

CS4330: Combinatorial Methods in Bioinformatics

Genome assembly quality assessment

Wong Limsoon

NUS
National University
of Singapore

National University of Singapore

Genome assembly quality

Contiguity

How contiguous the assembly is

Completeness

How much of a reference genome is covered

What fraction of a set of reference genes is covered

Correctness

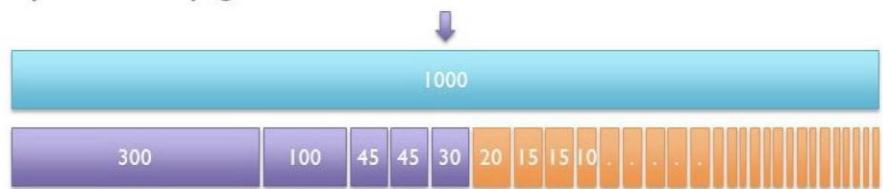
How many mis-assembled segments there are

What proportion of the assembly is error free

Contiguity

Fewer and longer contigs are desired

Metrics


Ave contig length

Max contig length

N50, NG50, NGA50, ...

Contiguity: the N50 statistic

Example: 1 Mbp genome

N50 size = 30 kbp

$$(300k + 100k + 45k + 45k + 30k = 520k \geq 500\text{kbp})$$

Credit: Torsten Seemann

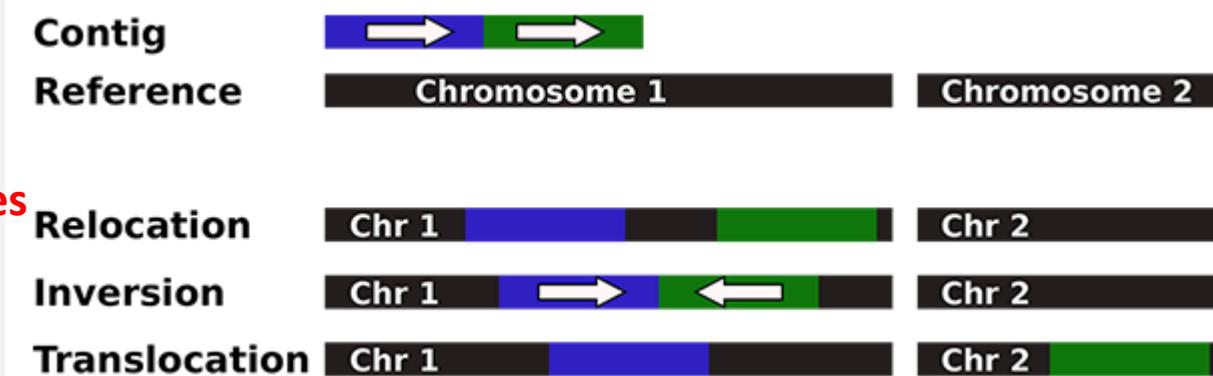
Completeness

Proportion of original genome represented by the assembly

Assembled genome size

Estimated genome size

Proportion of core genes covered


of core genes in assembly

of core genes known

Correctness

Proportion of assembly that is error free

Kinds of Mis-assemblies

misassemblies is the number of positions in the contigs (breakpoints) that satisfy one of the following criteria:

- the left flanking sequence aligns over 1 kbp away from the right flanking sequence on the reference;
- flanking sequences overlap on more than 1 kbp;
- flanking sequences align to different strands or different chromosomes;

#, not size

local misassemblies is the number of positions in the contigs (breakpoints) that satisfy the following conditions:

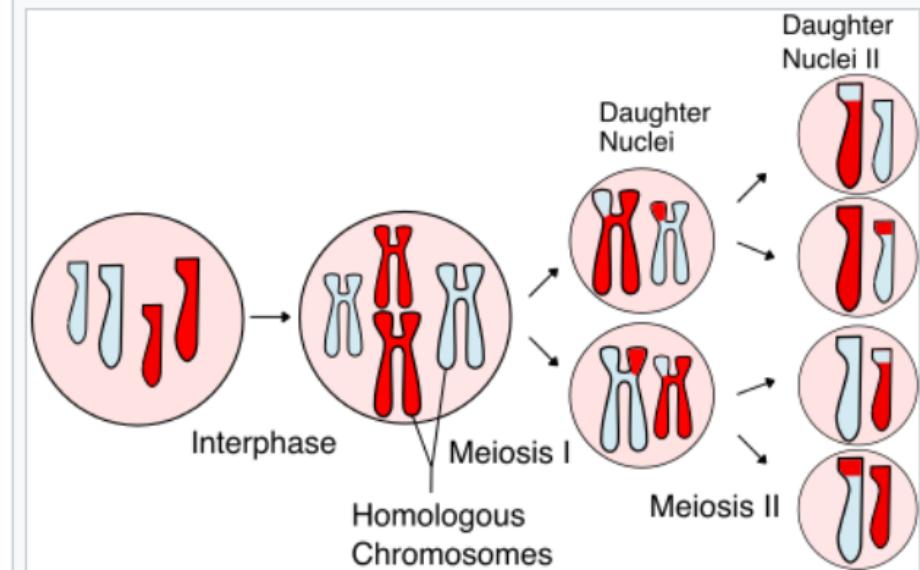
- The gap or overlap between left and right flanking sequences is less than 1 kbp, and larger than the maximum indel length (85 bp).
- The left and right flanking sequences both are on the same strand of the same chromosome of the reference genome.

#, not size

Exercise

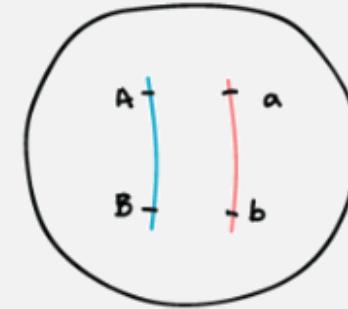
Some “mis-assemblies” may not be mis-assemblies

Why?


Exercise

Identify some issues with genome assembly quality measures such as NG50, # mis-assemblies, etc.

Law of genetic linkage


Meiosis

In meiosis, the chromosome or chromosomes duplicate (during **interphase**) and **homologous chromosomes** exchange genetic information (**chromosomal crossover**) during the first division, called meiosis I. The daughter cells divide again in meiosis II, splitting up **sister chromatids** to form haploid **gametes**. Two gametes fuse during **fertilization**, creating a diploid cell with a complete set of paired chromosomes.

Image credit: Wikipedia

When two genes are far apart, this is what happens during meiosis

Gametes made:

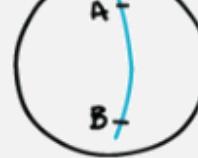
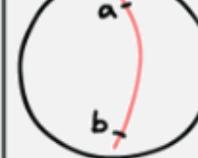
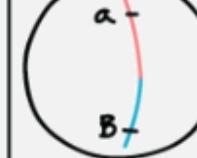
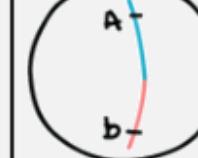




AB 	ab 	aB 	Ab
25%	25%	25%	25%

Image credit: Khan Academy

When two genes are close together, this is what happens during meiosis

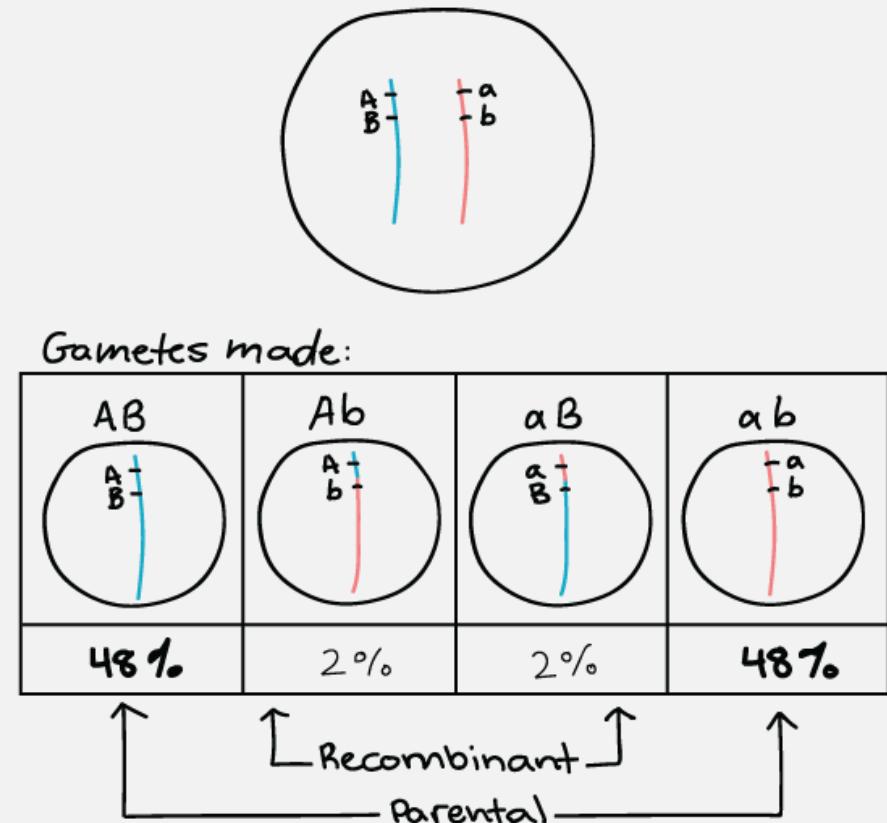
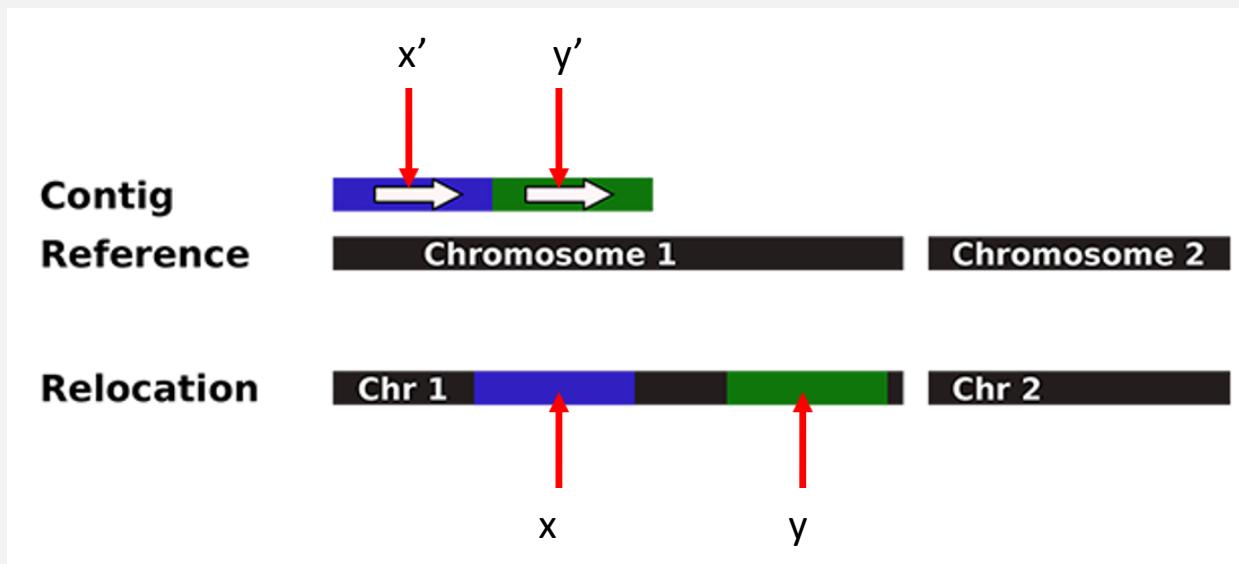


Image credit: Khan Academy

Law of genetic linkage

The closer two genes / genomic loci are, the more likely they are passed on to the next generation together

Genome assembly assessment:
Does the assembly allow us to estimate the distance between two loci on ref genome well?


Genome assembly improvement:
Do two close-by / far-apart loci on the assembly look like they should be close-by / far-apart on ref genome?

Integrative genome assembly quality assessment

Pairwise distance reconstruction, PDR

Sites on assembly mapped to xy Sites on ref genome Size of ref genome

$$PDR = (\sum_{xy} \text{Min}(d_{x'y'}, d_{xy}) / \text{Max}(d_{x'y'}, d_{xy})) / G^2$$

Xie & Wong, "PDR: A new genome assembly evaluation metric based on genetics concerns", *Bioinformatics*, 37(3):289-295, 2021

Intuition of PDR

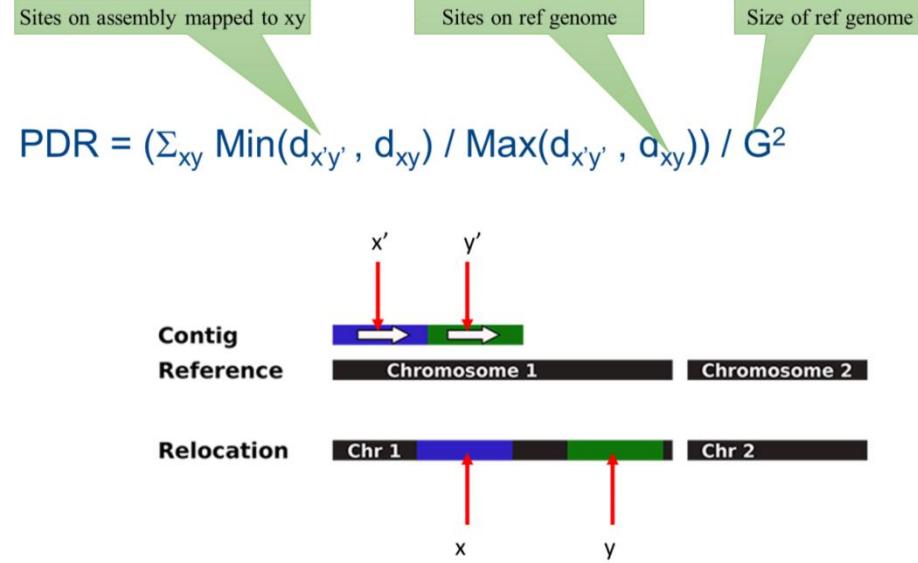
PDR is designed to answer a basic biology question:

How accurately can the distance of two positions on a genome be determined from the assembly?

PDR integrates contiguity

PDR integrates completeness

Smaller contigs make PDR smaller
 (x, y) on same chromosome
 (x', y') on different contigs
 $\Rightarrow d_{xy}$ is small but $d_{x'y'} = \infty$


More missed loci make PDR smaller
 (x, y) on same chromosome
 x' or y' not on any contig
 $\Rightarrow d_{xy}$ is small but $d_{x'y'} = \infty$

PDR integrates correctness

When a larger genome segment is mis-assembled, $\min(d_{x'y'}, d_{xy})$ is more different from $\max(d_{x'y'}, d_{xy})$

⇒ Make PDR smaller

and size of mis-assemblies are accounted

Correlation to contiguity, completeness, & correctness

Dataset	Worm
Genome size (bp)	100.3M
Sequencing platform	Illumina pair-ends and PacBio SMRT
Assemblers	Upperbound, Canu, FALCON, Flye, MaSuRCA, Miniasm

E. Coli dataset from QUAST-LG benchmark

	G. Frac ¹	PDR	M. Count ²	NG50	NGA50
G. Frac ¹	1	0.91	0.24	0.71	0.73
PDR	0.91	1	0.57	0.84	0.89
M. Count ²	0.24	0.57	1	0.41	0.73
NG50	0.71	0.84	0.41	1	0.63
NGA50	0.73	0.89	0.73	0.63	1

¹ Genome Fraction

² Misassembly Count

PDR is less correlated with mis-assembly count because the latter ignores mis-assembly size

to each other

Computing PDR naively is costly

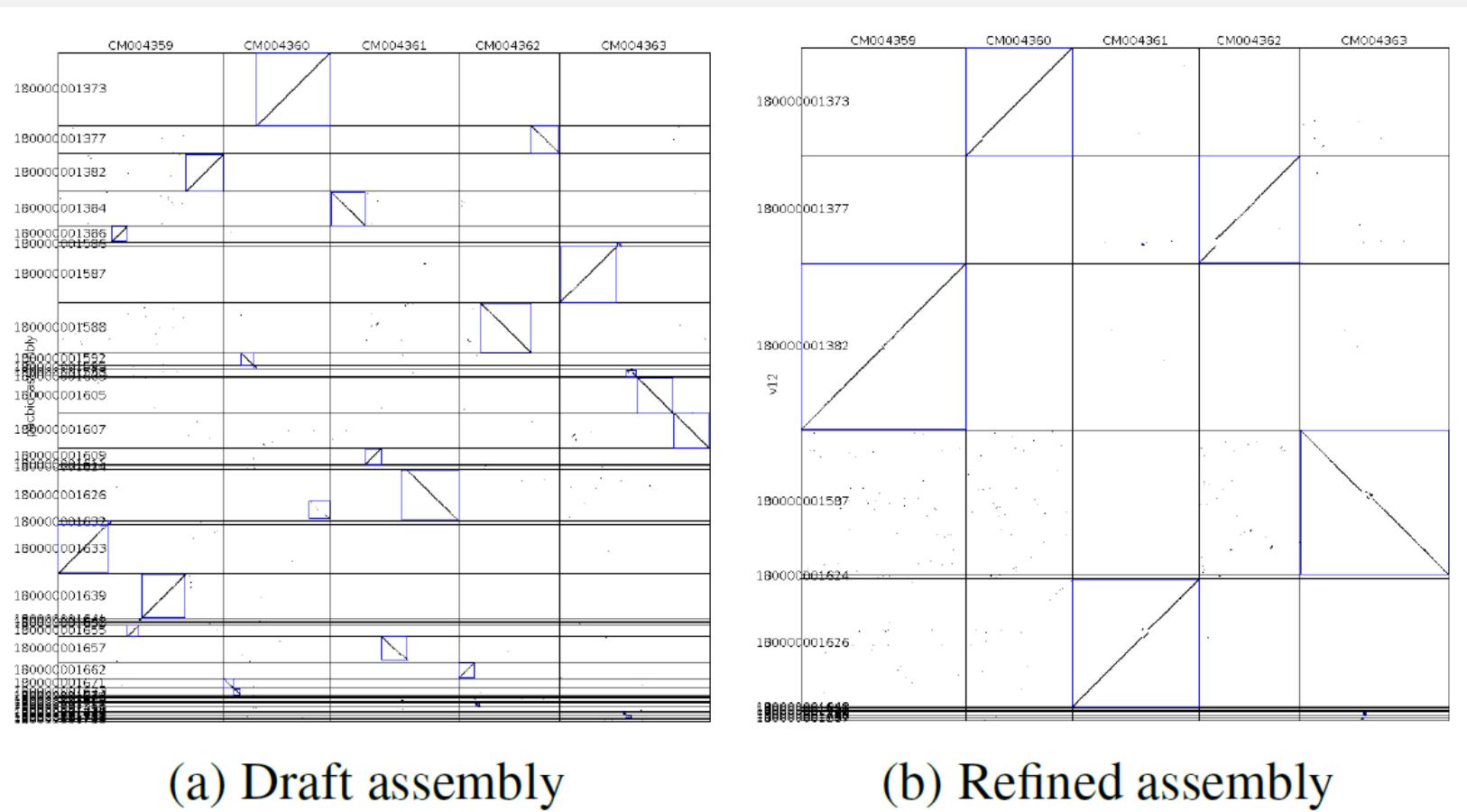
$$\text{PDR} = (\sum_{xy} \text{Min}(d_{x'y'}, d_{xy}) / \text{Max}(d_{x'y'}, d_{xy})) / G^2$$

(x,y) ranges over all possible pairs of loci on a genome.
There are $(3,000,000,000)^2$ pairs on the human genome

But it can be optimized

Approximate it piece-wise by integrals of “segment” pairs

Segment pair: A segment of contiguous loci on the reference genome that is mapped to a segment of contiguous positions on a contig in the assembly


Accurate thousand-fold speed-up of PDR computation

Metric	UpperBound	Canu	FALCON	Flye	MaSuRCA	Miniasm
Genome Fraction	99.95%	99.54%	98.67%	99.31%	99.18%	99.41%
Misassembly Count	0	147	94	122	138	262
NG50	3,507,402	3,634,244	2,013,998	2,321,891	1,435,395	2,105,818
NGA50	3,507,402	1,292,248	1,176,205	1,305,538	1,016,420	1,214,817
PDR	87.81%	85.15%	82.23%	84.33%	82.72%	83.46%
<u>PDR</u>	87.81%	85.15%	82.23%	84.33%	82.72%	83.46%
$ PDR - \underline{PDR} $	8.4E-12	3.6E-12	2.7E-11	2.3E-11	4.4E-12	1.6E-11
PDR runtime		1s	1s	1s	1s	1s
<u>PDR</u> runtime	9916s	7048s	4517s	6010s	2632s	4012s

~1hr to compute naively for E. coli

~1s to compute by piece-wise integrals, with approximation error $\sim 10^{-11}$

Two assemblies of a *A. thaliana* genome

A convincing test of PDR

Assembly	Draft	Refined	
Genome Fraction (%)	98.797	98.795	0% diff
Misassembly Count	2224	2184	2% diff
NG50	7,853K	22,731K	189% diff
NGA50	778K	784K	1% diff
PDR	84.67%	98.02%	15% diff

PDR shows the *A. thaliana* refined assembly is near perfect and more reasonable diff from the draft assembly

Other measures show less informative differences

Good to read

[QUAST] Gurevich et al., “QUAST: quality assessment tool for genome assemblies”, *Bioinformatics*, 29(8):1072-1075, 2013

<https://pubmed.ncbi.nlm.nih.gov/23422339/>

[PDR] Xie & Wong, “PDR: A new genome assembly evaluation metric based on genetics concerns”, *Bioinformatics*, 37(3):289-295, 2021

<https://pubmed.ncbi.nlm.nih.gov/32761066/>