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Computational Supervised Learning =

 Also called classification

« Learn from past experience, and use the learned
knowledge to classify new data

« Knowledge learned by intelligent algorithms

« Examples:
— Clinical diagnosis for patients
— Cell type classification
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Data

« Classification application involves > 1 class of
data. E.g.,

— Normal vs disease cells for a diagnosis problem

 Training data is a set of instances (samples,
points) with known class labels

« Test datais a set of instances whose class labels
are to be predicted
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Process

Training data: X

f(e): A classifier, a mapping, a hypothesis

J(U)
Test data: U > _
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Relational Representation (g N>

of Patient Data

n features (order of 1000)

gene, gene, gene; gene, ... gene,

m samples
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Importance of Rule-Based Methoo Fj

« Systematic selection of a small number of
features used for the decision making

= Increase the comprehensibility of the knowledge
patterns

« C4.5 and CART are two commonly used rule
Induction algorithms---a.k.a. decision tree
Induction algorithms
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Structure of Decision Trees

> a /. @ Root node
. @ Internal nodes
> a2
@ 5 Leaf nodes

 Every path from root to a leaf forms a decision rule
— Ifx, >a; & X,>a,, thenit's A class
« C4.5, CART, two of the most widely used
« Easy interpretation, but accuracy generally unattractive
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A Simple Dataset

QOutlook Temp Humidity Windy, class
Sunny 75 70 true | Play
Sunny 80 920 true | Don’t
Sunny 85 85 false |Don’t
Sunny i 95 true | Don’t
Sunny 69 70 false | Play
Overcast 12 90 true |Play
Overcast 83 78 false | Play
Overcast 64 65 true |Play
Overcast 81 15 false | Play
Rain 71 80 true | Don’t
Rain 65 70 true |Don’t
Rain 75 80 false |Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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A Decision Tree

crcast

false

rue
2

« Construction of atree is equivalent to determination of the
root node of the tree and the root node of its sub-trees

Exercise: What is the accuracy of this tree?
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Outlook Temperature Humidity Wind PIaiTennls

Sunny Hot High | Weak
Outlook
e i ‘\ An
LSunnyT ‘Overcast ‘ Rain Example
Source: Anthony Tung
/
Humidity Wind

o
Strong | [Weak
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Most Discriminatory Feature

 Every feature can be used to partition the training
data

« If the partitions contain a pure class of training
Instances, then this feature is most
discriminatory
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Example of Partitions

« Categorical feature

— Number of partitions of the training data is equal to
the number of values of this feature

* Numerical feature
— Two partitions
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Categorical feature Numerical feature B &
[ , ) § 3 ] ZINUS
Instance # | Outlook Temp| Humidity Windy| class
1 Sunny 75 70 true | Play
2 Sunny 80 90 true |Don’t
3 Sunny 85 85 false | Don’t
4 Sunny 72 95 true |Don’t
5 Sunny 69 70 false |Play
6 Overcast 72 90 true | Play
7 Overcast 83 78 false |Play
8 Overcast 64 65 true | Play
9 Overcast 81 75 false |Play
10 Rain 71 80 true | Don’t
11 Rain 65 70 true | Don’t
12 Rain 75 80 false |Play
13 Rain 68 80 false Play
14 Rain 70 96 false Play
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VY [
true | Play
true | Don’t
false |Don’t
true | Don’t
false |Play
true | Play
false |Play
true | Play
false |Play
true  |Don’t
true | Don’t

false |Play
false Play
false Play

Total 14 training
Instances

A categorical feature is
partitioned based on its
number of possible values
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/ Outlook =

sunny

Outlook =
overcast

10,11,12,13,14
D,D, P, PP

\ Outlook =

rain
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true | Play
true |Don’t
false |Don’t
true | Don’t
false |Play
true | Play
false |Play
true | Play
false |Play
true | Don’t

true | Don’t / Temp erature

false |Play
false Play
false Play <: 7 O

| N US
= %

5,8,11,13,14
PP, D, P, P

Copyright © 2004 by Jinyan Li and Lims

Total 14 training <
Instances

Temperature 1,2,3,4,6,7,9,10,12
> 70 P,D,D,D,P,P,P,D,P

N

A numerical feature is
generally partitioned by
choosing a “cutting point”
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Steps of Decision Tree Constructic W e

 Select the “best” feature as the root node of the
whole tree

« Partition the dataset into subsets using this
feature so that the subsets are as “pure” as
possible

« After partition by this feature, select the best
feature (wrt the subset of training data) as the
root node of this sub-tree

 Recursively, until the partitions become pure or
almost pure
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Measures to Evaluate
Which Feature is Best

« Gini index

* Information gain

« Information gain ratio
« T-statistics

oxz
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Gini Index

diff of two arbitrarv specimen in S

ni( S — : .
gini(S5) mean specimen in S

— prob(getting two specimen of diff class in S)
= 1 - prob(getting two specimen of same class in S)

; : C vy D
= 1—)_, prob(getting specimen of class i in 5)°

 Giniindex is the expected value of the ratio of the
diff of two arbitrary specimens to the mean value
of all specimens

 Closer to 0, means the samples are “pure”
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Gini Index

Let 4 = {Cy, ..., Cx} be all the classes. Suppose we are currently at a node
and D is the set of those samples t.hd,t have been moved to this node. Let f be a feature and d[f]
be the value of the feature f in a sample d. Let S be a range of values that the feature f can take.
Then the Gini index for f in D for the range 5 is defined as

JiniP(S) = 1- 3° (|{dED |deC, d[_f]ES}|)

Cield |D|

The purity of a split of the value range S of an attribute f by some split-point into subranges 5,
and S5 is then defined as

giniy (S1,8:) = Z {deD |£f['f] € SH + giniy (S)
S€{5,52} 1Dl

we choose the feature f and the ":-pllt. pmnt P th;u‘ minimizes
gini}j (51,52) over f111 [JUH‘-:]I}IE ;11t.E1‘[1d,1;ne f(—‘dl-l.lr[—‘h dnd '-;.p]u; I)Ul[lth - o

« Giniindex of a node: the weighted average of the
purity (measured by Gini) of subtrees at the node

= If each subtree is “pure”, this node is good
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Decision Tree Ensembles
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Motivating Example

h,, h,, h; are indep classifiers w/ accuracy = 60%
C,, C, are the only classes
tis atestinstance in C,
h(t) = argmaxeecy.ca [{h; €{hy, hy, 3} | hy(t) = CH
Then prob(h(t) =C,)
= prob(h,(t)=C; & h,(t)=C; & h4(t)=C,) +
prob(h,(t)=C; & h,(t)=C, & h,(t)=C,) +
prob(h,(t)=C; & h,(t)=C, & h4(t)=C,) +
prob(h,(t)=C, & h,(t)=C; & h(t)=C,)
= 60% * 60% * 60% + 60% * 60% * 40% +
60% * 40% * 60% + 40% * 60% * 60% = 64.8%
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Bagging

 Proposed by Breiman (1996)
 Also called Bootstrap aggregating

« Make use of randomness injected to training data
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Main ldeas

Original training set -
‘."‘ :: ”.. Draw 100 samples
o ’zvyjth replacement

J
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A base inducer such as C4.5
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Decision Making by Bagging

Given a new test sample T

bagged(T) = argmaxg, ey [{hi € H | hi(T) = Cj

where U = {C}, ..., C,}

Exercise: What does the above formula mean?
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Batch effect in trainﬁi/ng’/] testing sets P R
Significantly _ R o
improves I e el
cross-batch e e 2
prediction
accuracy in
gene :
expression j --
profile i
analyses - i

MCI5004, AY2012/2013, 5/9/12 Copyright 2012 © Limsoon Wong



Concluding Remarks...




What have we learned?

e Decision Trees

 Decision Trees Ensembles
— Bagging

« There are many other approaches of interest, but
no time to cover here ...

— Support vector machine (SVM)
— Nearest neighbour (KNN)
— Nalve Bayes
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