Bioinformatics and
Biomarker Discovery
Part 3: Examples

Outline

 ALL
— Gene expression profile classification
— Beyond diagnosis and prognosis

« WEKA
— Breast cancer
— Dermatology
— Pima Indians
— Echocardiogram
— Mammography
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Gene Expression Profile Classification

Childhood ALL

Major subtypes: T-ALL,
E2A-PBX, TEL-AML, BCR-
ABL, MLL genome
rearrangements,
Hyperdiploid>50

Diff subtypes respond
differently to same Tx

Over-intensive Tx

— Development of
secondary cancers

— Reduction of IQ
Under-intensiveTx
— Relapse
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e The subtypes look similar

e Conventional diagnosis
— Immunophenotyping
— Cytogenetics
— Molecular diagnostics

¢ Unavailable in most
ASEAN countries
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INUS
Subtype Diagnosis by PCL ""‘""‘"’"’
» Gene expression data collection

» Gene selection by %2

» Classifier training by emerging pattern

. Classifi ing (optional f hi
learning-methods)-

» Apply classifier for diagnosis of future cases by
PCL
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Childhood ALL Subtype ~ BgNu2
Diagnosis Workflow

A Sample

Atree-structured g prxiy Y

diagnostic i
workflow was TeCAMLL D i
recommended by
our doctor
collaborator
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INUS
Training and Testing Sets =

Paired datasets Ingredients Training Testing

T-ALL vs OTHERS1 ={E2A-PBX1, TEL-AMLI, 28 vs 187 15 vs 97

QOTHERS1 BCR-ABL, Hyperdip:>50, MLL, OTHERS}

E2A-PBX1vs  OTHERS? = {TEL-AMLI, BCR-ABL 18 v8 169 9 vs 88

OTHERS2 Hyperdip>50, MLL, OTHERS]}

TEL-AML1 v8  OTHERS2 = {BCR-ABL 52 vs 117 27 vs 61

QOTHERS3 Hyperdip>50, MLL, OTHERS}

BCR-ABL vs OTHERS4 = {Hyperdip>>50, 9vs 108 6 ve 3D

OTHERS4 MLL, OQTHERS}

MLL vs QTHERSS = {Hyperdip>50, OTHERS} 14vs 94 6 vs 49

QOTHERSS

Hyperdip>50 v OTHERS = {Hyperdipd7-50, Prendodip, 42 vs 52 22 vs 27

OTHERS Hypodip, Nerma}

Copyright 2009 © Limsoon Wong

S NUS
Signal Selection by 2 —

The X2 value of a signal is defined ss:

xz _ %’l k (A‘lj 13)
5=l 3—1 By Y

where m is the number of intervals, &

the number of clessen, A;; the number
of samples in the ith ml:erval 7th class,
f; the number of samples in tﬁe ith in-
terval, C; the number of samples in the

Fth claaa N the tofal number ofmm
pleﬁ and E;; the expected frequency of
Ay (B = R: * 0j/N).
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EBANUS
Accuracy of Various Classifiers ""*"-"“"

Testing Data Error rate of different models
C45 SVM NB PCL

T-ALL vs OTHERS1 a1 0:0 00 (0
E2A-PBX1 v OTHERS2 00 0 B0 0.0
TEL-AML1 vs OTHERS3 1:1 d:1 Gl 1:0
BCR-ABL vs OTHERS4 2:0 3.0 14 2:0
MLL vs OTHERSS a1 0:0 00 0:0

Byperdiploid>50 vs OTHERS  2:6 2 02 g:1

Total Errors 14 6 8 4

The classifiers are all applied to the 20 genes selected
by %2 at each level of the tree
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E2A-PB X1
TEL-AMLI

Obtained by performing PCA on the 20 genes chosen for each level

Copyright 2009 © Limsoon Wong



o g BN
Visualization by Clustering s

Diagnostic ALL BM Samples (n = 327)

< e
Genes § T i
selected
by 2

Genes for class distinction (n

E2A- MLL T-ALL Hyperdiploid = 50 Ba- Novel TEL-AML1
PBX1 ABL

New subtype
discovered

Beyond Disease Diagnosis & Prognosis
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Beyond Classification of ,'E'.._'“_E
Gene Expression Profiles

» After identifying the candidate genes by feature
selection, do we know which ones are causal
genes, which ones are surrogates, and which are

i ?
noise: Diagnostic ALL BM samples (n=327)

] mnm"nﬁﬁlﬁmmmmmmﬁlﬁﬂ Ll

=271)

Genes for class
distinction (n

E2A- MLL T-ALL Hyperdiploid >50 BCR- Novel TEL-AML1
PBX1 ABL

B
3¢ 26 -lo 0 lo 26 3o
o = std deviation from mean
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SENUS
Percentage of Overlapping Genes~ =

* Low % of overlapping Datasets DEG POG
genes from diff expt in
general

Prostate | Top 10 | 0.30
Cancer | Top50 | 0.14
Top100 0.15

— Prostate cancer
e Lapointe et al, 2004
e Singh et al, 2002
- Lung cancer
e Garber et al, 2001
e Bhattacharjee et al,

Lung Top 10 0.00
Cancer | Top50 | 0.20
Top100 0.31

2001
— Top 10 0.20
DMD DMD P
e Haslett et al, 2002 Top 50 0.42
¢ Pescatori et al, 2007 Top100 0.54

Zhang et al, Bioinformatics, 2009
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Gene Regulatory Circuits e

e Genes are “connected”
in “circuit” or network

« Exprofageneina
network depends on
expr of some other
genes in the network

 Can we “reconstruct”
the gene network from
gene expression and
other data? Source: Miltenyi Biotec

Copyright 2009 © Limsoon Wong

FINUS
Hints to extend reach of predictiort” =

« Each disease subtype has underlying cause

= There is a unifying biological theme for genes
that are truly associated with a disease subtype

* Uncertainty in reliability of selected genes can be
reduced by considering molecular functions and
biological processes associated with the genes

» The unifying biological theme is basis for
inferring the underlying cause of disease subtype
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SINUS
Intersection Analysis -

e Intersect the list of
differentially expressed

. . Caution:
genes with a list of genes T ) )
on a pathway e Initial list of differentially

expressed genes is
defined using test

* Ifintersection is , statistics with arbitrary
significant, the pathway is thresholds

postulated as basis of
disease subtype or
treatment response

» Diff test statistics and diff
thresholds result in a diff
list of differentially
expressed genes

Exercise: What is a good test
= Outcome may be unstable

statistics to determine if the
intersection is significant?
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SNUS
Connected-Component Analysis~ =

Datasets DEG GSEA Our
POG POG

Prostate | Top 10 0.30
| _ | Cancer | Top50 | 0.14
T oY 3 i Topl00 | 0.15| |0.82

Lung Top 10 0.00
- e T Cancer Top 50 0.20
» Select Cp if Sccp s Top100 | 0.31 | |0.70

significant
Top 10 0.20
DMD
Top 50 0.42

Top100 0.54 0.67
Zhang et al, Bioinformatics, 2009
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Any Question?

21
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A Popular Software Package: WEKA

d’wm

* Weka is a collection of machine learning
algorithms for data mining tasks. The algorithms
can either be applied directly to a dataset or
called from your own Java code. Weka contains
tools for data pre-processing, classification,
regression, clustering, association rules, and
visualization.

Exercise: Download a copy of WEKA. What are the names
of classifiers in WEKA that correspond to C4.5 and SVM?
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NS
Let’'s try WEKA on ... -
* Breast cancer
 Dermatology
* Pima Indians

» Echocardiogram

« Mammography
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