

– Mammography

Gene Expression Profile Classification

Diagnosis of Childhood Acute Lymphoblastic Leukemia and Optimization of Risk-Benefit Ratio of Therapy

BUR Childhood ALL Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR-ABL, MLL genome • The subtypes look similar • rearrangements, Hyperdiploid>50 Diff subtypes respond differently to same Tx Over-intensive Tx Conventional diagnosis - Immunophenotyping Development of secondary cancers - Cytogenetics - Reduction of IQ - Molecular diagnostics Unavailable in most Under-intensiveTx • **ASEAN countries**

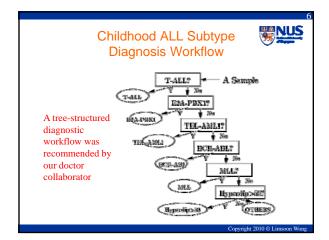
Subtype Diagnosis by Machine Learning

Copyright 2010 © Lin

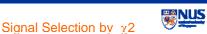
- Gene expression data collection
- Gene selection by e.g. χ2

- Relapse

- · Classifier training by e.g. emerging pattern
- Classifier tuning (optional for some machine learning methods)
- Apply classifier for diagnosis of future cases by e.g. PCL



Tra	aining and Testing S	Sets	1
Paired dataspts	Ingradiants	Training	Testing
T-ALL vs OTHERS1	OTHERSI = [E2A-PEX1, TEL-AML4, BCB-ARL, Rygardig>40, MLL, OTHERS]	28 vs 187	15 va 97
E2A-PBX1 vs OTHEBS2	OTHERE = {IRLAND, ICRARL Reputipses, MLL, OTHERS}	18 vs 109	₿ <i>1</i> 56 856
TEL-AML1 vs OTHERS	OTHERSS = {DOR-ARL Marweigo-30, MCL, OTHERS]	$52 \approx 117$	27 vs 61
BOB-ABL vs OTHERS4	OTHERSI = {Reprofipesity, MER, OTHERS}	9 ve 103	ff na 33
MLL vs OTHERS5	OTHERS3 = {Nypodipod3; OTHERS}	14 vs 94	0 vs 49
Hyperdip:>30 ~ OTHERS	OINERS = {HyprolipLicit, Brankelip, Reportin, Neuros}	42 vs 32	22 vs 27



Copyright 20

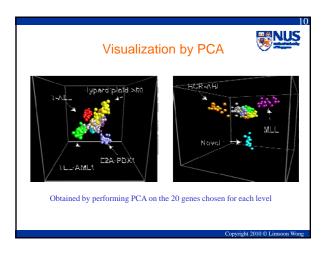
Copyright 2010 © Lin

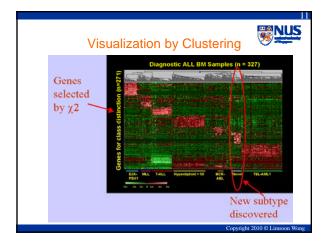
The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^{2}}{E_{ij}},$$

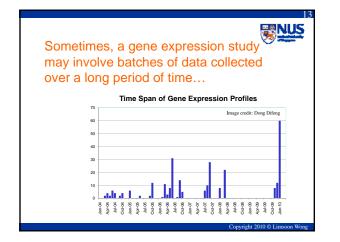
where m is the number of intervals, kthe number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class. N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

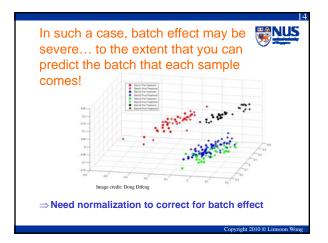
Testing Data	Errer rate of different models			
-	CLS	SVM	NB	PCL
T-ALL vs OTRERSI	0:1	0:0	0:0	0:0
E2A-PBX1 vs OTHERS2	0:0	0:0	0:0	0:0
TEL-AML1 vs OTHERS3	1:1	0:1	0:1	1:0
BCR-ABL «s OTHERS4	2:0	3:0	1:4	2:0
MLL vs OTHERS5	0:1	0:0	0:0	0:0
Hyperdiploid>50 vs OTHERS	2.6	0/2	0:2	0:1
Total Errors	34	6	-8	4

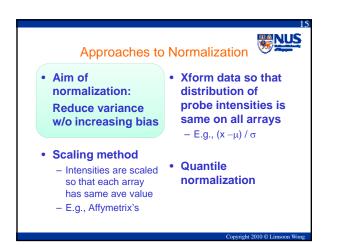






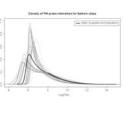






Quantite Normalization

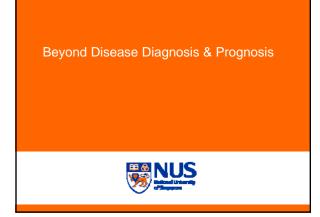
- Given *n* arrays of length *p*, form X of size *p* × *n* where each array is a column
- Sort each column of *X* to give *X*_{sort}
- Take means across rows of X_{sort} and assign this mean to each elem in the row to get X'_{sort}
- Get X_{normalized} by arranging each column of X'_{sort} to have same ordering as X

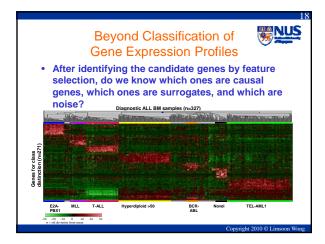


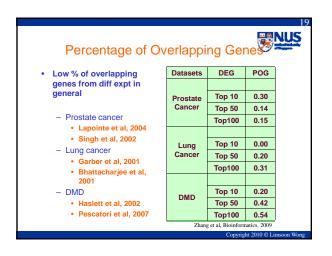
PNUS

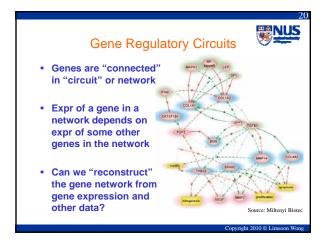
 Implemented in some microarray s/w, e.g., EXPANDER

Copyright 2010 © Limso









Hints to extend reach of prediction

- Each disease subtype has underlying cause \Rightarrow There is a unifying biological theme for genes
- that are truly associated with a disease subtype
- Uncertainty in reliability of selected genes can be reduced by considering molecular functions and biological processes associated with the genes
- The unifying biological theme is basis for • inferring the underlying cause of disease subtype

Intersection Analysis

.

•

- Intersect the list of differentially expressed genes with a list of genes on a pathway
- If intersection is significant, the pathway is postulated as basis of . disease subtype or treatment response

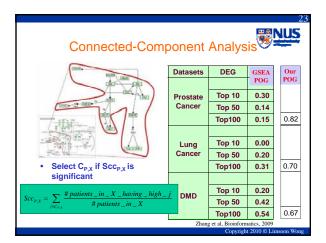
Exercise: What is a good test statistics to determine if the intersection is significant?

Caution: Initial list of differentially expressed genes is defined using test statistics with arbitrary thresholds

Diff test statistics and diff thresholds result in a diff list of differentially expressed genes

Copyright 2010 © Limson

 \Rightarrow Outcome may be unstable



pyright 2010 © Lin

References

- E.-J. Yeoh et al., "Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling", *Cancer Cell*, 1:133--143, 2002
- H. Liu, J. Li, L. Wong. Use of Extreme Patient Samples for Outcome Prediction from Gene Expression Data. *Bioinformatics*, 21(16):3377--3384, 2005.
- L.D. Miller et al., "Optimal gene expression analysis by microarrays", *Cancer Cell* 2:353--361, 2002
- J. Li, L. Wong, "Techniques for Analysis of Gene Expression", *The Practical Bioinformatician*, Chapter 14, pages 319—346, WSPC, 2004
- D. Soh, D. Dong, Y. Guo, L. Wong. "Enabling More Sophisticated Gene Expression Analysis for Understanding Diseases and Optimizing Treatments". ACM SIGKDD Explorations, 9(1):3--14, 2007

