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Outline

• ALL

– Gene expression profile classificationGene expression profile classification

– Beyond diagnosis and prognosis

• WEKA

– Breast cancer

– Dermatology
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– Pima Indians

– Echocardiogram

– Mammography 
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Gene Expression Profile Classification

Diagnosis of Childhood Acute 
Lymphoblastic Leukemia and Optimization 

of Risk-Benefit Ratio of Therapy

4

• The subtypes look similar

Childhood ALL

• Major subtypes: T-ALL, 
E2A-PBX, TEL-AML, BCR-
ABL MLL

• Conventional diagnosis

I h t i

ABL, MLL genome 
rearrangements, 
Hyperdiploid>50

• Diff subtypes respond 
differently to same Tx

• Over-intensive Tx 
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– Immunophenotyping

– Cytogenetics

– Molecular diagnostics

• Unavailable in most 
ASEAN countries

– Development of 
secondary cancers

– Reduction of IQ

• Under-intensiveTx 

– Relapse
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Subtype Diagnosis by Machine Learning

• Gene expression data collection

• Gene selection by e.g. 2

• Classifier training by e.g. emerging pattern

• Classifier tuning (optional for some machine 
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learning methods)

• Apply classifier for diagnosis of future cases by 
e.g. PCL
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Childhood ALL Subtype 
Diagnosis Workflow

A tree-structured
diagnostic 
workflow was 
recommended by
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our doctor 
collaborator
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Training and Testing Sets
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Signal Selection by  2

MCI5004, AY2011/12, 9/9/11 Copyright 2011 © Limsoon Wong



5

9

Accuracy of Various Classifiers
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The classifiers are all applied to the 20 genes selected 
by 2 at each level of the tree
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Visualization by PCA
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Obtained by performing PCA on the 20 genes chosen for each level
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Visualization by Clustering
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Some  Patient Samples
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• Does Mr. A have cancer?

???Mr. A:
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Let’s rearrange the rows…

genes

benign
sa
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es

malign

malign
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• Does Mr. A have cancer?

???Mr. A:
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and the columns too…
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???Mr. A:
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Normalization

16

Sometimes, a gene expression study 
may involve batches of data collected 
over a long period of time…g p

40

50

60

70

Time Span of Gene Expression Profiles

Image credit: Dong Difeng
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In such a case, batch effect may be 
severe… to the extent that you can 
predict the batch that each sample 
comes!
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Need normalization to correct for batch effect

Image credit: Dong Difeng
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Approaches to Normalization

• Aim of 
normalization:

• Xform data so that 
distribution ofnormalization: 

Reduce variance 
w/o increasing bias

• Scaling method
I t iti l d

distribution of 
probe intensities is 
same on all arrays
– E.g., (x ) / 

• Quantile
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– Intensities are scaled 
so that each array 
has same ave value

– E.g., Affymetrix’s 

• Quantile 
normalization
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Quantite Normalization

• Given n arrays of length p, 
form X of size p × n where p
each array is a column

• Sort each column of X to 
give Xsort

• Take means across rows 
of Xsort and assign this 
mean to each elem in the
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mean to each elem in the 
row to get X’sort

• Get Xnormalized by arranging 
each column of X’sort to 
have same ordering as X

• Implemented in some 
microarray s/w, e.g., 
EXPANDER

20

After quantile 
normalization
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Beyond Disease Diagnosis & Prognosis

22

Percentage of Overlapping Genes

• Low % of overlapping 
genes from diff expt in 

l

Datasets DEG POG

general

– Prostate cancer
• Lapointe et al, 2004

• Singh et al, 2002

– Lung cancer
• Garber et al, 2001

Prostate
Cancer

Top 10 0.30

Top 50 0.14

Top100 0.15

Lung
Cancer

Top 10 0.00

Top 50 0.20

T 100 0 31
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• Bhattacharjee et al, 
2001

– DMD
• Haslett et al, 2002

• Pescatori et al, 2007

Top100 0.31

DMD
Top 10 0.20

Top 50 0.42

Top100 0.54
Zhang et al, Bioinformatics, 2009
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Law of Large Numbers

• Suppose you are in a room 
with 365 other people

• Q: What is prob that there 
is a person in the room 
h i bi thd

• Q: What is prob that a 
specific person in the 
room  has the same 
birthday as you?

• A: 1/365 = 0.3%

having same birthday as 
you?

• A: 1 – (364/365)365 = 63% 

• Q: What is prob that there 
are two persons in the 
room having same 
bi thd ?
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birthday?

• A: 100%
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Individual Genes

• Suppose 

– Each gene has 50% 

• Prob(a gene is correlated) 
= 1/26

chance to be high

– You have 3 disease and 
3 normal samples

• How many genes on a 
microarray are expected to 
perfectly correlate to these 

• # of genes on array = 
100,000

 E(# of correlated genes) = 
1,562
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samples?  Many false positives

• These cannot be 
eliminated based on pure 
statistics!
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Group of Genes

• Suppose 

– Each gene has 50% 

• Prob(group of genes 
correlated) = (1/26)5

chance to be high

– You have 3 disease and 
3 normal samples

• What is the chance of a 
group of 5 genes being 
perfectly correlated to 

– Good, << 1/26

• # of groups = 100000C5

 E(# of groups of genes 
correlated) = 100000C5* (1/26)5

= 2.6*1012
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these samples?

 Even more false positives?

• Perhaps no need to 
consider every group

26

Gene Regulatory Circuits

• Each disease phenotype 
has some underlying 
cause

• Uncertainty  in selected 
genes can be reduced by 
considering biological 

f th
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• There is some unifying 
biological theme for genes 
that are truly associated 
with a disease subtype

processes of the genes

• The unifying biological 
theme is basis for inferring 
the underlying cause of 
disease subtype
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Taming false positives by 

considering pathways instead of 
all possible groups

# of pathways = 
1000

E(# of pathways 
correlated) = 
1000 * (1/26)5 = 
9.3*10-7
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Towards More Meaningful Genes

• ORA 

– Khatri et al Overlap Analysis

– Genomics, 2002

• FCS

– Pavlidis & Noble

– PSB 2002

• GSEA

– Subramanian et al

PNAS 2005

Direct-Group Analysis
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– PNAS, 2005

• SNet

– Soh et al 

– BMC Genomics, 2011
Network-Based Analysis
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Intersection Analysis (ORA)

• Intersect the list of 
differentially expressed 

ith li t f
Caution:

genes with a list of genes 
on a pathway

• If intersection is 
significant, the pathway is 
postulated as basis of 
disease subtype or 
treatment response

• Initial list of differentially 
expressed genes is 
defined using test 
statistics with arbitrary 
thresholds 

• Diff test statistics and diff 
thresholds result in a diff 
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treatment response
list of differentially 
expressed genes

 Outcome may be unstable
Exercise: What is a good test 
statistics to determine if the 
intersection is significant?

30

Connected-Component Analysis (SNet)

Datasets DEG POGGSEA
POG

Our
POG

Prostate
Cancer

Top 10 0.30

Top 50 0.14

Top100 0.15

Lung
Cancer

Top 10 0.00

Top 50 0.20

0.82
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• Select CP,X if SccP,X is 
significant 

Top100 0.31

DMD
Top 10 0.20

Top 50 0.42

Top100 0.54
Zhang et al, Bioinformatics, 2009

0.70

0.67



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A

B

Key Insight # 1

• SNet does not require all 
the genes in subnet to be 
diff d

Genes A, B, C are high in 
phenotype D

A is high in phenotype ~D but B 

A

C

diff expressed

• It only requires the subnet 
as a whole to be diff 
expressed

• Able to capture entire 

MCI5004, AY2011/12, 9/9/11 Copyright 2011 © Limsoon Wong

g p yp
and C are not

Conventional techniques: Gene 
B and Gene C are selected. 
Possible incorrect postulation of 
mutations in gene B and C

relationship, postulating a 
mutation in gene A

32

A branch within pathway 
consisting of genes A, B, C, D and C

Key Insight # 2

E are high in phenotype D

Genes C, D and E not high in 
phenotype ~D

30 other genes not diff expressed

A

B

Conventional techniques: Entire

D

E

30 other genes
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Conventional techniques: Entire 
network is likely to be missed

• SNet: Able to capture the subnetwork branch within the 
pathway
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B BPathway 1 Pathway 2

Key Insight # 3

Genes A, B and C are present in 
two separate pathways

A B and C are high in phenotype

Conventional techniques: 

Both pathways are scored equally. 
So both got selected resulting in

A

C

A

C
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A, B and C are high in phenotype 
D, but not high in phenotype ~D

So both got selected, resulting in 
pathway 2 being a false positive

• SNet: Able to select only pathway 1, which has the relevant 
relationship

34
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A Popular Software Package: WEKA

36

• http://www.cs.waikato.ac.nz/ml/weka

• Weka is a collection of machine learningWeka is a collection of machine learning 
algorithms for data mining tasks. The algorithms 
can either be applied directly to a dataset or 
called from your own Java code. Weka contains 
tools for data pre-processing, classification, 
regression, clustering, association rules, and 
visualization. 
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Exercise: Download a copy of WEKA. What are the names 
of classifiers in WEKA that correspond to C4.5 and SVM?
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Let’s try WEKA on …

• Breast cancer

• Dermatology

• Pima Indians

• Echocardiogram
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• Mammography 


