## Bioinformatics and Biomarker Discovery Part 1: Foundations

Limsoon Wong 8 September 2010



#### Themes of Bioinformatics



Bioinformatics =

Data Mgmt +

Knowledge Discovery +

Sequence Analysis +

Physical Modeling + ....

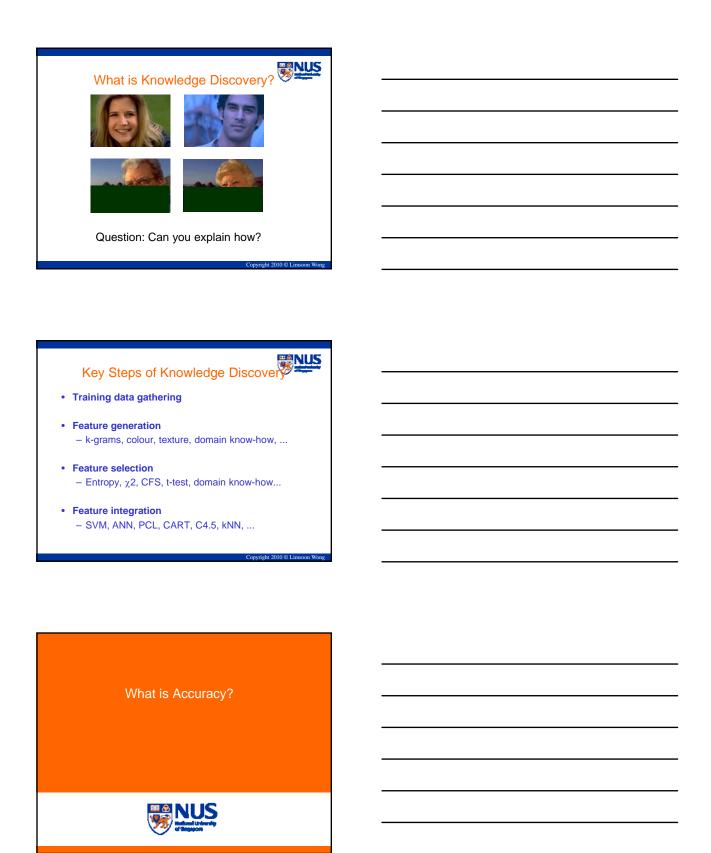
Knowledge Discovery =

Statistics + Algorithms + Databases

Applications include diagnosis, prognosis, & treatment optimization, often thru biomarker discovery

Copyright 2010 © Limsoon Wong

# What is Knowledge Discovery? Jonathan's blocks Jessica's blocks Whose block is this? Jonathan's rules Jessica's rules : Blue or Circle : All the rest







|          | predicted<br>as positive | predicted<br>as negative |  |  |
|----------|--------------------------|--------------------------|--|--|
| positive | TP                       | FN                       |  |  |
| negative | FP                       | TN                       |  |  |

$$Accuracy = \frac{No. \ of \ correct \ predictions}{No. \ of \ predictions}$$
 
$$= \frac{TP + TN}{TP + TN + FP + FN}$$

## Examples (Balanced Population)



| classifier | TP | TN | FP | FΝ | Accuracy |
|------------|----|----|----|----|----------|
| Α          | 25 | 25 | 25 | 25 | 50%      |
| В          | 50 | 25 | 25 | 0  | 75%      |
| С          | 25 | 50 | 0  | 25 | 75%      |
| D          | 37 | 37 | 13 | 13 | 74%      |

- · Clearly, B, C, D are all better than A
- Is B better than C, D?
- Is C better than B, D?
- Is D better than B, C?

Accuracy may not tell the whole story

## Examples (Unbalanced Population



| classifier | TP | TN  | FP  | FN | Accuracy |
|------------|----|-----|-----|----|----------|
| Α          | 25 | 75  | 75  | 25 | 50%      |
| В          | 0  | 150 | 0   | 50 | 75%      |
| С          | 50 | 0   | 150 | 0  | 25%      |
| D          | 30 | 100 | 50  | 20 | 65%      |

- · Clearly, D is better than A
- Is B better than A, C, D?

Exercise: What is B's Prediction strategy?



|          | predicted<br>as positive | predicted<br>as negative |
|----------|--------------------------|--------------------------|
| positive | TP                       | FN                       |
| negative | FP                       | TN                       |

No. of correct positive predictions

Sensitivity = \_\_wrt positives

No. of positives

TP  $=\frac{1}{TP+FN}$ 

Sometimes sensitivity wrt negatives is termed specificity

#### What is Precision?



|          | predicted<br>as positive | predicted<br>as negative |
|----------|--------------------------|--------------------------|
| positive | TP                       | FN                       |
| negative | FP                       | TN                       |

No. of correct positive predictions Precision = wrt positives

No. of positives predictions

TP TP + FP

## Unbalanced Population Revisited Nus



| classifier | TP | TN  | FP  | FN | Accuracy | Sensitivity | Precision |
|------------|----|-----|-----|----|----------|-------------|-----------|
| Α          | 25 | 75  | 75  | 25 | 50%      | 50%         | 25%       |
| В          | 0  | 150 | 0   | 50 | 75%      | 0%          | ND        |
| С          | 50 | 0   | 150 | 0  | 25%      | 100%        | 25%       |
| D          | 30 | 100 | 50  | 20 | 65%      | 60%         | 38%       |

- What are the sensitivity and precision of B and C?
- Is B better than A, C, D?

#### Abstract Model of a Classifier



- Given a test sample S
- Compute scores p(S), n(S)
- Predict S as negative if p(S) / n(S) < t
- Predict S as positive if  $p(S)/n(S) \ge t$

t is the decision threshold of the classifier

changing t affects the recall and precision, and hence accuracy, of the classifier

#### An Example



| S  | P(S)     | N(S)     | Actual    | Predicted | Predicted |
|----|----------|----------|-----------|-----------|-----------|
|    |          |          | Class     | Class     | Class     |
|    |          |          |           | 0 t = 3   | 0 t = 2   |
| 2  | 0.961252 | 0.038748 | P         | P         | P         |
| 3  | 0.435302 | 0.564698 | N         | N         | N         |
| 6  | 0.691596 | 0.308404 | P         | N         | P         |
| 7  | 0.180885 | 0.819115 | N         | N         | N         |
| 8  | 0.814909 | 0.185091 | P         | P         | P         |
| 10 | 0.887220 | 0.112780 | P         | P         | P         |
|    |          |          | accuracy  | 5 / 6     | 6/6       |
|    |          |          | recall    | 3/4       | 4/4       |
|    |          |          | precision |           | 4/4       |

- Recall that ...
   Predict S as negative if p(S) / n(S) < t• Predict S as positive if  $p(S) / n(S) \ge t$

### Precision-Recall Trade-off



- A predicts better than B if A has better recall and precision than B
- There is a trade-off between recall and precision
  - recall precision
- In some applications, once you reach a satisfactory precision, you optimize for recall
- In some applications, once you reach a satisfactory recall, you optimize for precision

## Comparing Prediction Performance

- Accuracy is the obvious measure
  - But it conveys the right intuition only when the positive and negative populations are roughly equal in size
- Recall and precision together form a better measure
  - But what do you do when A has better recall than B and B has better precision than A?

So let us look at some alternate measures ....

Copyright 2010 © Limsoon Wong

### **Adjusted Accuracy**



• Weigh by the importance of the classes

Adjusted accuracy =  $\alpha *$  Sensitivity +  $\beta *$  Specificity

where  $\alpha + \beta = 1$  typically,  $\alpha = \beta = 0.5$ 

| classifier | TP | TN  | FP  | FΝ | Accuracy | Adj Accuracy |
|------------|----|-----|-----|----|----------|--------------|
| Α          | 25 | 75  | 75  | 25 | 50%      | 50%          |
| В          | 0  | 150 | 0   | 50 | 75%      | 50%          |
| С          | 50 | 0   | 150 | 0  | 25%      | 50%          |
| D          | 30 | 100 | 50  | 20 | 65%      | 63%          |

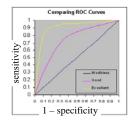
But people can't always agree on values for  $\alpha$ ,  $\beta$ 

Copyright 2010 © Limsoon Wong

#### **ROC Curves**

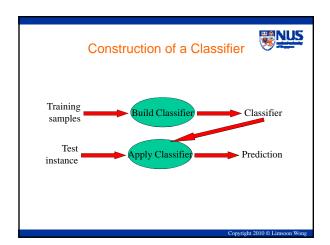


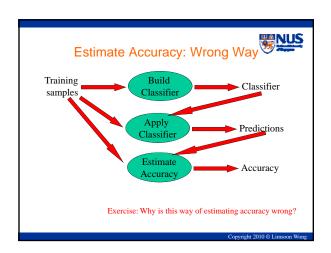
- By changing t, we get a range of sensitivities and specificities of a classifier
- A predicts better than B if A has better sensitivities than B at most specificities
- Leads to ROC curve that plots sensitivity vs. (1 – specificity)
- Then the larger the area under the ROC curve, the



Copyright 2010 © Limsoon Won







## K-Nearest Neighbour Classifier (k-Ne)

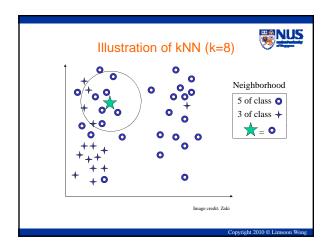
- · Assume S is well approximated by its neighbours
- Then, given a sample S, find the k observations  $S_1 \dots S_k$  in the known data that are "closest" to it, and average their responses

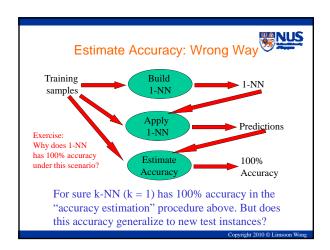
$$p(S) = \sum_{S_i \in N_k(S) \cap D^p} 1 \qquad n(S) = \sum_{S_i \in N_k(S) \cap D^N} 1$$

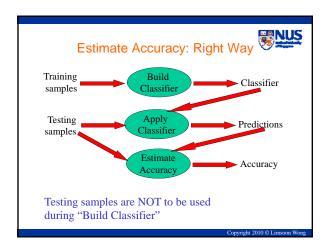
where  $N_k(S)$  is the neighbourhood of S defined by the k nearest samples to it.

Assume distance between samples is Euclidean distance for now

Copyright 2010 © Limsoon Wons





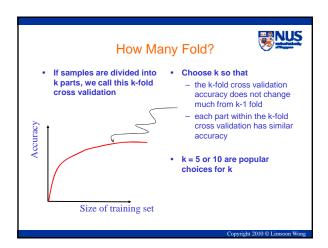


## How Many Training and Testing Samples:

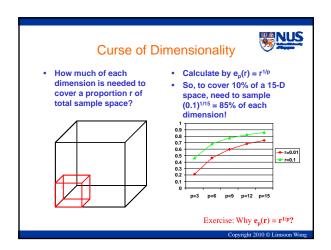
- No fixed ratio between training and testing samples; but typically 2:1 ratio
- Proportion of instances of different classes in testing samples should be similar to proportion in training samples
- What if there are insufficient samples to reserve 1/3 for testing?
- Ans: Cross validation

Copyright 2010 © Limsoon Wong

# Cross Validation 1.Test 2.Train 3.Train 4.Train 5.Train 1.Train 2.Train 3.Train 4.Train 5.Train



## Curse of Dimensionality



## Consequence of the Curse



- Suppose the number of samples given to us in the total sample space is fixed
- · Let the dimension increase
- Then the distance of the k nearest neighbours of any point increases
- Then the k nearest neighbours are less and less useful for prediction, and can confuse the k-NN classifier (and other types of classifiers as well)

Copyright 2010 © Limsoon Wong

What is Feature Selection?



## Tackling the Curse



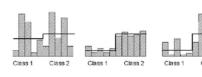
- Given a sample space of p dimensions
- It is possible that some dimensions are irrelevant
- Need to find ways to separate those dimensions (aka features) that are relevant (aka signals) from those that are irrelevant (aka noise)

Copyright 2010 © Limsoon Wo

## Signal Selection (Basic Idea)



- · Choose a feature w/ low intra-class distance
- · Choose a feature w/ high inter-class distance



## Signal Selection (e.g., t-statistics)



The t-state of a signal is defined as

$$t = \frac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$

where  $\sigma_i^2$  is the variance of that signal in class i,  $\mu_i$  is the mean of that signal in class i, and  $n_i$  is the size of class i.

Suggestion a modification to t-stats when n1 and n2 are small.

#### Self-fulfilling Oracle



- · Construct artificial dataset with 100 samples, each with 100,000 randomly generated features and randomly assigned class labels
- Select 20 features with the best t-statistics (or other methods)
- Evaluate accuracy by cross validation using only the 20 selected features
- · The resultant estimated accuracy can be ~90%
- But the true accuracy should be 50%, as the data were derived randomly

## What Went Wrong?



- The 20 features were selected from the whole
- · Information in the held-out testing samples has thus been "leaked" to the training process
- The correct way is to re-select the 20 features at each fold; better still, use a totally new set of samples for testing

## **Confounding Factors**



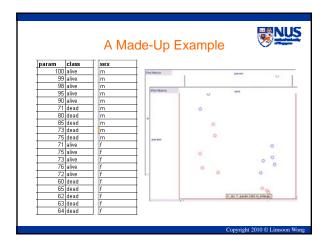
## A True Story (Charig et al, 1986)



| Treatment A   | Treatment B   |  |
|---------------|---------------|--|
| 78% (273/350) | 83% (289/350) |  |

|              | Treatment A              | Treatment B              |
|--------------|--------------------------|--------------------------|
| Small Stones | Group 1<br>93% (81/87)   | Group 2<br>87% (234/270) |
| Large Stones | Group 3<br>73% (192/263) | Group 4<br>69% (55/80)   |
| Both         | 78% (273/350)            | 83% (289/350)            |

- · Treatment B seems more effective than Treatment A for kidney stone
- Now Treatment A seems more effective than Treatment B
- Case of Simpson Paradox: But we won't know this if we don't capture stone size info





## What have we learned?



- Methodology of data mining
  - Feature generation, feature selection, feature integration
- Evaluation of classifiers
  - Accuracy, sensitivity, precision
  - Cross validation
- Curse of dimensionality
  - Feature selection concept
  - Self-fulfilling oracle

Copyright 2010 © Limsoon Wor

## Any Questions? Acknowledgements • The first two slides were shown to me 10+ years ago by Tan Ah Hwee

#### References



- John A. Swets, Measuring the accuracy of diagnostic systems, Science 240:1285–1293, June 1988
- Trevor Hastie et al., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2001. Chapters 1, 7
- Lance D. Miller et al., Optimal gene expression analysis by microarrays, *Cancer Cell* 2:353--361, 2002
- David Hand et al., Principles of Data Mining, MIT Press, 2001
- Jinyan Li et al., Data Mining Techniques for the Practical Bioinformatician, The Practical Bioinformatician, Chapter 3, pages 35—70, WSPC, 2004

Copyright 2010 © Limsoon Won