
Wong Limsoon, CS4330, AY2025/26

© Copyright National University of Singapore. All Rights Reserved.

CS4330: Combinatorial Methods in Bioinformatics

De Bruijn graphs

Wong Limsoon

Acknowledgement: This set of slides was
adapted from Ken Sung’s

1

Wong Limsoon, CS4330, AY2025/26

Why genome assembly is needed

2

Current sequencing

technologies can’t read the

sequence of an entire

genome in one go

Copies of the genome are

broken into short fragments

which are sequenced to

produce reads

These reads have to be

assembled to reconstruct

the genome

Image source: Jared Simpson

Wong Limsoon, CS4330, AY2025/26

De novo genome assembly process

3

Reads are error corrected

Reads are assembled into contigs by read overlaps

Contigs are assembled into scaffolds by pair-end

linkage

Scaffolds are joined into chromosomes in a gap filling &

finishing process, which can involve additional

sequencing and technologies

Wong Limsoon, CS4330, AY2025/26

Contigs and scaffolds

4

Image credit: JGI MycoCosm

Wong Limsoon, CS4330, AY2025/26

The genome assembly problem

5

Input

A collection of reads R = { R1, …, Rm } generated by a

sequencing expt from a genome

Output

The genome that generated R

Wong Limsoon, CS4330, AY2025/26

Many genome assembly tools are based
on de Bruijn graph

6

Wong Limsoon, CS4330, AY2025/26

Node-centric de Bruijn graph

7

Given string x and index 1  i  |x|

pre(x, i) = length-i prefix of x

suf(x, i) = length-i suffix of x

A set of strings R induces a node-centric de Bruijn graph

DBK,nc(R) where:

x is a node of DBK,nc(R) iff x is a K-mer in R

(x → y) is an edge of DBK,nc(R) iff suf(x, K – 1) = pre(y, K – 1)

Wong Limsoon, CS4330, AY2025/26

Edge-centric de Bruijn graph

8

Given string x and index 1  i  |x|

x • y = x concatenated with y

x K y = x[1.. |x| − K] • y

A set of strings R induces an edge-centric de Bruijn graph

DBK(R) where:

x in a node of DBK(R) iff x is a K-mer in R

(x → y) is an edge of DBK(R) iff

 suf(x, K – 1) = pre(y, K – 1) and

 x K – 1 y is a substring of an R in R

Convention:
x K y K z = (x K y) K z

Wong Limsoon, CS4330, AY2025/26

Soundness

9

A path x1 → x2 → … → xn in DBK(R) can be interpreted as

a string x1 
K – 1 x2 

K – 1 … K – 1 xn

Suppose

R is a set of error-free reads of a repeat-free genome

Each K-mer in R occurs only once in the genome

Then

Every path in DBK(R) is a substring of the genome

So, edge-centric de Bruijn graph is used by default

A path x1 → x2 → … → xn of a graph
is a sequence of distinct nodes and
edges (connecting these nodes) from
the graph

Wong Limsoon, CS4330, AY2025/26

Exercise

10

Prove this soundness claim
on the edge-centric de
Bruijn graph

Does the node-centric de
Bruijn graph enjoy a similar
soundness claim?

Wong Limsoon, CS4330, AY2025/26

Exercise

Suppose

R is a set of error-free reads of a repeat-free genome

Each K-mer in R occurs only once in the genome

Each base in the genome is covered by many reads in R

Prove that, with high probability:

Each chromosome of the genome = a Eulerian path of a
connected component of DBK(R)

13

Image credit: NHGRI

A Eulerian path of a graph passes thru each edge once

Wong Limsoon, CS4330, AY2025/26

Connected components

Connected components of a graph are easy to extract

Depth-first search does the job in O(|V| + |E|) time

So, can extract connected components of DBK(R) and

obtain Eulerian paths from them

Right?

17

Wong Limsoon, CS4330, AY2025/26

Eulerian path

18

A Eulerian path in a connected graph visits every edge

exactly once

An undirected connected graph has a Eulerian path iff

Zero or two nodes have odd degree

All other nodes have even degree

A directed connected graph has a Eulerian path iff

At most one node has in-degree – out-degree = 1

At most one node has outdegree – indegree = 1

All other nodes have in-degree = out-degree

Wong Limsoon, CS4330, AY2025/26

Exercise

19

Does a Eulerian path

exist for the “Seven

bridges of Königsberg”?

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Wong Limsoon, CS4330, AY2025/26

Eulerian path finding

21

A Eulerian path in a connected graph V, E can be found

if it exists, or determined to be non-existent, in O(V + E)

time and O(V + E) space

Hierholzer’s algorithm is a commonly used algorithm for

finding Eulerian path

Wong Limsoon, CS4330, AY2025/26

Carl Hierholzer’s algorithm

22

https://algorithms.discrete.ma.tum.de/graph-
algorithms/hierholzer/index_en.html

The basic idea of Hierholzer's algorithm is the stepwise construction of the Eulerian cycle by
connecting disjunctive circles. It starts with a random node and then follows an arbitrary unvisited
edge to a neighbour. This step is repeated until one returns to the starting node. This yields a first
circle in the graph. If this circle covers all nodes it is an Eulerian cycle and the algorithm is
finished. Otherwise, one chooses another node among the cycles' nodes with unvisited edges and
constructs another circle, called subtour. By choice of edges in the construction the new circle
does not contain any edge of the first circle, both are disjunct. However, both circles must
intersect in at least one node by choice of the starting node of the second circle. Therefore one
can represent both circles as one new circle. To do so, one iterates the nodes of the first circle and
replaces the subtour's starting node by the complete node sequence of the subtour. Thus, one
integrates additional circles into the first circle. If the extended cycle does include all edges the
algorithm is finished. Otherwise, we can find another cycle to include.

In the case of an undirected, semi-Eulerian graph the algorithm starts with one of the two nodes
with odd degree. In the directed case with the node with one additional outgoing edge. One of the
subtours to be found will then not form a cycle, instead it will also be a path. When integrating this
"subtour" into the circle one has to make sure that start and end node of this path also form start
and end of the complete Eulerian path.

https://algorithms.discrete.ma.tum.de/graph-algorithms/hierholzer/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/hierholzer/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/hierholzer/index_en.html

Wong Limsoon, CS4330, AY2025/26

Examples

23

If this part is encountered, save it
first. Repeat traversal from the start
node until all edges are visited.
Finally, add the saved path to the
end of the circle.

A subtour a →  → a can be
integrated into the main tour  → a
→  by inserting it as  → a →  →
a → 

Wong Limsoon, CS4330, AY2025/26

Assembling a repeat-free homozygous

diploid single-chromosome genome

24

Suppose R is a set of error-free reads that completely

covers a repeat-free homozygous diploid single-

chromosome genome and nothing else

For some appropriately chosen K, with high probability,
any Eulerian path of DBK(R) is an accurate and complete

reconstruction of the genome

Wong Limsoon, CS4330, AY2025/26

R = { ACG, CATC, CGC, GCA }

DB2(R):

Eulerian path: AC → CG → GC → CA → AT → TC

Genome: ACGCATC

Example

25

Wong Limsoon, CS4330, AY2025/26

But when there is sequencing error …

26

Genome = ACGCATC

R = { ACG, CATC, CGC, GCA, GCT }

DB2(R):

Eulerian path?

Does not exist

4 nodes have in-degree  out-degree

CT

Wong Limsoon, CS4330, AY2025/26

And when the reads incompletely cover
the genome …

27

Genome = ACGCATC

R = { ACG, CATC, CGC, GCA }

DB2(R):

Eulerian path?

Graph is disconnected

AC → CG → GC, giving ACGC

CA → AT→ TC, giving CATC

X

Wong Limsoon, CS4330, AY2025/26

And when the genome is heterozygous …

28

Genome = ACGCA[T/C]C

R = { ACG, CATC, CGC, GCA, CACC }

DB2(R):

Eulerian path?

Graph has 4 nodes where in-degree  out-degree

CC

Wong Limsoon, CS4330, AY2025/26

Most annoyingly …

Even when the read set is error free and has no genome

coverage gap, and the genome is entirely homozygous,

we may still get a Eulerian path that corresponds to an

incorrect assembly 

29

Wong Limsoon, CS4330, AY2025/26

When the genome has some repeats …

30

Genome = AAGATCGATGATTT

R = { AAGATC, GATCGAT, CGATGA, ATGATTT, GATTT }

DB3(R):

Two possible Eulerian paths but can’t tell which is real

AAGATCGATGATTT

AAGATGATCGATTT

Wong Limsoon, CS4330, AY2025/26

Perhaps Eulerian path is a red herring

31

A good genome assembly method should produce paths

that correspond to a long substring of the genome,

especially when the read set is error free and has no

genome coverage gap

Eulerian path may follow a wrong branch

Perhaps breaking paths at branches would result in

sound paths

Wong Limsoon, CS4330, AY2025/26

Unitig

32

A unitig is a path in DBK(R) where:

Every node, except the first, has in-degree 1

Every node, except the last, has out-degree 1

A unitig is maximal if it is not contained in another unitig

How about generating maximal unitigs, which is easy,

instead of Eulerian paths as the contigs?

Wong Limsoon, CS4330, AY2025/26

Exercise

33

Suppose

R is a set of error-free reads of a genome

Each base of the genome is covered by  1 read in R

Prove or disprove:

Every unitig in DBK(R) is a substring of the genome

The genome doesn’t need to be
repeat-free, homozygous, etc.

K-mers don’t need to have unique
occurrence in the genome

Wong Limsoon, CS4330, AY2025/26

Refining the claim

35

Suppose

R is a set of error-free reads of a genome

Each base of the genome is covered by  1 read in R

No K-mer occurs both at the start of a chromosome and

at the end of another chromosome

Then,

Every unitig in DBK(R) is a substring of the genome

Wong Limsoon, CS4330, AY2025/26

Final refinement of the claim

37

The prob for a K-mer to appear simultaneously at the

start of a chromosome and at the end of another

chromosome is very small, so…

Suppose

R is a set of error-free reads of a genome

Each base of the genome is covered by  1 read in R

Then, with high probability,

Every unitig in DBK(R) is a substring of the genome

Wong Limsoon, CS4330, AY2025/26

Genome = ACGCATC

R = { ACG, CATC, CGC, GCA }

DB2(R):

Max unitig: AC → CG → GC → CA → AT → TC

Genome: ACGCATC ☺

Example

39

Wong Limsoon, CS4330, AY2025/26

When the genome is heterozygous …

40

Genome = ACGCA[T/C]C

R = { ACG, CATC, CGC, GCA, CACC }

DB2(R):

Max unitigs:

CG→GC→CA ; AT→TC

CC

Wong Limsoon, CS4330, AY2025/26

When the genome has some repeats …

41

Genome = AAGATCGATGATTT

R = { AAGATC, GATCGAT, CGATGA, ATGATTT, GATTT }

DB3(R):

Max unitigs:

AAG→AGA ; ATC→TCG→CGA ; ATG→TGA ; ATT→TTT

Wong Limsoon, CS4330, AY2025/26

X

X

X

X

X
X

X

X

XX X

X

Genome = AAGATCGATGATTT

R = { AAGATC, GATCGAT, CGATGA, ATGATTT, GATTT }

DB3(R):

Max unitigs:

AAG→AGA→GAT→ATT → TTT 

When the genome is not fully covered…

42

Wong Limsoon, CS4330, AY2025/26

When there is sequencing error …

43

Genome = ACGCATC

R = { ACG, CATC, CGC, GCA, GCT }

DB2(R):

Max unitigs:

AC→CG→GC ; CA→AT→TC ; CT 

CT

Wong Limsoon, CS4330, AY2025/26

Exercise

44

Heterozygosity induces branches in DBK(R)

Repeats induce cycles in DBK(R)

Coverage gaps fragment DBK(R) and cause branches to

be lost

Suggest a simple way to reduce these issues

Wong Limsoon, CS4330, AY2025/26

Still more to be done… in the next lecture

Practical genome assembly methods must handle

Read errors

Heterozygosity

Repeats

Incomplete coverage

Practical genome assemblers, e.g., Velvet, handle these

by selecting a good value for K, read error correction,

“tip” removal, and “bubble” merging

46

De Bruijn graph becomes big,
complicated, & contain many
erroneous edges

De Bruijn graph fragments into
many connected components

Wong Limsoon, CS4330, AY2025/26

Good to read

47

P. Medvedev, “Modeling biological problems in computer

science: A case study in genome assembly”, Briefings in

Bioinformatics 20(4):1376-1383, 2019.

https://pubmed.ncbi.nlm.nih.gov/29394324/

[EULER] P. A. Pevzner et al., “An Eulerian path approach

to DNA fragment assembly”, PNAS 98(17):9748-9753,

2001. https://pubmed.ncbi.nlm.nih.gov/11504945/

[omnitig] S. Schmidt et al., “The omnitig framework can

improve genome assembly congruity in practice”,

bioRxiv, doi: 10.1101/2023.01.30.526175, 2023.

https://pubmed.ncbi.nlm.nih.gov/36778435/

https://pubmed.ncbi.nlm.nih.gov/29394324/
https://pubmed.ncbi.nlm.nih.gov/11504945/
https://pubmed.ncbi.nlm.nih.gov/36778435/

	Slide 1: CS4330: Combinatorial Methods in Bioinformatics De Bruijn graphs
	Slide 2: Why genome assembly is needed
	Slide 3: De novo genome assembly process
	Slide 4: Contigs and scaffolds
	Slide 5: The genome assembly problem
	Slide 6: Many genome assembly tools are based on de Bruijn graph
	Slide 7: Node-centric de Bruijn graph
	Slide 8: Edge-centric de Bruijn graph
	Slide 9: Soundness
	Slide 10: Exercise
	Slide 13: Exercise
	Slide 17: Connected components
	Slide 18: Eulerian path
	Slide 19: Exercise
	Slide 21: Eulerian path finding
	Slide 22: Carl Hierholzer’s algorithm
	Slide 23: Examples
	Slide 24: Assembling a repeat-free homozygous diploid single-chromosome genome
	Slide 25: Example
	Slide 26: But when there is sequencing error …
	Slide 27: And when the reads incompletely cover the genome …
	Slide 28: And when the genome is heterozygous …
	Slide 29: Most annoyingly …
	Slide 30: When the genome has some repeats …
	Slide 31: Perhaps Eulerian path is a red herring
	Slide 32: Unitig
	Slide 33: Exercise
	Slide 35: Refining the claim
	Slide 37: Final refinement of the claim
	Slide 39: Example
	Slide 40: When the genome is heterozygous …
	Slide 41: When the genome has some repeats …
	Slide 42: When the genome is not fully covered…
	Slide 43: When there is sequencing error …
	Slide 44: Exercise
	Slide 46: Still more to be done… in the next lecture
	Slide 47: Good to read

