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Outline

• ALL

– Gene expression profile classification

– Beyond diagnosis and prognosis

WEKA
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• WEKA

– Breast cancer

– Dermatology

– Pima Indians

– Echocardiogram

– Mammography 

Gene Expression Profile Classification

Diagnosis of Childhood Acute 
Lymphoblastic Leukemia and Optimization 

of Risk-Benefit Ratio of Therapy
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• The subtypes look similar

Childhood ALL

• Major subtypes: T-ALL, 
E2A-PBX, TEL-AML, BCR-
ABL, MLL genome 
rearrangements, 
Hyperdiploid>50
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• Conventional diagnosis

– Immunophenotyping

– Cytogenetics

– Molecular diagnostics

• Unavailable in most 
ASEAN countries

• Diff subtypes respond 
differently to same Tx

• Over-intensive Tx 

– Development of 
secondary cancers

– Reduction of IQ

• Under-intensiveTx 

– Relapse
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Subtype Diagnosis by Machine Learning

• Gene expression data collection

• Gene selection by e.g. 2

Cl ifi t i i b i tt
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• Classifier training by e.g. emerging pattern

• Classifier tuning (optional for some machine 
learning methods)

• Apply classifier for diagnosis of future cases by 
e.g. PCL
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Childhood ALL Subtype 
Diagnosis Workflow

A tree-structured
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diagnostic 
workflow was 
recommended by
our doctor 
collaborator
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Training and Testing Sets
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Signal Selection by  2
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Accuracy of Various Classifiers
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The classifiers are all applied to the 20 genes selected 
by 2 at each level of the tree
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Visualization by PCA
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Obtained by performing PCA on the 20 genes chosen for each level
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Visualization by Clustering
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Normalization
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Sometimes, a gene expression study 
may involve batches of data collected 
over a long period of time…

60

70

Time Span of Gene Expression Profiles

Image credit: Dong Difeng
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In such a case, batch effect may be 
severe… to the extent that you can 
predict the batch that each sample 
comes!
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Need normalization to correct for batch effect

Image credit: Dong Difeng
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Approaches to Normalization

• Aim of 
normalization: 

Reduce variance 
w/o increasing bias

• Xform data so that 
distribution of 
probe intensities is 
same on all arrays

( ) /
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• Scaling method
– Intensities are scaled 

so that each array 
has same ave value

– E.g., Affymetrix’s 

– E.g., (x ) / 

• Quantile 
normalization
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Quantite Normalization

• Given n arrays of length p, 
form X of size p × n where 
each array is a column

• Sort each column of X to 
give Xsort
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g sort

• Take means across rows 
of Xsort and assign this 
mean to each elem in the 
row to get X’sort

• Get Xnormalized by arranging 
each column of X’sort to 
have same ordering as X

• Implemented in some 
microarray s/w, e.g., 
EXPANDER

Beyond Disease Diagnosis & Prognosis
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Beyond Classification of 
Gene Expression Profiles

• After identifying the candidate genes by feature 
selection, do we know which ones are causal 
genes, which ones are surrogates, and which are 
noise? Diagnostic ALL BM samples (n=327)
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Percentage of Overlapping Genes

• Low % of overlapping 
genes from diff expt in 
general

– Prostate cancer
• Lapointe et al 2004

Datasets DEG POG

Prostate
Cancer

Top 10 0.30

Top 50 0.14

Top100 0.15
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• Lapointe et al, 2004

• Singh et al, 2002

– Lung cancer
• Garber et al, 2001

• Bhattacharjee et al, 
2001

– DMD
• Haslett et al, 2002

• Pescatori et al, 2007

Lung
Cancer

Top 10 0.00

Top 50 0.20

Top100 0.31

DMD
Top 10 0.20

Top 50 0.42

Top100 0.54
Zhang et al, Bioinformatics, 2009
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Gene Regulatory Circuits

• Genes are “connected” 
in “circuit” or network

• Expr of a gene in a 
network depends on
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network depends on 
expr of some other 
genes in the network

• Can we “reconstruct” 
the gene network from 
gene expression and 
other data? Source: Miltenyi Biotec
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• Each disease subtype has underlying cause

There is a unifying biological theme for genes 
that are truly associated with a disease subtype 

• Uncertainty in reliability of selected genes can be

Hints to extend reach of prediction 
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• Uncertainty in reliability of selected genes can be 
reduced by considering molecular functions and 
biological processes associated with the genes

• The unifying biological theme is basis for 
inferring the underlying cause of disease subtype
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Intersection Analysis

• Intersect the list of 
differentially expressed 
genes with a list of genes 
on a pathway

• If intersection is

Caution:

• Initial list of differentially 
expressed genes is 
defined using test 
statistics with arbitrary
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If intersection is 
significant, the pathway is 
postulated as basis of 
disease subtype or 
treatment response

statistics with arbitrary 
thresholds 

• Diff test statistics and diff 
thresholds result in a diff 
list of differentially 
expressed genes

 Outcome may be unstable
Exercise: What is a good test 
statistics to determine if the 
intersection is significant?
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Connected-Component Analysis

Datasets DEG POG

Prostate
Cancer

Top 10 0.30

Top 50 0.14

Top100 0.15

GSEA
POG

Our
POG

0.82
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• Select CP,X if SccP,X is 
significant 

Lung
Cancer

Top 10 0.00

Top 50 0.20

Top100 0.31

DMD
Top 10 0.20

Top 50 0.42

Top100 0.54
Zhang et al, Bioinformatics, 2009
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A Popular Software Package: WEKA
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• http://www.cs.waikato.ac.nz/ml/weka

• Weka is a collection of machine learning 
algorithms for data mining tasks. The algorithms 
can either be applied directly to a dataset or 
called from your own Java code. Weka contains 
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y
tools for data pre-processing, classification, 
regression, clustering, association rules, and 
visualization. 

Exercise: Download a copy of WEKA. What are the names 
of classifiers in WEKA that correspond to C4.5 and SVM?
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Let’s try WEKA on …

• Breast cancer

• Dermatology

Pi I di
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• Pima Indians

• Echocardiogram

• Mammography 


