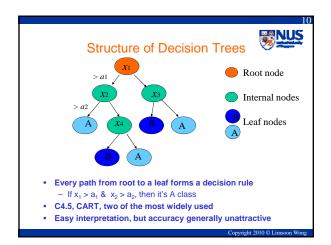


Copyright 2

Computational Supervised Learning

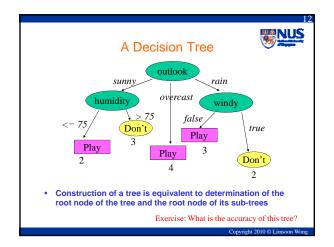
- Also called classification
- · Learn from past experience, and use the learned knowledge to classify new data
- Knowledge learned by intelligent algorithms
- Examples:
 - Clinical diagnosis for patients
 - Cell type classification

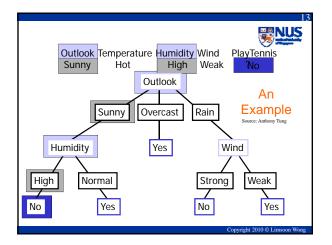
Relational Representation of Patient Data								
<i>n</i> features (order of 1000)								
_	gene ₁	gene ₂	gene ₃	gene ₄		gene _n	class	
<i>m</i> samples		x ₁₂ x ₂₂ x ₃₂				$\begin{array}{c} x_{1n} \\ x_{2n} \\ x_{3n} \end{array}$	→P →N →P	
	x _{m1}	x _{m2}	x _{m3}	x _{m4}		x _{mn}	→N	
						Convrid	ht 2010 © Limsoon Wong	


Requirements of **Biomedical Classification**

- High accuracy/sensitivity/specificity/precision
- High comprehensibility

Copyright 2010 © Li

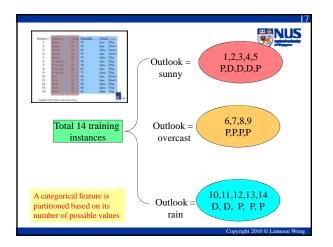

- Importance of Rule-Based Methods • Systematic selection of a small number of features used for the decision making
- \Rightarrow Increase the comprehensibility of the knowledge patterns
- C4.5 and CART are two commonly used rule induction algorithms---a.k.a. decision tree induction algorithms

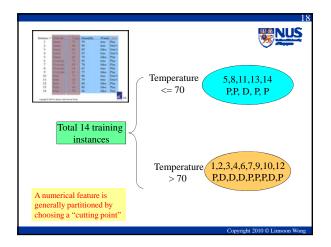


A Simple Dataset				8 2	
Outlook	Temp	Humidity	Windy	class	
Sunny	75	70	true	Play	
Sunny	80	90	true	Don't	
Sunny	85	85	false	Don't	
Sunny	72	95	true	Don't	9 Play samples
Sunny	69	70	false	Play	> I huy sumpto.
Overcast	72	90	true	Play	5 Don't
Overcast	83	78	false	Play	5 Don t
Overcast	64	65	true	Play	
Overcast	81	75	false	Play	A total of 14.
Rain	71	80	true	Don't	
Rain	65	70	true	Don't	
Rain	75	80	false	Play	
Rain	68	80	false	Play	
Rain	70	96	false	Play	

Most Discriminatory Feature

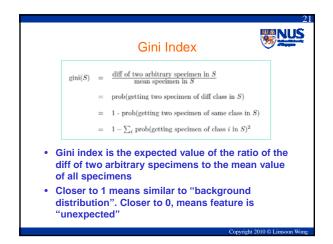
- Every feature can be used to partition the training data
- If the partitions contain a pure class of training instances, then this feature is most discriminatory

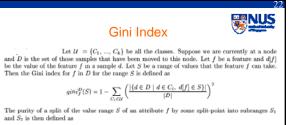

Example of Partitions


- Categorical feature
 - Number of partitions of the training data is equal to the number of values of this feature
- Numerical feature
 - Two partitions

						16	
Categ	Categorical feature		Numerical feature		B NUS		
Instance #	Outlook	Temp	Humidity	Windv	class	and and a	
1	Sunny	75	70	true	Play		
2	Sunny	80	90	true	Don't		
3	Sunny	85	85	false	Don't		
4	Sunny	72	95	true	Don't		
5	Sunny	69	70	false	Play		
6	Overcast	72	90	true	Play		
7	Overcast	83	78	false	Play		
8	Overcast	64	65	true	Play		
9	Overcast	81	75	false	Play		
10	Rain	71	80	true	Don't		
11	Rain	65	70	true	Don't		
12	Rain	75	80	false	Play		
13	Rain	68	80	false	Play		
14	Rain	70	96	false	Play		
Copyright 2010 © Limsoon Wor							






Steps of Decision Tree Construction

- Partition the dataset into subsets using this feature so that the subsets are as "pure" as possible
- After partition by this feature, select the best feature (wrt the subset of training data) as the root node of this sub-tree
- Recursively, until the partitions become pure or almost pure

right 2010 © Lim

 $gini_f^D(S_1,S_2) = \sum_{S \in \{S_1,S_2\}} \frac{|\{d \in D \mid d[f] \in S\}|}{|D|} * gini_f^D(S)$

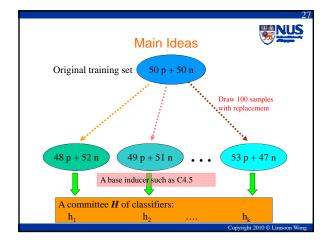
we choose the feature f and the split-point p that minimizes $gini_f^D(S_1,S_2)$ over all possible alternative features and split-points.

Copyright 2010 © Lin

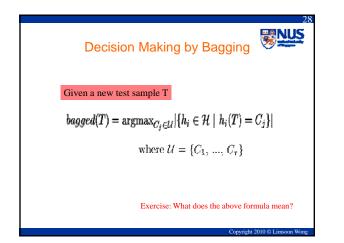
Example Use of Decision Tree Methods: Proteomic Approaches to Biomark Approaches to Biomarker Discovery

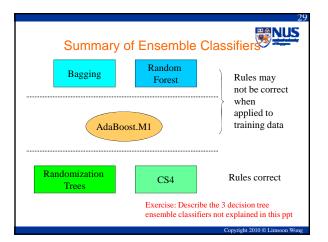
- In prostate and bladder cancers (Adam et al. Proteomics, 2001)
- In serum samples to detect breast cancer (Zhang et al. Clinical Chemistry, 2002)
- In serum samples to detect ovarian cancer (Petricoin et al. Lancet; Li & Rao, PAKDD 2004)

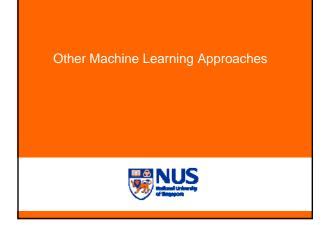
Decision Tree Ensembles

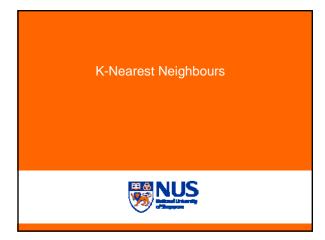


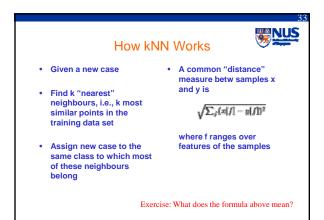
10 © Limsoor

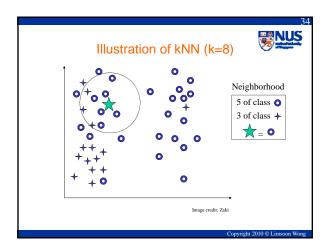

Motivating Example

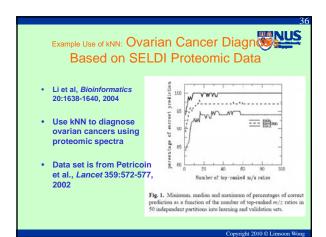

- h_1 , h_2 , h_3 are indep classifiers w/ accuracy = 60%
- C₁, C₂ are the only classes
- t is a test instance in C₁
- $h(t) = \operatorname{argmax}_{C \in \{C1, C2\}} |\{h_j \in \{h_1, h_2, h_3\} | h_j(t) = C\}|$
- Then prob(h(t) = C₁)
 - $= prob(h_1(t)=C_1 & h_2(t)=C_1 & h_3(t)=C_1) +$ $prob(h_1(t)=C_1 & h_2(t)=C_1 & h_3(t)=C_2) +$ $prob(h_1(t)=C_1 & h_2(t)=C_2 & h_3(t)=C_1) +$
 - $prob(h_1(t)=C_2 \& h_2(t)=C_1 \& h_3(t)=C_1)$
 - = 60% * 60% * 60% + 60% * 60% * 40% +
 - **60%** * **40%** * **60%** + **40%** * **60%** * **60%** = **64.8%**



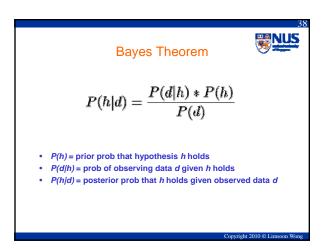


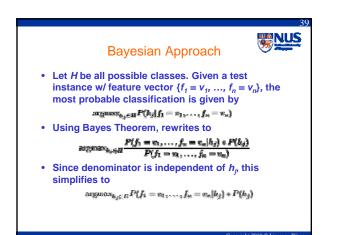






Some Issues




- Simple to implement
- But need to compare new case against all training cases
- \Rightarrow May be slow during prediction
- No need to train
- But need to design distance measure properly
- \Rightarrow may need expert for this
- Can't explain prediction outcome
- \Rightarrow Can't provide a model of the data

<u>BNUS</u>

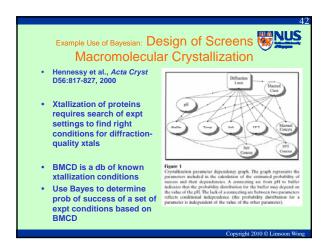
Naïve Bayes

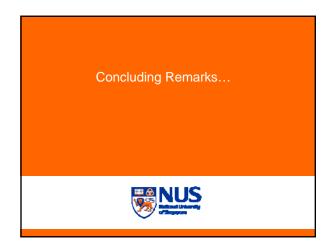
- But estimating P(f₁=v₁, ..., f_n=v_n|h_j) accurately may not be feasible unless training data set is sufficiently large
- "Solved" by assuming $f_{i}, ..., f_n$ are conditionally independent of each other
- Then $\operatorname{argmax}_{k_j \in S^2} P(f_1 = e_1, \dots, f_n = e_n | k_j) * P(k_j)$

 $= \operatorname{argma}_{k_j \in B} \prod P(f_i = v_i | k_j) \circ P(k_j)$

 where P(h_i) and P(f=v_i|h_i) can often be estimated reliably from typical training data set

Exercise: How do you estimate $P(h_i)$ and $P(f_i=v_i|h_i)$?


Independence vs Conditional Independence



Copyright 2010 © Limsoor

Conditional Independence
Independence: P(A,B) = P(A) * P(B)

- Conditional Independence: P(A,B|C) = P(A|C) * P(B|C)
- Indep does not imply conditional indep
 - Consider tossing a fair coin twice
 - A is event of getting head in 1st toss
 - B is event of getting head in 2nd toss
 - C is event of getting exactly one head
 - Then A={HT, HH}, B={HH, TH} and C={HT, TH}
 - $P(A,B|C) = P({HH}|C)=0$
 - $P(A|C) = P(A,C)/P(C) = P({HT})/P(C)=(1/4)/(1/2) = 1/2$
 - Similarly, P(B|C) = 1/2

Acknowledgements

References

- L. Breiman, et al. Classification and Regression Trees. Wadsworth and Brooks, 1984
- L. Breiman, Bagging predictors, Machine Learning, 24:123--140, 1996
- L. Breiman, Random forests, Machine Learning, 45:5-32, 2001
- J. R. Quinlan, Induction of decision trees, Machine Learning, 1:81--106, 1986
- J. R. Quinlan, C4.5: Program for Machine Learning. Morgan Kaufmann, 1993
- C. Gini, Measurement of inequality of incomes, The Economic Journal, 31:124--126, 1921
- Jinyan Li et al., Data Mining Techniques for the Practical Bioinformatician, *The Practical Bioinformatician*, Chapter 3, pages 35—70, WSPC, 2004

References

- Y. Freund, et al. Experiments with a new boosting algorithm, ICML 1996, pages 148--156
- T. G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning, 40:139--157, 2000
- J. Li, et al. Ensembles of cascading trees, ICDM 2003, pages 585—588
- Naïve Bayesian Classification, Wikipedia,
- Hidden Markov Model, Wikipedia, http://en.wikipedia.org/wiki/Hidden_Markov_model

Exercise: Download a copy of WEKA. What are the names of classifiers in WEKA that correspond to C4.5 and SVM?

Copyright 2010 © Limsoon V