences in (a) with a kmer size of 4. (c) is the simplified error-corrected version of the de Bruijn graph of (b). The
numbers along the edges represent their multiplicities

The error-containing de Bruijn graph (b) is much more
complicated than the error-free graph (c)

L. Zhao et al., “MapReduce for accurate error correction of next-
generation sequencing data”, Bioinformatics 33(23):3844-3851, 2017
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Reads containing low-freq K-mers are

much more likely to have errors

When a genome is sampled at high
coverage, any K-mer in the genome can
be expected to appear in many reads

For any K-mer t, let freq(t) = # of reads

containing t or its reverse complement

SNSRI ey & AAGTEAA
If freq(t) is small, it is likely that some AGTECAG
error has occurred in the reads GTEAAGT
containing t

TGAAGTG

Wong Limsoon, CS4330, AY2025/26



Exercise

Reads containing low-frequency K-mers are likely to
contain sequencing errors

Reads with errors greatly increase complexity of genome
assembly

We should discard these reads and not use them in
genome assembly, no?

\ i
 ~
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A K-mer t is said to be solid wrt a set of sequencing
reads 2 if freq(t) > M, where M is a given threshold

Solid K-mers are considered reliable due to their high
frequency within the set of sequencing reads
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Read set, 2
AAGTGAA
AGTGCAG
GTGAAGT
TGAAGTG

K-mer tis solid if freq(t) > M

E.g., M =2, the solid K-mers are:
AAGT, ACTT, AGTG
CACT, TGAA, TTCA

Wong Limsoon , CS4330, , AY2025/26

CACT
CTTC
CTGC
GAAG
GCAC
GCAG
GTGA
GTGC
TCAC
TGAA
TGCA
TTCA
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The read error correction problem

Given a set of reads 2

Let 7 = the set of all correct K-mers in the genome
7 is often approximated by solid K-mers in 2 in practice

Aread R is a 7-string if every K-merin Ris in 7

Objective: Convert every read R € 2to R’ by the
minimum # of mutations such that R’ is a 7-string



Exercise

Read set, 2
AAGTGAA
AGTG AG
GTGAAGT
TGAAGTG

7 = solid K-mers, freg>1
AAGT, ACTT, AGTG
CACT, TGAA, TTCA,

CTTC, GAAG, GTGA,
TCAC, TGCA

Which reads in 2 are 7-
strings?

Can you convert the
non 7-string reads to 7-

strings using min # of
mutations?



Exercise

Read set, 2
AAGTGAA
AGTG AG
GTGAAGT
TGAAGTG

7 = solid K-mers, freg>2
AAGT, ACTT, AGTG
CACT, TGAA, TTCA

Which reads in 2 are 7-
strings?

Can you convert the
non 7-string reads to 7-

strings using min # of
mutations?
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Recursive spectra alignment

For a read R, find . L .
minimum edit distance betw R[1..i] and

min i ,dist(|R|,t) where dist(i,t) = 5y 2.string that ends at K-mer t

Assume no indel error in first k bases of R
Let p(x,y) =0ifx=yand p(x,y) =1ifxzy

b e t[1..K-1])
must be solid K-mer

Base case, i = K:
dist(K,t) = {Hamming(R[m_K],t) ifte 7

0 otherwise
Recurrence: _
min ,_ c e dist(i — 1,(b e t{1..K-1]) + p(RILK])  match
dist(i,t) = min 4 dist(i—1,t) + 1 delete
L mMin ,. (ac ey dist(i,|b o t[1..K-1]) + 1 insert

Wong Limsoon, CS4330, AY2025/26 Potential infinite loop! Chaisson et al., Bioinformatics 20(13):2067-2074, 2004 11



The “dependency graph” is cyclic but

non-negative

Recurrence:

R — AGTG CAG Min p ac.emn distii — 1, b e t{1..K-1]) + p(ROLUK]D)  match
dist(i,t) = min 4 dist(i—1, t) + 1 delete
min be {A.C,G T} diSt(i, b * t[1K—1]) + 1 insert

T = { AAGT, AGTG,
GAAG, GTGA,
TGAA, TGCA }

R[14] = AGTG I (4,AAGT) I I (4,AGTG) | I (4,6TGA) I (4,TGAA) I I (4,GAAG) I I (4,TGCA) I

R[S] — C (5,AAGT) (5,AGTG) (5,GTGA) (5,TGAA) tS,GAAi}I IﬁGCA;]I

(m|S)matCh = Slant edge R[6] = A (6,AAGT) (6,AGTG) (6,6TGA) (6,TGAA) (6,GAAG) {G,TG?]I

delete = vertical edge
insert = hOI'iZOhta| edge R[7] - G (7,AAGT) (7,AGTG) (7,6TGA) (7,7GAA) (7,GAAG) I I (7,TGCA) I

Wong Limsoon, CS4330, AY2025/26 12




Spectra alignment via “shortest path” of

dependency graph

Key lemma
dist(i,t) = length of shortest path from v to (i,t)

-.Construct dependency graph; find shortest path from
vq to (|R],t) forsome t € 7

The dependency graph has O(|R| |7]) nodes and edges
-.Complexity of graph construction = O(|R| |7])
-.Complexity of shortest path finding = O(|R| |7])

Wong Limsoon, CS4330, AY2025/26 13



Dijkstra’s shortest path algorithm

1 function Dijkstra(Graph, source):

2

3 for each vertex v in Graph.Vertices:

4 dist[v] « INFINITY T —

5 prev[v] <« UNDEFINED o 5

6 add v to Q Ay

7 dist[source] « o /

8 r r o

9 while Q is not empty: gL

10 u « vertex in Q with min dist[u] Pl Lk
11 remove u from Q A-m—" "iﬁ P ' "
12 ] o =

13 for each neighbor v of u still in Q: o - 1
14 alt « dist[u] + Graph.Edges(u, v) ; 4 L
15 if alt < dist[v]: 4 ! ' -

16 dist[v] « alt 1yl L

17 prev[v] « u e - %

18
19 return dist[], prev[] Source: Wikipedia

Wong Limsoon, CS4330, AY2025/26 14



Wong Limsool

R = AGTGCAG

T = { AAGT, AGTG,
GAAG, GTGA,
TGAA, TGCA }

Min path length = 1

Corrected read =
AGTGAAG

n, CS4330, AY2025/26

Recurrence:

dist(i,t) = min {

R[1..4] = AGTG

R[5]=C

R[6] = A

R[7] =G

min pc acen dist(i—1, b e t{1..K-1]) + p(RILUK])  match
dist(i— 1, t) + 1 delete
min be {A.C,G T} diSt(i, b . t[1K—1]) + 1 insert

I (4,AAGT) I I (4,AGTG)

I (4,6TGA) I (4,TGAA) I I (4,GAAG) I I (4,TGCA) I

(5,6TGA) (5,TGAA) tS,GAAi}I Iﬁem;]l

(6,6TGA) (6,3GAA) (6,GAAG) (6,TGCA) I

(5,AAGT) (5,AGTG)
(6,AAGT) (6,AGTG)
(7,AAGT) (7,AGTG)

{?,Gmm;;:m} (7,GAAG) | | (7.7GCA) |

15



Exercise

Discuss the good,
the bad, & the
ugly of read error
correction by
spectra alignment

Wong Limsoon, CS4330, AY2025/26

Recurrence:

R[1..4] = AGTG

R[5]=C

R[6] = A

R[7]=G

Min e acgmy dist(i—1, b e t[1..K-1]) + p(ROLUK])  match
dist(i,t) = min 4 dist(i—1,t) + 1 delete
min be {A.C.G.T} d|St(|, be t[1 K'1]) + 1 insert

I {A,GT] I I (4,AGTG) I (4,6TGA) I I (4,TGAA) I I (4,GAAG) I I (4,TGCA) I

(5,AAGT) (5,AGTG) (5,GTGA) (5,TGAA) (5,GAAG) I I (5,TGCA) I
{G,MGT] IG,RGTG} {G,GTGR) {5, AA]] |:6,GAAG] {S,TGCA] I
(7,8AGT) (7,AGTG) E (7,GTGA) %:AA) (7,GAAG) | | (7,7GCA) |

£
Q’ !
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Many modern
& popular read
error
correction

tools rely on
K-mer
counting &
Bloom filter

Wong Limsoon, CS4330, AY2025/26

=

[}

(o]11- (-l https://pubmed.ncbi.nIm.nih.gov/21114842
* Description: Quake is a k-mer based error correction tool that
uses a combination of read overlapping and k-mer counting to
correct sequencing errors.
. Musket: ://pubmed.ncbi.nlm.nih.gov/23202746

* Description: Musket is a k-mer based error correction tool that
uses a probabilistic model to correct sequencing errors in
short-read data.

. Bless: ://pubmed.ncbi.nlm.nih.gov/24451628

* Description: Bless is a k-mer based error correction tool that
employs a Bloom filter to correct errors in lllumina sequencing
reads.

* Description: Lighter is a k-mer based error correction tool
designed for large-scale sequencing data. [t uses a

lightweight algorithm for fast error correction.

Check out Lighter

especially. It does not
do K-mer counting.

18
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n =size of Bloom filter

# of solid K-mers in m = # of elements inserted

human genome ¢ =false positive rate

~4 .2 billion K-mers have freq = 1; assumed error K-mers

~2.8 billion K-mers have freq > 1; assumed solid K-mers

Optimahsize of Bloom filter is n = -2.08 m (In ¢€) bits
=-2.08 (2.8 x 10°) (In ¢) ~420k error K-

mers will test as

~ 40 X 109 bits ~ 5 GB at ¢ = 001% solid K-mers

~42k error K-

mers will test as

~ 54 x 10° bits ~ 6.7 GB at ¢ = 0.001% solid K-mers

Can use Bloom filter to keep solid K-mers for correcting
read errors for human genome

19



A simple approach to Bloom filter-based

read error correction

Keep solid K-mers in a Bloom filter H

For a read R, mark all positions R]i.. i + K- 1] as solid if
R[i.. i+ K-1]isfoundin H

If a position R[i] is not solid, replace R[i] by b € {A,C,G, T}
provided some of the following is found in H:

beR[i+1.. i+K-1]

Ri—-K..i—1]eb

Rli—j..i—1]ebeR[i+1. i+K-j—1], where 1<j<K

If more non-solid positions, repeat the last step

20
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Found in 7,

solid
R = AGTGCAG —
AGTG C AG
7 ={AAGT, ACTT, TG AA | Foundin7
AGTG, CACT, ‘ Replace C by A
TGAA, TTCA }
AEE e This last G not solid
‘_'_’ Leave it alone? .
Found in 7, Use a 7 at lower threshold?

solid

21



Wong Limsool

Exercise

Sometimes different
“b” can be substituted,
and hits found in H

How do you select
the more likely one?

n, CS4330, AY2025/26

A simple approach to Bloom filter-based

read error correction

Keep solid K-mers in a Bloom filter H

For a read R, mark all positions RJi.. i + K- 1] as solid if
R[i..i+ K—1]is foundin H

If a position R]i] is not solid, replace R[i] by b € {A,C,G,T}

provided some of the following is found in H:
beR[i+1.i+K-1]

Rli-K..i—1]eb
Rli—j..i—1]ebeR[i+1.i+K-j—1], where 1<j<K

If more non-solid positions, repeat the last step

Waong Limsoon, CS4330, AY202%24
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Reminder:
Low-frequency

K-mers may
not be errors

Wong Limsoon, CS4330, AY2025/26
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Fig. 3 Arelation between k-mer frequency and GC-content. The bottom left panel shows the smoothed scatter plot between k-mer frequency and
GC-content, the top left is the distribution of k-mer frequency, and the bottom right is the distribution of GC-content. It is clear that GC-content
k-mers have relatively low frequency. The data shown in this example is obtained from the H. chromosome 14 with k-mer size of 25

Density
|

K-mer frequency

Fig. 1 Frequency distribution of both error-free and error-containing k-mers for a NGS data set. The frequency distribution of erroneous k-mers is
represented by the dash orange line, while the distribution of the correct ones is shown as the dash sky-blue line. The solid black line is the
distribution of all the k-mers. The a-labeled area is the propertion of correct k-mers having frequency less than fo, while the g-labeled area is the
proportion of erroneous k-mers having frequency greater than f;

Zhao et al., Mining statistically-solid k-mers for accurate
NGS error correction, BMC Genomics 19(510):912, 2018
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Problem

At freq > 1
Error K-mer TGCA € 7

At freq > 2
Valid K-mer GAAG ¢ 7

How to make 7 contain
less error K-mers and
more valid K-mers?

Read set, 2
AAGTGAA
AGTG AG
GTGAAGT
TGAAGTG

7 = solid K-mers, freg>1
AAGT, ACTT, AGTG
CACT, TGAA, TTCA,

CTTC, GAAG, GTGA,
TCAC, TGCA

7 = solid K-mers, freq>2
AAGT, ACTT, AGTG
CACT, TGAA, TTCA

CACT
CTTC
CTGC
GAAG
GCAC
GCAG
GTGA
GTGC
TCAC
TGAA
TGCA
TTCA

w NP W N RN R R, N PR, N WW W W
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ZEC approach

N(t) ={t |t is a K-merin 2 Hamming(t,t') <1 }
C(t) = canonicalize N(t)

u=mean of { freq(t’) | t' € C(1) }

c = std dev of { freq(t’) | ' € C(t) }
Z(t)=[freq(t)-p]/o

T > 0 Is some threshold

Define t as solid if and only if freq(t) is large or Z(t) > =

Wong Limsoon, CS4330, AY2025/26 Zhao et al., BMC Genomics 19(510):912, 2018 26



State of the art
In read error

correction

performance

Btw,

Tabde 1 The data sets that are used for evaluating the perfformance of error comection models

Daraser  Genome name Gemome size (bp)  Emorrare ) Read length bp)  Cowerage  Numberofreads  Insan lengrth s syrhesic
F1 S aueus 2821361 128 14 453 x 1254104 180 Mo
Rz Fl.sphae'cides 4603110 108 14 45.0x 2,050,858 180 Mo
R3 H.cdhwomosome 14 BE 218266 052 14 41.8x 35,504,800 155 Mo
R4 B. impatiens 249,185,056 186 124 150Ex 3031185594 400 Mo
51 H.cdhwomosome 14 BE 218266 097 14 41.8x 35,504,800 180 Yas
B. impatiens 249,185,056 198 124 1308x 3031185594 400 Yas

Metrics that are considered include gain, recall, precision
and per base error rate (pber). Gain is defined as (TP —
FP /(TP 4+ FN), recall is TR/(TP + FN), precision is
TP/(TP + FF) and pber is N®/N, where TP stands for
the number of corrected bases that are truly erroneous
bases, FP represents the number of corrected bases that
are not sequencing errors intrinsically, FN is the number
of erroneous bases that remain untouched, N© is the num-
ber of erroneous bases and N is the total number of bases.
Among these metrics, gain is the most informative.

Wong Limsoon, CS4330, AY2025/26

All experiments are carried out on a cluster having eight
Intel Xeon E7 CPUs and 1Th RAM. Each CPU has eight
£Ores.,

sealed. Since locating each k-mer in a bit vector is O(1)
pertaining to time complexity by using hash, this algo-
rithm is pretty fast. For instance, based on our computing
power, it only takes 387 s to construct the bit vectors and
caleulate the z-scores of all the k-mers of R4—the largest
data set.

Table 2 Errcr-correction performance comparison between ZEC,
Lighter, Racer, BLES52, Musket, BFC, 5GA and MEC

MECisme © = =

Dara Coxmecion Gain Reca Prec Phern)
1 JEC 0008 0512 D56 ooz
Lighinay D39 0845 Doad &3
Racar D760 0827 L] 050
BLESSZ2 oag [ [ ] D&50 08y
Miuskea D459 0528 DE30 0448
SGA D746 0815 0922 o0z
BFC 0753 817 Doy 05
————PME 0509 g1 ke =] oo
0.584 05663 DE34 053y
Lisghar 0226 0329 DFaz 1.076
Racar 0354 0450 DE3Q 07 ED
BLESSZ2 0318 3405 DEDG 0850
Miuskea D265 0364 D786 0oL
SGA 0331 0423 DE22 0843
BFC 0306 340D DEN 0853
MEC 0570 0531 ooz 0541
ic] JEC 0.B02 0523 DER4 0oE7
Lisghar D445 0764 D706 0255
Racar 0552 0814 D7a4 0155
BLESSZ2 o130 0541 D556 0438
Miuskea 0533 Q807 0749 ozmn
SGA D567 0818 07as osd
BFC 0603 0833 0783 076
MEC 0788 08537 D530 oz
R4 JEC 0.746 0833 D805 o3z
Lisghar D26 QADE 0591 0588
Racar 0313 0541 0703 0.4E4
BLESSZ2 -0.517 QO1E D3 nse2
Miuskea 0502 0560 D.EOF 03
SGA 0542 0590 DE23 02E9
BFC oss QA7 D636 0507
MEC 0705 03806 DEAQ o2m
| JEC 0818 0535 Doaz 0055
Lisghar o7 0851 D934 0130
Racar D.B82 2916 DoG4 ooy
BLESSZ2 D634 074D DE?S 0243
Miuskea DB19 a7 D944 oimn
SGA DE10 0865 D540 oz
BFC DBS6 503 D951 0ol
MEC DEs9 2916 Doaz 0o0&3
52 JEC 0.B53 0894 D956 s
Lisghar D058 0329 D548 oE:
Racar D68 QADE D630 030
BLESSZ2 o3n asoe o7 0543
Miuskea 0232 0453 D672 0636
SGA Duo7s 0343 0562 nse2
BFC 0751 0827 0520 s
MEC D49 Q887 D959 oz

The numbers in bold face are the: best gain achiewed for each data set

27



msoon, CS4330, AY2025/26

Exercise

ZEC approach

N(t) ={t|t'is a K-merin 2 Hamming(t,t') <1}
C(t) = canonicalize N(t)

Why Cil(z)eS ZEC WOI’k u=mean of { freq(t’) | t' € C(t) }

SO Well o = std dev of { freq(t) [t e C(t) }
Z(t)=[freq(t)-pn]l/o
t > 0 is some threshold

Define t as solid if and only if freq(t) is large or Z(t) > =

&,
K
[ e e



Exercise

ZEC requires computing
and c foreachtin 2

Freq of every K-merin 2
must be kept in memory

This requires terabytes of
memory!

How does ZEC solve this
problem?

ZEC approach

N(t)={t" | t"isa K-merin 2
Hamming(t,t’) <1}

C(t) = canonicalize N(t)
p =meanof {freq(t’) | t" € C(t) }

o = std dev of { freq(t’) | t’ € C(t) }

Z(t) = [freq(t)-pl/o
T >0issome threshold

Define t as solid if and only if

freq(t) is large or Z(t) >

31



Good to read

[Spectra alignment] M. Chaisson et al, “Fragment assembly
with short reads”, Bioinformatics 20(13):2067-2074,
2004

[zec] L. Zhao et al., “Mining statistically-solid k-mers for
accurate NGS error correction”, BMC Genomics
19(S10):912, 2018.

[Lighter] L. Song et al., “Lighter: Fast and memory-efficient
sequencing error correction without counting”, Genome
Biology 15(11):509, 2014

Wong Limsoon, CS4330, AY2025/26 32
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Good to read

[Musket] Y. Liu et al., “Musket: A multistage k-mer
spectrum-based error corrector for lllumina sequence
data”, Bioinformatics 29(3):308-315, 2013

IMEC] L. Zhao et al., “MapReduce for accurate error
correction of next-generation sequencing data’,
Bioinformatics 33(23):3844-3851, 2017.

Wong Limsoon, CS4330, AY2025/26
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