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Why genome assembly is needed
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Current sequencing 

technologies can’t read the 

sequence of an entire 

genome in one go

Copies of the genome are 

broken into short fragments 

which are sequenced to 

produce reads

These reads have to be 

assembled to reconstruct 

the genome

Image source:  Jared Simpson
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De novo genome assembly process
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Reads are error corrected

Reads are assembled into contigs by read overlaps

Contigs are assembled into scaffolds by pair-end 

linkage

Scaffolds are joined into chromosomes in a gap filling & 

finishing process, which can involve additional 

sequencing and technologies
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Contigs and scaffolds
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Image credit: JGI MycoCosm
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The genome assembly problem
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Input

A collection of reads R = { R1, …, Rm } generated by a 

sequencing expt from a genome

Output

The genome that generated R 
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Many genome assembly tools are based 
on de Bruijn graph
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Node-centric de Bruijn graph
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Given string x and index 1  i  |x|

pre(x, i) = length-i prefix of x

suf(x, i) = length-i suffix of x

A set of strings R induces a node-centric de Bruijn graph 

DBK,nc(R) where:

x is a node of DBK,nc(R) iff x is a K-mer in R 

(x → y) is an edge of DBK,nc(R) iff suf(x, K – 1) = pre(y, K – 1)
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Edge-centric de Bruijn graph
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Given string x and index 1  i  |x|

x • y   = x concatenated with y

x K y = x[1.. |x| − K] • y 

A set of strings R induces an edge-centric de Bruijn graph 

DBK(R) where:

x in a node of DBK(R) iff x is a K-mer in R 

(x → y) is an edge of DBK(R) iff 

   suf(x, K – 1) = pre(y, K – 1) and 

   x K – 1 y is a substring of an R in R 

Convention: 
x K y K z = (x K y) K z 
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Soundness
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A path x1 → x2 → … → xn in DBK(R) can be interpreted as 

a string x1 
K – 1 x2 

K – 1 … K – 1 xn

Suppose 

R is a set of error-free reads of a repeat-free genome 

Each K-mer in R occurs only once in the genome

Then

Every path in DBK(R) is a substring of the genome

So, edge-centric de Bruijn graph is used by default

A path x1 → x2 → … → xn of a graph 
is a sequence of distinct nodes and 
edges (connecting these nodes) from 
the graph
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Exercise 
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Prove this soundness claim 
on the edge-centric de 
Bruijn graph

Does the node-centric de 
Bruijn graph enjoy a similar 
soundness claim?
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Exercise 

Suppose 

R is a set of error-free reads of a repeat-free genome 

Each K-mer in R occurs only once in the genome

Each base in the genome is covered by many reads in R

Prove that, with high probability: 

Each chromosome of the genome = a Eulerian path of a 
connected component of DBK(R)

13

Image credit: NHGRI

A Eulerian path of a graph passes thru each edge once
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Connected components

Connected components of a graph are easy to extract 

Depth-first search does the job in O(|V| + |E|) time

So, can extract connected components of DBK(R) and 

obtain Eulerian paths from them

Right?

17
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Eulerian path
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A Eulerian path in a connected graph visits every edge 

exactly once

An undirected connected graph has a Eulerian path iff

Zero or two nodes have odd degree

All other nodes have even degree

A directed connected graph has a Eulerian path iff

At most one node has in-degree – out-degree = 1

At most one node has outdegree – indegree = 1

All other nodes have in-degree = out-degree
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Exercise
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Does a Eulerian path 

exist for the “Seven 

bridges of Königsberg”?

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg



Wong Limsoon, CS4330, AY2025/26

Eulerian path finding
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A Eulerian path in a connected graph V, E can be found 

if it exists, or determined to be non-existent, in O(V + E) 

time and O(V + E) space

Hierholzer’s algorithm is a commonly used algorithm for 

finding Eulerian path
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Carl Hierholzer’s algorithm
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https://algorithms.discrete.ma.tum.de/graph-
algorithms/hierholzer/index_en.html 

The basic idea of Hierholzer's algorithm is the stepwise construction of the Eulerian cycle by 
connecting disjunctive circles. It starts with a random node and then follows an arbitrary unvisited 
edge to a neighbour. This step is repeated until one returns to the starting node. This yields a first 
circle in the graph. If this circle covers all nodes it is an Eulerian cycle and the algorithm is 
finished. Otherwise, one chooses another node among the cycles' nodes with unvisited edges and 
constructs another circle, called subtour. By choice of edges in the construction the new circle 
does not contain any edge of the first circle, both are disjunct. However, both circles must 
intersect in at least one node by choice of the starting node of the second circle. Therefore one 
can represent both circles as one new circle. To do so, one iterates the nodes of the first circle and 
replaces the subtour's starting node by the complete node sequence of the subtour. Thus, one 
integrates additional circles into the first circle. If the extended cycle does include all edges the 
algorithm is finished. Otherwise, we can find another cycle to include.

In the case of an undirected, semi-Eulerian graph the algorithm starts with one of the two nodes 
with odd degree. In the directed case with the node with one additional outgoing edge. One of the 
subtours to be found will then not form a cycle, instead it will also be a path. When integrating this 
"subtour" into the circle one has to make sure that start and end node of this path also form start 
and end of the complete Eulerian path.

https://algorithms.discrete.ma.tum.de/graph-algorithms/hierholzer/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/hierholzer/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/hierholzer/index_en.html
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Examples

23

If this part is encountered, save it 
first.  Repeat traversal from the start 
node until all edges are visited. 
Finally, add the saved path to the 
end of the circle.

A subtour a →  → a can be 
integrated into the main tour  → a 
→  by inserting it as  → a →  → 
a → 
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Assembling a repeat-free homozygous 

diploid single-chromosome genome
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Suppose R is a set of error-free reads that completely 

covers a repeat-free homozygous diploid single-

chromosome genome and nothing else

For some appropriately chosen K, with high probability, 
any Eulerian path of DBK(R) is an accurate and complete 

reconstruction of the genome
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R = { ACG, CATC, CGC, GCA }

DB2(R): 

Eulerian path: AC → CG → GC → CA → AT → TC

Genome:  ACGCATC

Example 

25
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But when there is sequencing error …

26

Genome = ACGCATC

R = { ACG, CATC, CGC, GCA, GCT }

DB2(R): 

Eulerian path?

Does not exist 

4 nodes have in-degree  out-degree

CT
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And when the reads incompletely cover 
the genome …

27

Genome = ACGCATC

R = { ACG, CATC, CGC, GCA }

DB2(R): 

Eulerian path?

Graph is disconnected

AC → CG → GC, giving ACGC

CA → AT→ TC, giving CATC

X
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And when the genome is heterozygous …
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Genome = ACGCA[T/C]C

R = { ACG, CATC, CGC, GCA, CACC }

DB2(R): 

Eulerian path?

Graph has 4 nodes where in-degree  out-degree

CC
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Most annoyingly …

Even when the read set is error free and has no genome 

coverage gap, and the genome is entirely homozygous, 

we may still get a Eulerian path that corresponds to an 

incorrect assembly 

29
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When the genome has some repeats …
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Genome = AAGATCGATGATTT

R = { AAGATC, GATCGAT, CGATGA, ATGATTT, GATTT }

DB3(R): 

Two possible Eulerian paths but can’t tell which is real

AAGATCGATGATTT

AAGATGATCGATTT
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Perhaps Eulerian path is a red herring
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A good genome assembly method should produce paths 

that correspond to a long substring of the genome, 

especially when the read set is error free and has no 

genome coverage gap

Eulerian path may follow a wrong branch

Perhaps breaking paths at branches would result in 

sound paths
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Unitig
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A unitig is a path in DBK(R) where:

Every node, except the first, has in-degree 1

Every node, except the last, has out-degree 1

A unitig is maximal if it is not contained in another unitig

How about generating maximal unitigs, which is easy, 

instead of Eulerian paths as the contigs?
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Exercise 
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Suppose 

R is a set of error-free reads of a genome

Each base of the genome is covered by  1 read in R

Prove or disprove:

Every unitig in DBK(R) is a substring of the genome

The genome doesn’t  need to be 
repeat-free, homozygous, etc.

K-mers don’t need to have unique 
occurrence in the genome
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Refining the claim 
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Suppose 

R is a set of error-free reads of a genome

Each base of the genome is covered by  1 read in R

No K-mer occurs both at the start of a chromosome and 

at the end of another chromosome

Then, 

Every unitig in DBK(R) is a substring of the genome
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Final refinement of the claim
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The prob for a K-mer to appear simultaneously at the 

start of a chromosome and at the end of another 

chromosome is very small, so…

Suppose 

R is a set of error-free reads of a genome

Each base of the genome is covered by  1 read in R

Then, with high probability,

Every unitig in DBK(R) is a substring of the genome
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Genome = ACGCATC

R = { ACG, CATC, CGC, GCA }

DB2(R): 

Max unitig: AC → CG → GC → CA → AT → TC

Genome: ACGCATC ☺

Example 

39
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When the genome is heterozygous …

40

Genome = ACGCA[T/C]C

R = { ACG, CATC, CGC, GCA, CACC }

DB2(R): 

Max unitigs: 

CG→GC→CA ; AT→TC 

CC
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When the genome has some repeats …

41

Genome = AAGATCGATGATTT

R = { AAGATC, GATCGAT, CGATGA, ATGATTT, GATTT }

DB3(R): 

Max unitigs: 

AAG→AGA ; ATC→TCG→CGA ; ATG→TGA ; ATT→TTT
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X

X

X

X

X
X

X

X

XX X

X

Genome = AAGATCGATGATTT

R = { AAGATC, GATCGAT, CGATGA, ATGATTT, GATTT }

DB3(R): 

Max unitigs: 

AAG→AGA→GAT→ATT → TTT 

When the genome is not fully covered…

42
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When there is sequencing error …
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Genome = ACGCATC

R = { ACG, CATC, CGC, GCA, GCT }

DB2(R): 

Max unitigs:

AC→CG→GC ; CA→AT→TC ; CT 

CT
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Exercise 

44

Heterozygosity induces branches in  DBK(R)

Repeats induce cycles in DBK(R)

Coverage gaps fragment DBK(R) and cause branches to 

be lost

Suggest a simple way to reduce these issues
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Still more to be done… in the next lecture

Practical genome assembly methods must handle

Read errors

Heterozygosity

Repeats

Incomplete coverage

Practical genome assemblers, e.g., Velvet, handle these 

by selecting a good value for K, read error correction, 

“tip” removal, and “bubble” merging

46

De Bruijn graph becomes big, 
complicated, & contain many 
erroneous edges

De Bruijn graph fragments into 
many connected components 
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Good to read

47
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https://pubmed.ncbi.nlm.nih.gov/36778435/
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