Bioinformatics and Biomarker Discovery Part 3: Examples

> Limsoon Wong 5 September 2012

Outline

- ALL
 - Gene expression profile classification
 - Beyond diagnosis and prognosis
- WEKA
 - Breast cancer
 - Dermatology
 - Pima Indians
 - Echocardiogram
 - Mammography

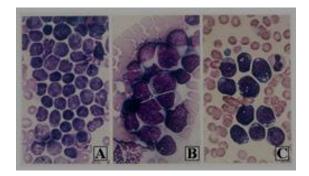
Gene Expression Profile Classification

Diagnosis of Childhood Acute Lymphoblastic Leukemia and Optimization of Risk-Benefit Ratio of Therapy

Childhood ALL

- Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR-ABL, MLL genome rearrangements, Hyperdiploid>50
- Diff subtypes respond differently to same Tx
- Over-intensive Tx
 - Development of secondary cancers
 - Reduction of IQ
- Under-intensiveTx
 - Relapse

The subtypes look similar



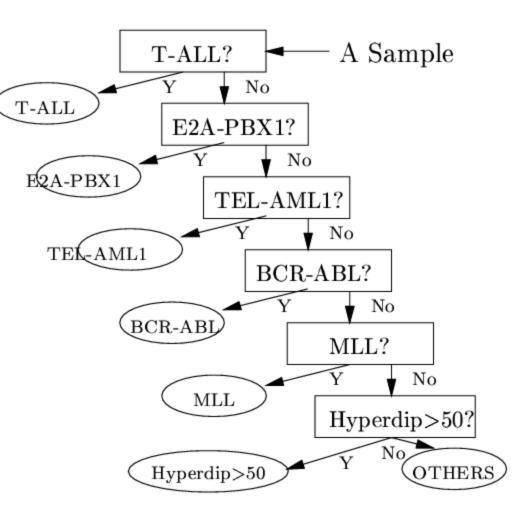
- Conventional diagnosis
 - Immunophenotyping
 - Cytogenetics
 - Molecular diagnostics
- Unavailable in most ASEAN countries

Subtype Diagnosis by Machine Learning

- Gene expression data collection
- Gene selection by e.g. $\chi 2$
- Classifier training by e.g. emerging pattern
- Classifier tuning (optional for some machine learning methods)
- Apply classifier for diagnosis of future cases by e.g. PCL

Childhood ALL Subtype Diagnosis Workflow

A tree-structured diagnostic workflow was recommended by our doctor collaborator



Training and Testing Sets

Paired datasets	Ingredients	Training	Testing
T-ALL vs	$OTHERS1 = \{E2A-PBX1, TEL-AML1, $	$28 \ \mathrm{vs} \ 187$	$15~\mathrm{vs}~97$
OTHERS1	BCR-ABL, Hyperdip>50, MLL, OTHERS}		
E2A-PBX1 vs	$OTHERS2 = \{TEL-AML1, BCR-ABL$	$18 \ \mathrm{vs} \ 169$	9 vs 88
OTHERS2	Hyperdip>50, MLL, OTHERS}		
TEL-AML1 vs	$OTHERS3 = \{BCR-ABL$	$52~\mathrm{vs}~117$	$27 \ \mathrm{vs} \ 61$
OTHERS3	Hyperdip>50, MLL, OTHERS}		
BCR-ABL vs	$OTHERS4 = \{Hyperdip > 50,$	9 vs 108	$6~\mathrm{vs}~55$
OTHERS4	MLL, OTHERS}		
MLL vs	$OTHERS5 = \{Hyperdip > 50, OTHERS\}$	$14 \ \mathrm{vs} \ 94$	6 vs 49
OTHERS5			
Hyperdip >50 vs	$OTHERS = \{Hyperdip47-50, Pseudodip, \}$	$42~\mathrm{vs}~52$	$22 \ \mathrm{vs} \ 27$
OTHERS	Hypodip, Normo}		

Signal Selection by χ^2 The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^2 = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, kthe number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

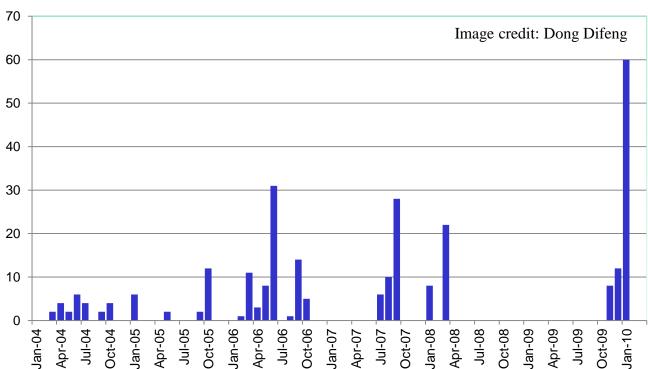
Accuracy of Various Classifiers

Testing Data	Error rate of different models			
	C4.5	SVM	NB	PCL
T-ALL vs OTHERS1	0:1	0:0	0:0	0:0
E2A-PBX1 vs OTHERS2	0:0	0:0	0:0	0:0
TEL-AML1 vs OTHERS3	1:1	0:1	0:1	1:0
BCR-ABL vs OTHERS4	2:0	3:0	1:4	2:0
MLL vs OTHERS5	0:1	0:0	0:0	0:0
Hyperdiploid>50 vs OTHERS	2:6	0:2	0:2	0:1
Total Errors	14	6	8	4

The classifiers are all applied to the 20 genes selected by $\chi 2$ at each level of the tree

Normalization

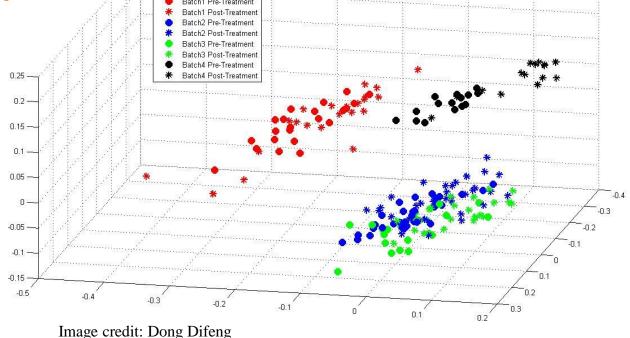
Sometimes, a gene expression study may involve batches of data collected over a long period of time...



Time Span of Gene Expression Profiles

MCI5004, AY2012/13, 5/9/12

Copyright 2012 © Limsoon Wong



\Rightarrow Need normalization to correct for batch effect

of Singapore

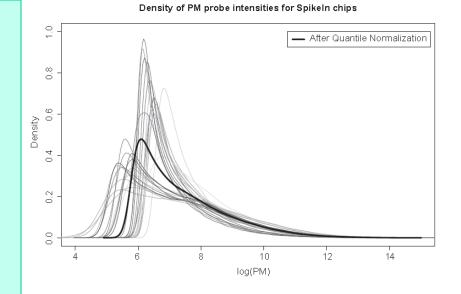
Approaches to Normalization

- Aim of normalization: Reduce variance w/o increasing bias
- Scaling method
 - Intensities are scaled so that each array has same ave value
 - E.g., Affymetrix's

- Xform data so that distribution of probe intensities is same on all arrays
 - E.g., (x –μ) / σ
- Quantile
 normalization

Quantite Normalization

- Given n arrays of length p, form X of size p × n where each array is a column
- Sort each column of X to give X_{sort}
- Take means across rows
 of X_{sort} and assign this
 mean to each elem in the
 row to get X'_{sort}
- Get X_{normalized} by arranging each column of X'_{sort} to have same ordering as X



 Implemented in some microarray s/w, e.g., EXPANDER

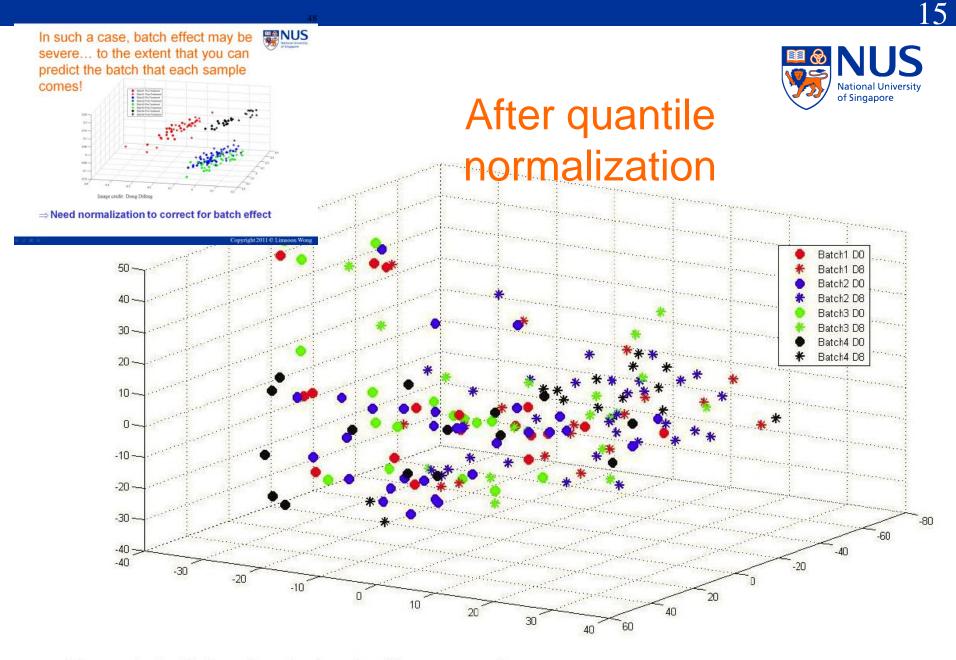


Figure 3.6: GEPs after the batch effects removing.

Beyond Disease Diagnosis & Prognosis

Percentage of Overlapping Genes

- Low % of overlapping genes from diff expt in general
 - Prostate cancer
 - Lapointe et al, 2004
 - Singh et al, 2002
 - Lung cancer
 - Garber et al, 2001
 - Bhattacharjee et al, 2001
 - DMD
 - Haslett et al, 2002
 - Pescatori et al, 2007

Datasets	DEG	POG
Prostate Cancer	Тор 10	0.30
	Тор 50	0.14
	Top100	0.15
Lung Cancer		
	Top 10	0.00
	Тор 50	0.20
	Top100	0.31
DMD		
	Top 10	0.20
	Тор 50	0.42
	Top100	0.54

Zhang et al, Bioinformatics, 2009

MCI5004, AY2012/13, 5/9/12

Copyright 2012 © Limsoon Wong

Individual Genes

- Suppose
 - Each gene has 50% chance to be high
 - You have 3 disease and 3 normal samples
- How many genes on a microarray are expected to perfectly correlate to these samples?

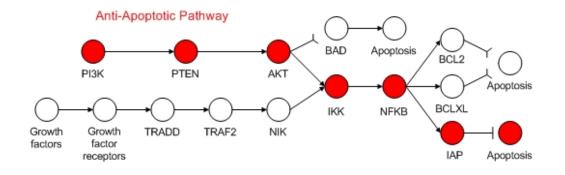
- Prob(a gene is correlated)
 = 1/2⁶
- # of genes on array = 100,000
- ⇒ E(# of correlated genes) = 1,562
- \Rightarrow Many false positives
- These cannot be eliminated based on pure statistics!

Group of Genes

- Suppose
 - Each gene has 50% chance to be high
 - You have 3 disease and 3 normal samples
- What is the chance of a group of 5 genes being perfectly correlated to these samples?

- Prob(group of genes correlated) = (1/2⁶)⁵
 - Good, << 1/2⁶
- # of groups = ¹⁰⁰⁰⁰⁰C₅
- $\Rightarrow E(\# of groups of genes$ $correlated) = {}^{100000}C_5^* (1/2^6)^5$ $= 2.6^*10^{12}$
- \Rightarrow Even more false positives?
- Perhaps no need to consider every group

Gene Regulatory Circuits



- Each disease phenotype has some underlying cause
- There is some unifying biological theme for genes that are truly associated with a disease subtype
- Uncertainty in selected genes can be reduced by considering biological processes of the genes
- The unifying biological theme is basis for inferring the underlying cause of disease subtype

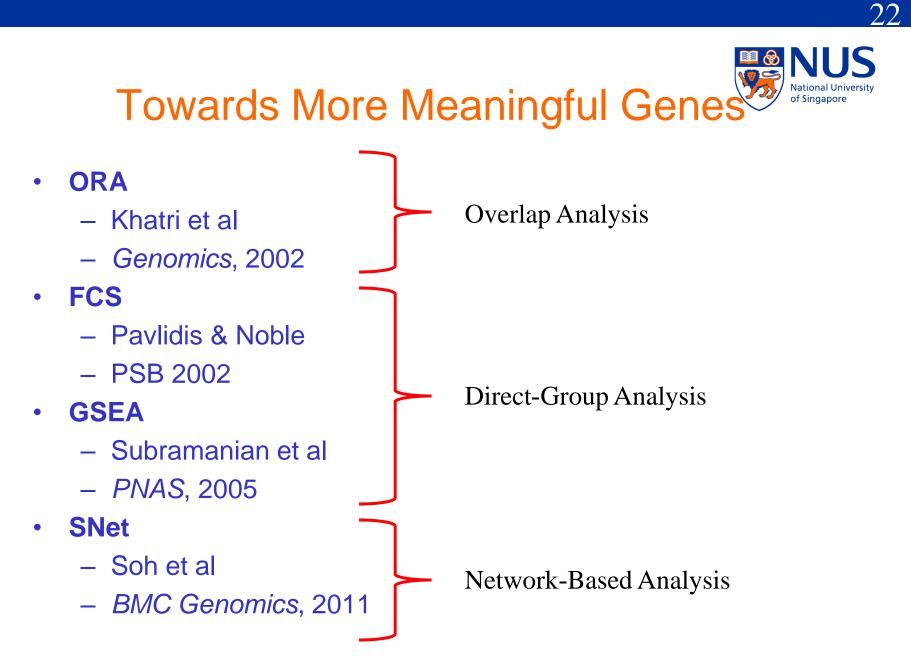
Taming false positives by considering pathways instead of all possible groups

of pathways = 1000

E(# of pathways correlated) = $1000 * (1/2^6)^5 =$ $9.3*10^{-7}$

- Suppose
 - Each gene has 50% chance to be high
 - You have 3 disease and 3 normal samples
- What is the chance of a group of 5 genes being perfectly correlated to these samples?

- Prob(group of genes correlated) = (1/2⁶)⁵
 - Good, << 1/2⁶
- # of groups = 100000C₅
- E(# of groups of genes
 correlated) = ¹⁰⁰⁰⁰⁰C₅*
 (1/2⁶)⁵ = 2.6*10¹²
- ⇒Even more false positives?
- Perhaps no need to consider every group



Intersection Analysis (ORA)

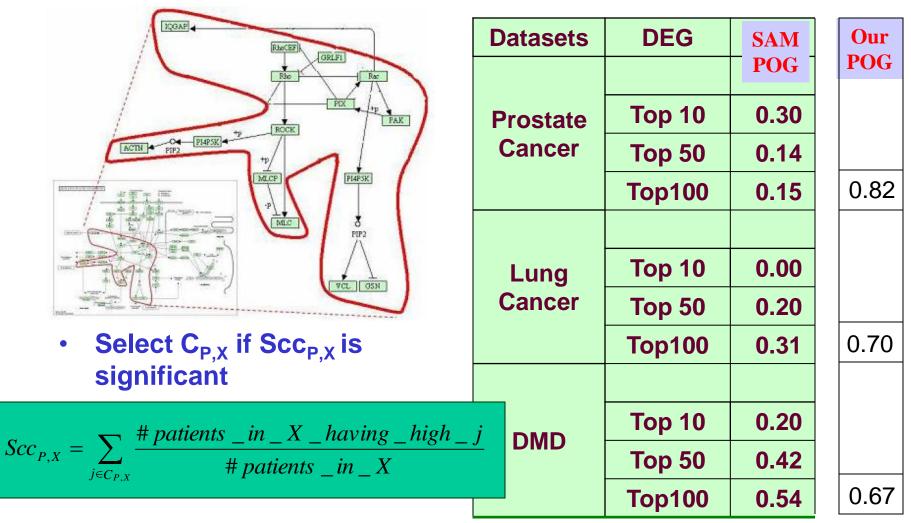
- Intersect the list of differentially expressed genes with a list of genes on a pathway
- If intersection is significant, the pathway is postulated as basis of disease subtype or treatment response

Exercise: What is a good test statistics to determine if the intersection is significant?

Caution:

- Initial list of differentially expressed genes is defined using test statistics with arbitrary thresholds
- Diff test statistics and diff thresholds result in a diff list of differentially expressed genes
- \Rightarrow Outcome may be unstable

Connected-Component Analysis (SNet) Singapore

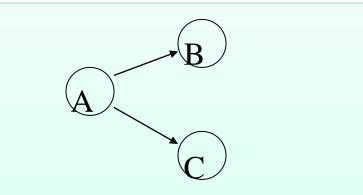


Zhang et al, Bioinformatics, 2009

MCI5004, AY2012/13, 5/9/12

Copyright 2012 © Limsoon Wong

Key Insight # 1



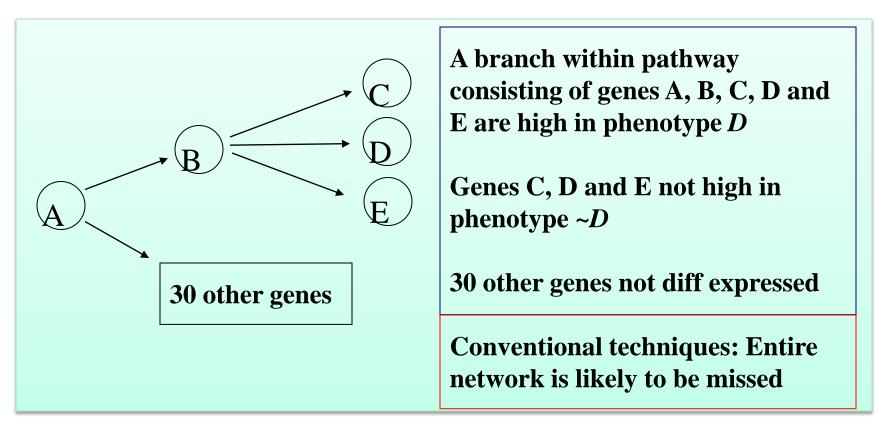
Genes A, B, C are high in phenotype *D*

A is high in phenotype ~*D* but B and C are not

Conventional techniques: Gene B and Gene C are selected. Possible incorrect postulation of mutations in gene B and C

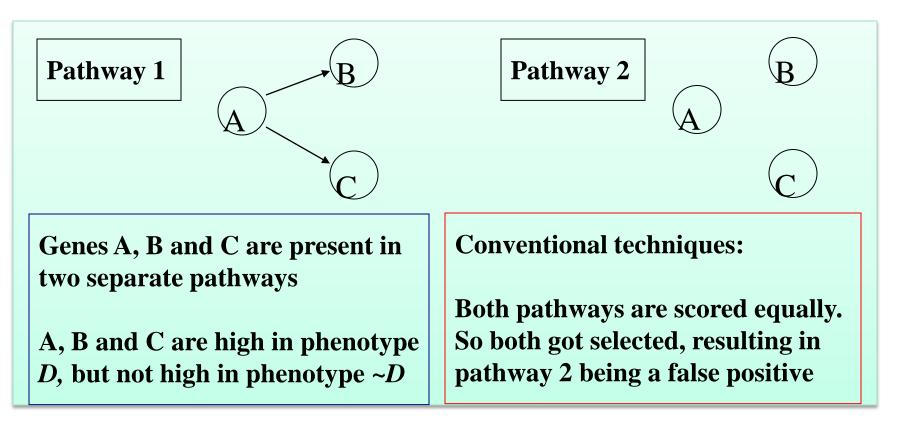
- SNet does not require all the genes in subnet to be diff expressed
- It only requires the subnet as a whole to be diff expressed
- Able to capture entire relationship, postulating a mutation in gene A

Key Insight # 2



• SNet: Able to capture the subnetwork branch within the pathway

Key Insight # 3



• SNet: Able to select only pathway 1, which has the relevant relationship

References

- E.-J. Yeoh et al., "Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling", *Cancer Cell*, 1:133-143, 2002
- L.D. Miller et al., "Optimal gene expression analysis by microarrays", *Cancer Cell* 2:353-361, 2002
- J. Li, L. Wong, "Techniques for Analysis of Gene Expression", *The Practical Bioinformatician*, Chapter 14, pages 319-346, WSPC, 2004
- D. Soh, D. Dong, Y. Guo, L. Wong. "Finding Consistent Disease Subnetworks Across Microarray Datasets". *BMC Bioinformatics*, 12(Suppl 13):S15, 2011

A Popular Software Package: WEKA

- http://www.cs.waikato.ac.nz/ml/weka
- Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization.

Exercise: Download a copy of WEKA. What are the names of classifiers in WEKA that correspond to C4.5 and SVM?

Let's try WEKA on ...

- Breast cancer
- Dermatology
- Pima Indians
- Echocardiogram
- Mammography