Brief intro to batch effects in omics data

Wong Limsoon

National University of Singapore

© Copyright National University of Singapore. All Rights Reserved.

What batch effects are

Batch effects

Batch effects

Unwanted non-biological variations due to processing time, reagent batch, handlers, etc.

Batch-class imbalance

One class forms a large fraction of a batch and another class forms a large fraction of another batch

In this situation, batch effects tend to be badly confounded with biological effects

Childhood leukemia patients

-0.15 -

-0.4

-0.3

-0.2

-0.1

Image credit: Dong Difen-

Sometimes, a gene expression study may involve batches of data collected over a long period of time...

-0.4

-0.3

Time Span of Gene Expression Profiles

Samples from diff batches are grouped together, regardless of subtypes and treatment response

Wong Limsoon, CS6222, AY 2023/24

0.3

Π1

Peripheral blood mononuclear cells (PBMC)

5

Exercise

Do batch effects affect data analysis and model building?

In what ways?

Figure 3 | **Batch effects also change the correlations between genes.** We normalized every gene in the second gene expression data set² in TABLE 1 to mean 0, variance 1 within each batch. (The 2006 batch was omitted owing to small sample size.) We identified all significant correlations (p < 0.05) between pairs of genes within each batch using a linear model. We looked at genes that showed a significant correlation in two batches and counted the fraction of times that the correlation changed between the two batches. A large percentage of significant correlations reversed signs across batches, suggesting that the correlation structure between genes changes substantially across batches. To confirm this phenomenon is due to batch, we repeated the process — looking for significant correlations that changed sign across batches — but with the batch labels randomly permuted. With random batches, a much smaller fraction of significant correlations change signs. This suggests that correlation patterns differ by batch, which would affect rank-based prediction methods as well as system biology approaches that rely on between-gene correlation to estimate pathways.

How batch effects are "measured"

Paired boxplots of PCs

Goh & Wong, BMC Genomics, 18:142, 2017

Sometimes it is not easy to decide which PC is enriched in batch effects using the standard PCA scatter plot

It is easier to see which PC is enriched in batch effects by showing, side by side, the distribution of values of each PC stratified by class and suspected batch variables

kBET Buttner et al., *Nature Methods*, 16:43-49, 2019

 χ^2 test the local batch distribution against the global batch distribution

For high-dimensional data, the authors recommend to do PCA, retain the top 50 PCs, then run kBET on the reduced data

What is good/bad about paired boxplots of PCs?

What is good/bad about kBET?

E.g., what if class or batch proportions are imbalanced? What if some classes appear only in some batches?

Project: Suggest how to improve either of the above for quantifying batch effects, or suggest a totally different approach

Normalization & batch-effect correction

Normalization vs batch-effect correction

Normalization *Put data into the same scale e.g., linear scaling, z-score, quantile normalization, GFS*

Batch-effect correction

Remove batch effects

e.g., Combat, Harman, surrogate variable analysis, batch mean centering, GFS

Given *n* arrays of length *p*, form X of size $p \times n$ where each array is a column

Sort each column of X to give X sort

Take means across rows of X_{soft} and assign this mean to each elem in the row to get X'_{soft} Get $X_{normalized}$ by arranging each column of X'_{soft} to have same ordering as X Does quantile normalization remove batch effects?

Does it make it easier to identify differentially expressed genes? Because each sample has the exact same set of ranked means (same set of numbers), they will have the exact same distribution. But that is not the same as having removed technical variation. Let's say we have sample 1 and 2 with two genes, A and B. Let's also introduce a technical bias to sample 2, and call it *C*. Let's assume a matrix (*M*), where the row and the column correspond to gene and sample, respectively.

$$M = \begin{bmatrix} 10 & 10C \\ 100 & 100C \end{bmatrix}$$

In QN, the first step is to rank the variables. Let's assume that A and B are already ranked, and B is 10x that of A. Next, we calculate an average for those variables occupying the same rank.

So for gene A, the average is (10 + 10C)/2. And for gene B, the average is (100 + 100C)/2. We then return these values back to the data matrix such that

 $M = \begin{bmatrix} (10+10C)/2 & (10+10C)/2\\ (100+100C)/2 & (100+100C)/2 \end{bmatrix}$

The technical effect *C* contributes directly to the ranked means after quantile normalization. If *C* is large, its contribution to the means will increase dramatically. It is part of the equation and ever present. In other words, QN does not remove BEs.

Zhou et al., J Genet & Genom, 46:433-443, 2019

Describe batch mean centering (BMC)

Does it remove additive batch effects well?

When class & batch are balanced

Can you see normalization methods (e.g. quantile) do not remove batch effects?

But they still easily separate the classes

The situation deteriorates quickly when class & batch are imbalanced, i.e. when one batch is dominated by one class

Impact on feature selection

Missing values & batch effects

Some omics data have lots of missing values (proteomics MS, scRNA-seq, etc.)

🕱 🖉 • 🔍 - 1= nm.3807-S4.xls [Read-Only] [Compatibility Mode] - Microsoft Excel 🗕 🗖														ð ×															
File Home Insert Page Layout Formulas Data Review View Acrobat														2 🖷 🗆 🔇															
-	🗎 🔏 Cut		Calibri	x 11	т. А ⁴ . т.	= _ 🖂	≫ar	🚍 Wran Te	wt l	General		1		Norma		Rad	600	d	Noutra		alculation	-	-		Σ AutoSun	A A	<u>4</u>		
	📃 📭 Cop	, -	cullon		AA		*/	E- widp ite				 		Teorina a			000		Neutra			-			🛃 Fill 👻	ZI			
Vaste 💞 Format Painter			BIU-	· · · · ·	• <u>A</u> •	e e e		-a- Merge 8	k Center 🔻	\$ - %	• • • • • • • • • • • • • • • • • • •	Formattin	nal Format ng ≠ as Table	Check (Cell	Explanator	ry Inpu	ut	Linked	Cell	Note	-	Insert Delet	e Format	🖉 Clear 🔻	Sort & Filter ▼	Find & Select *		
	Clipboard	- Gi	F	ont	G.		Alignme	nt	G.	Numb	er 5						Styles						Cell	5		Editing			
	X30	-	k NA																*										
	Α	в	С	D	E	F	G	н	1	J	К	L	м	N	0	Р	0	R	S	т	U	V	W	х	Y	Z	AA	AB	AC 🔺
		GeneSy	_	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTi
1	protein	mbol .	kidneyTisue1	ue2	ue3	ue4	ue5	ue6	ue7	ue8	ue9	ue10	ue11	ue12	ue13	ue14	ue15	ue16	ue17	ue18	ue19	ue20	ue21	ue22	ue23	ue24	ue25	ue26	ue27
2	P09110	ACAA1	288001.7778	46353.28	237958.5	30102.47	297711.2	37098.09	67454.84	92200.62	231528.4	12617.18	263299.1	NA	222387.2	NA	177211	27857.94	84689.84	43497.89	280540.3	77962.17	235242.5	23827.06	302761.4	41190.07	2064.747	97756.44	122386.3
3	P05166	PCCB	246687.75	70504.27	253890.9	NA	314250.1	33680.65	108554.7	321442.7	260389.5	183399.7	258247.1	139288.5	284934.5	115138	245595.9	30488.41	221565	280540.3	240054.8	65477.99	250479.3	NA	327799	41974.24	125103	321442.7	175808.5
4	Q96RP9	GFM1	37872.59722	NA	40359.89	NA	73975.35	NA	64601.65	56815.28	34506.99	35176.2	98642.34	23060.3	91995.3	NA	37735.48	33491.8	48208.46	47858.24	39584.44	NA	67976.03	23631.74	46763.48	NA	2064.747	53619.99	67555.47
5	Q15417	CNN3	28364.89722	NA	NA	NA	NA	44156.47	52272.02	27128.03	10577.49	32524.27	14171.12	33388.93	27593.38	49821.32	23144.21	24964.95	32403	NA	24907.94	46053.92	NA	NA	25129.86	42948.4	2064.747	26438.35	23207.51
6	Q96FQ6	S100A16	NA	35176.2	NA	66058.39	NA	30674.6	1804.538	21706.65	NA	NA	11359.64	NA	18677.58	41493.97	12617.18	22496.77	NA	NA	NA	36422.79	NA	75858.83	20589.93	31161.06	2064.747	20398.13	NA
7	P62820	RAB1A	NA	NA	NA	NA	NA	NA	54417.16	3130.811	NA	68503.39	NA	NA	NA	NA	NA	NA	NA	NA	32596.28	NA	NA	54839	NA	48748.28	2064.747	NA	NA
8	P27169	PON1	NA	47101.83	58436.31	18128.35	NA	33573.36	112930.6	NA	NA	NA	NA	59432.1	NA	39084.55	36282.92	16953.34	NA	NA	NA	45107.13	NA	19506.67	NA	38130.55	109838.9	NA	NA
9	Q9UL46	PSME2	33680.65278	99968.93	59047.33	145114.2	33256.26	141575.7	77962.17	75727.38	64365.04	121022.2	40286.83	114480.8	40567.01	104458.4	42876.78	83666.14	55954.92	62742.03	33768.27	111940.8	59915.42	151558.9	38443.16	113145.5	79024.33	73747.38	40140.37
10	P08237	PFKM	39644.09722	NA	54240.61	NA	136064	NA	1804.538	62845.97	141296.3	100616.3	137596.7	NA	140860.9	NA	96590.73	NA	92823.65	51085.24	155550.8	NA	47697.29	NA	136064	NA	2064.747	58618.05	143381.1
11	P04040	CAT	292456.0528	149632.6	239229.2	24964.95	258247.1	220764.4	540115.8	133921.9	284934.5	367784.7	293727.3	179981.9	259314.6	124294.3	204722.1	77070.33	109006.7	136875.9	290924.4	163095.2	237958.5	31389.75	271920.4	227900.3	499422.8	150524.5	294964.3
12	Q8WYA6	CTNNBL1	NA	NA	NA	NA	NA	NA	1804.538	NA	NA	NA	NA	NA	NA	NA	NA	27646.1	37621.73	26686.24	NA	NA	NA	NA	NA	NA	2064.747	NA	NA
13	Q9H0W9	C11orf54	454591.5833	77225.75	393512.7	55431.72	365975.5	180535.1	188742.5	77348.17	352898.9	119242.7	417999.9	263299.1	474797	229655.9	427428	143697	124568	146454.4	441856.5	74156.41	370040.5	44605.86	363784.6	187566.8	129074.8	104101.6	375463.4
14	P31948	STIP1	76018.00556	83236.9	83516.5	137596.7	75613.89	110367.2	98642.34	195146	77709.53	282315.9	65948.94	122386.3	81635.42	129969.2	67749.81	124568	108554.7	135737.2	69039.96	92656.4	85600.47	147792.9	65262.99	109273.7	91127.04	218888	122047.2
15	094901	SUN1	57623.33889	NA	NA	NA	72273.86	NA	1804.538	NA	NA	NA	58063.49	NA	NA	NA	NA	NA	NA	NA	60013.66	NA	NA	NA	71252.19	NA	2064.747	NA	NA
16	Q99714	HSD17B10	175372.7444	114480.8	181096.8	75400.28	222387.2	91466.47	218888	269679.7	179177.4	165285.9	202618.2	117389.5	191537	41135.21	196208.5	151044.7	210269.6	294964.3	183893	82644.38	179981.9	102286.8	233372.9	91325.89	196996.8	293727.3	174540.8
17	Q15833	STXBP2	14224.84722	24264.99	14303.05	19690.86	16316.33	NA	1804.538	NA	14303.05	17309.98	11459.84	14224.85	12617.18	NA	14224.85	9837.458	21131.38	5634.228	13283.71	28846.59	20057.06	12924.71	17380.49	NA	2064.747	11880.63	13166.66
18	P08195	SLC3A2	50797.625	42825.82	03302.14	20028.24	85345.18	NA 404240.0	164242.5	NA 172020 6	//850.57	NA 167022.7	100010.3	NA 210472.5	/05/9.02	NA 202512.7	44010.10	1/140.31	NA 200217.5	NA 244065.7	80199.58	41302.0	/22/3.80	32198.97	/5858.83	NA 422062.5	2004.747	NA 100041.6	/0292.5/
19	P26038	MSN	333342.6833	438752.3	421056.2	381249.5	241992.3	404349.8	164343.5	172028.6	446678.9	16/923.7	367784.7	310472.5	404349.8	393512.7	292456.1	427428	390317.5	244865.7	2/3261./	446678.9	404349.8	306071.8	222387.2	423963.5	191537	182241.6	441856.5
20	P09104	ENU2	NA 1010162 714	24570.49	NA 961706.2	184050.5	NA 940142	13/590.7	120140.3	21831.50	INA 1120602	NA	NA 1057096	119050.8	NA 700446-1	404349.8	NA 221565	48438.29	57080.70	NA	1160796	151558.9	NA 905139.4	181090.8	NA 070052.2	123793.9	2004.747	NA	NA 1200719
21	096011	TPNT1	1213103.714	54575.40	NA	NA	540142 NA	NA	1004.330	NIA	1150052 NA	NA	1037560	NA	705440.1	NA	221303	NA	27092.09	25565.02	1102760 NA	52550.45 NA	NIA	NA	570055.5	NA	2004.747	NA	1300710
22	015082	ERC2	NA	NA	NA	85740.42	NA	NA	1804.538	NA	82290.22	NA	NA	NA	NA	NA	NA	142206.8	57058.05	55505.05 NA	NA	NA	NA	72296.49	NA	NA	2004.747	NA	70213.42
24	015911	75423	NA	NA	178745 3	393512.7	205865.1	682653.9	1804.538	NA	243050.00	NA	189860 5	NA	NA	NA	NA	457756.2	NA	NA	NA	NA	NA	NA	NA	NA	2064 747	NA	252846.2
25	O9BUR5	AP00	35479 70278	NΔ	27260 11	15459.06	40140 37	NA	1804 538	46154.89	30730 15	54737 36	47185 33	13642 38	28517 17	NΔ	40140 37	ΝΔ	NA	10649 17	34436.2	NA	36956.08	16653 18	47858 24	NA	2064 747	33003 64	20057.06
26	09UJ83	HACL1	417999.9306	NA	435248.4	NA	336790.8	227161.7	1804.538	174111.8	276628.6	NA	274264.6	NA	317227.1	271920.4	336790.8	NA	NA	372485.6	446678.9	NA	390317.5	NA	307205	211073.8	2064.747	169817.6	333342.7
27	Q8WUM4	PDCD6IP	50008,50556	34991.44	70504.27	50108.55	59047.33	41611.18	84319.78	97140.59	56715.96	134561.7	52110.31	61553.77	67555.47	65262.99	68597.03	59827.38	73200.35	75049.44	64108.37	40359.89	70903.29	49636.31	49821.32	37258.59	76579.02	76685.11	37386.23
28	P53597	SUCLG1	387432.1583	99433.59	228946.3	94932.09	310472.5	150524.5	187002.3	299487.5	275420.7	308775.7	299487.5	101732.7	245595.9	108554.7	270810.9	89524.72	192915.6	276628.6	357417.6	96737.9	205171.6	95793.82	288001.8	162300.5	193664.8	299487.5	245595.9
29	O00186	STXBP3	NA	28468.21	NA	NA	NA	19019.68	1804.538	NA	NA	NA	NA	21949.83	NA	NA	NA	NA	NA	NA	15575.29	29005.53	NA	NA	NA	NA	2064.747	NA	NA
30	Q8N335	GPD1L	52415.71111	NA	59328.51	NA	54240.61	21949.83	109838.9	91466.47	45427.61	109273.7	50443.03	NA	52700.48	22321.01	45502.32	NA	57623.34	41362.6	54737.36	NA	62380.69	NA	54839	23827.06	152627.3	71658.52	49636.31
31	P08621	SNRNP70	48594.65	51791.05	47269.07	86082.28	44306.32	53026.19	1804.538	NA	59432.1	54839	49636.31	60605.33	52477.21	NA	NA	72977.35	74546.25	82242.07	33003.64	60605.33	49636.31	93224.91	NA	56917.54	2064.747	NA	50797.63
32	Q969V6	MKL1	NA	91325.89	55954.92	NA	74269.09	80102.57	1804.538	NA	71906.43	NA	NA	152627.3	72497.5	72497.5	89662.88	51690.71	68707.95	41576.85	72021.55	92973.8	NA	NA	NA	88904.66	2064.747	NA	NA
33	P08311	CTSG	NA	NA	46154.89	NA	NA	67879.78	1804.538	NA	53026.19	NA	NA	68927.99	NA	NA	NA	NA	218057.1	78414.15	NA	NA	46895.88	NA	NA	56514.53	66379.24	NA	NA
34	Q9UKU7	ACAD8	46053.91944	31797.32	50179.16	NA	64601.65	NA	75160.02	49228.15	44010.16	28070.84	41974.24	NA	41840.21	NA	42678.39	NA	24335.52	32270.84	46053.92	NA	49467.07	NA	61900.08	NA	2064.747	46053.92	44605.86
35	Q86X76	NIT1	75613.88611	NA	61068.98	63988.55	80199.58	69590.71	1804.538	55745.15	70389.43	NA	84009.8	75506.47	78547.77	84980.21	76153.19	NA	57523.94	40935.27	70713.02	NA	59540.84	70713.02	78753.85	73278.36	55745.15	58932	52415.71
36	P05162	LGALS2	33491.8	NA	35565.03	NA	52415.71	36825.06	1804.538	23560.07	18592.77	NA	36763.92	72761.18	35479.7	50008.51	24907.94	NA	16653.18	22730.31	34916.06	NA	30730.15	NA	32815.68	71139.86	2064.747	NA	25737.06
37	P23946	CMA1	NA	NA	NA	NA	NA	NA	1804.538	NA	NA	NA	NA	NA	NA	NA	NA	NA	61155.07	14049.16	NA	NA	NA	NA	NA	NA	53240.82	NA	NA
38	P01834	IGKC	462133.8694	885197.1	692332.5	484624	296507.9	462133.9	1219164	319228.4	659554.4	351190.2	312295.6	524995.4	566103.9	692332.5	325019.6	494067.2	286640.3	263299.1	499422.8	1130692	706520.3	469971.2	322906.2	438752.3	913960	310472.5	643593
39	P14868	DARS	12567.36389	110112	54554.37	136875.9	30209.1	121022.2	1804.538	114195.5	43350.86	95493.71	29430.84	182241.6	61667.11	201171.9	81193.99	247871.5	161420	94484.9	76929.26	114678.3	54839	177772	50108.55	141996.6	2064.747	95951.08	53026.19
40	Q9H773	DCTPP1	NA	NA	NA	NA	NA	NA	1804.538	46303.49	NA	11589.48	NA	27509.79	NA	NA	NA	26314.17	87070.11	74656.39	NA	NA	NA	NA	NA	NA	2064.747	22251.11	NA 💌
Per	STa	ibie3 / leg																							_		100%	0	
Rei	,																										0.020 10076		4.35 014
		2	O																							EN	~ 🧐 🗄		4:35 PM 6/28/2016

Common missing-value imputation methods

Impute based on the mean value of the corresponding feature

Determine highly correlated variables, impute by regression

Impute based on the mean of k nearest neighbours

You have two batches with lots of missing values

Do you normalize / remove batch effects first, or do you impute missing values first?

Do you combine the two batches and do missing-value imputation on the combined data, or do you do missing-value imputation on the two batches separately?

Why batch-sensitization is impt for missing-value imputation

M1: Global mean imputation. M2: Same-batch mean imputation. M3: Cross-batch mean imputation. For M1, M2, and M3 "batch corrected", the batch correction was performed post mean imputation.

HarmonizR

Voss et al., Nature Communications, 13:3523, 2022

Fig. 1 The general HarmonizR operation principle. Schematic representation of the HarmonizR operation principle for batch effect reduction across independent proteomic studies.

Combined data into one matrix Extract submatrices w/o too many missing values Batch correct each submatrix based on user input Put them back together

Batch effects are insidious and unavoidable in omics data Batch-effect correction can introduce artifacts into data

Missing values are prevalent in some omics data types (e.g., proteomics MS and scRNA-seq)

Missing-value imputation in the presence of batch effects is tricky

Batch-effect correction in the presence of missing values is tricky