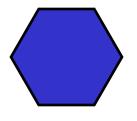
Bioinformatics and Biomarker Discovery *Part 1: Foundations*

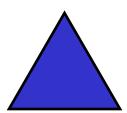
Limsoon Wong
13 September 2016

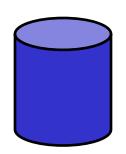
Themes of Bioinformatics

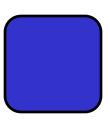
```
Bioinformatics =
Data Mgmt +
Knowledge Discovery +
Sequence Analysis +
Physical Modeling + ....
```

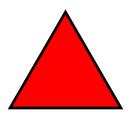

Knowledge Discovery =
 Statistics + Algorithms + Databases

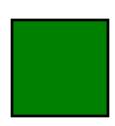
Applications include diagnosis, prognosis, & treatment optimization, often thru biomarker discovery

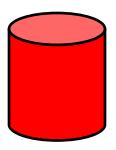

National University of Singapore

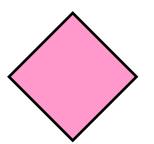

What is Knowledge Discovery?


Jonathan's blocks









Jessica's blocks

Whose block is this?

Jonathan's rules Jessica's rules : Blue or Circle

: All the rest

National University of Singapore

What is Knowledge Discovery?

Question: Can you explain how?

Key Steps of Knowledge Discover

- Training data gathering
- Feature generation
 - k-grams, colour, texture, domain know-how, ...
- Feature selection
 - Entropy, χ2, CFS, t-test, domain know-how...
- Feature integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

What is Accuracy?

What is Accuracy?

	predicted	predicted		
	as positive	as negative		
positive	TP	FN		
negative	FP	TN		

Accuracy =
$$\frac{\text{No. of correct predictions}}{\text{No. of predictions}}$$
$$= \frac{\text{TP + TN}}{\text{TP + TN + FP + FN}}$$

Examples (Unbalanced Population)

classifier	TP	TN	FP	FN	Accuracy
Α	25	75	75	25	50%
В	0	150	0	50	75%
С	50	0	150	0	25%
D	30	100	50	20	65%

- Clearly, D is better than A
- Is B better than A, C, D?

Exercise: What is B's

Prediction strategy?

What is Sensitivity (aka Recall)?

	predicted	predicted		
	as positive	as negative		
positive	TP	FN		
negative	FP	TN		

Sensitivity = No. of correct positive predictions

wrt positives

No. of positives

$$= \frac{TP}{TP + FN}$$

Sometimes sensitivity wrt negatives is termed specificity

What is Precision?

	predicted	predicted		
	as positive	as negative		
positive	TP	FN		
negative	FP	TN		

Precision = Wrt positives

No. of correct positive predictions

No. of positives predictions

$$= \frac{TP}{TP + FP}$$

Unbalanced Population Revisited

classifier	TP	TN	FP	FN	Accuracy	Sensitivity	Precision
A	25	75	75	25	50%	50%	25%
В	0	150	0	50	75%	0%	ND
С	50	0	150	0	25%	100%	25%
D	30	100	50	20	65%	60%	38%

- What are the sensitivity and precision of B and C?
- Is B better than A, C, D?

Comparing Prediction Performance

- Accuracy is the obvious measure
 - But it conveys the right intuition only when the positive and negative populations are roughly equal in size
- Recall and precision together form a better measure
 - But what do you do when A has better recall than B and B has better precision than A?

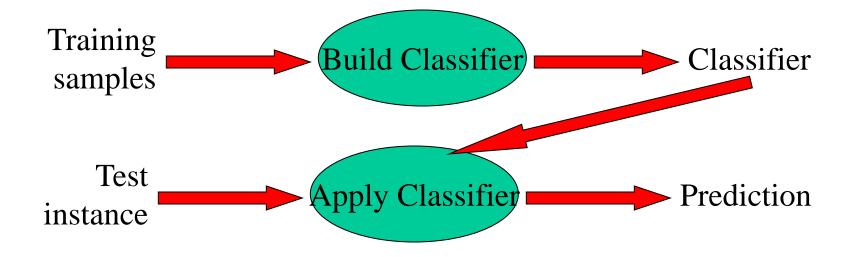
So let us look at some alternate measures

Adjusted Accuracy

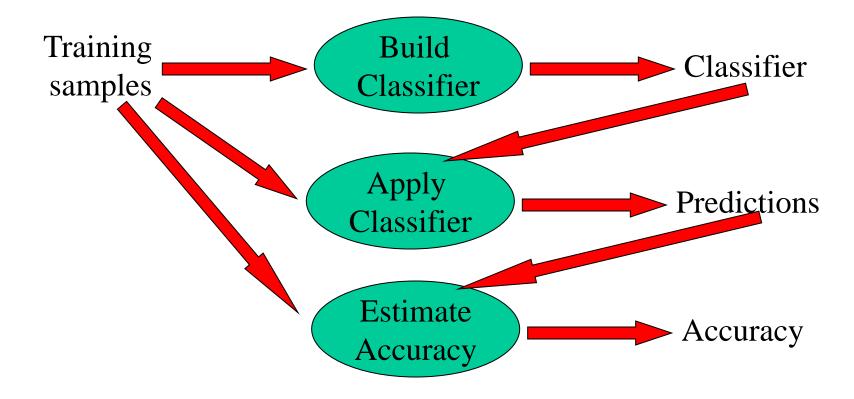
Weigh by the importance of the classes

Adjusted accuracy =
$$\alpha$$
 * Sensitivity + β * Specificity where $\alpha + \beta = 1$ typically, $\alpha = \beta = 0.5$

classifier	TP	TN	FP	FN	Accuracy	Adj Accuracy
Α	25	75	75	25	50%	50%
В	0	150	0	50	75%	50%
С	50	0	150	0	25%	50%
D	30	100	50	20	65%	63%

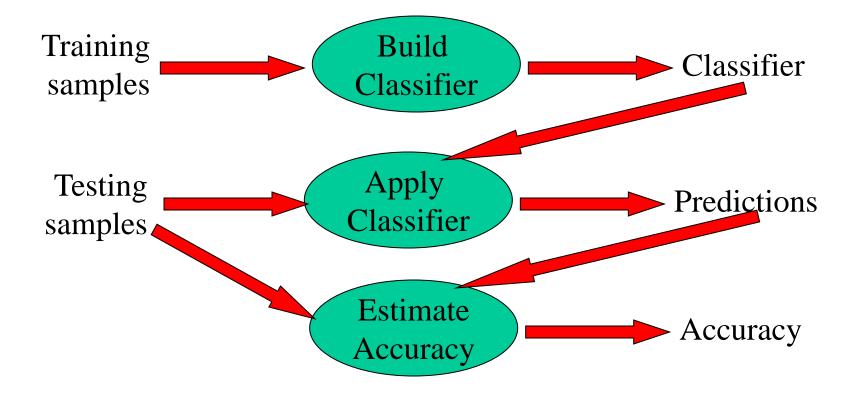

But people can't always agree on values for α , β

What is Cross Validation?



Construction of a Classifier

Estimate Accuracy: Wrong Way



Exercise: Why is this way of estimating accuracy wrong? Think of what will happen in the case of 1-NN classifier.

National University of Singapore

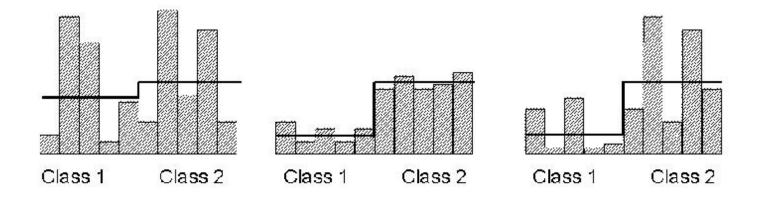
Estimate Accuracy: Right Way

Testing samples are NOT to be used during "Build Classifier"

Cross Validation

- 2.Train 3.Train 4.Train 5.Train 2.Test 3.Train 4.Train 5.Train 1.Train 1.Train 2.Train 3.Test 4.Train 5.Train 1.Train 2.Train 3.Train 4.Test 5.Train 1.Train 2.Train 3.Train 4.Train
- Divide samples into k roughly equal parts
- Each part has similar proportion of samples from different classes
- Use each part to test other parts

What is Feature Selection?


Curse of Dimensionality

- Given a sample space of p dimensions/features
- It is possible that some features are irrelevant
- Irrelevant features can confuse a classifier algorithm (or the human analyst!)
- Need to find ways to separate those dimensions (aka features) that are relevant (aka signals) from those that are irrelevant (aka noise)

Signal Selection (Basic Idea)

- Choose a feature w/ low intra-class distance
- Choose a feature w/ high inter-class distance

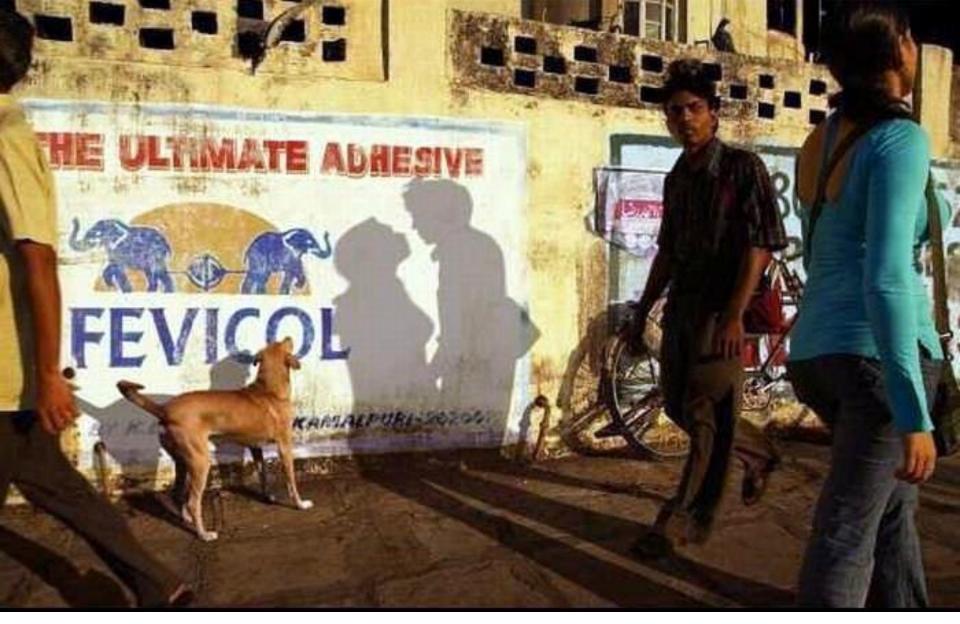
Signal Selection (e.g., t-statistics

The t-stats of a signal is defined as

$$t = rac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$

where σ_i^2 is the variance of that signal in class i, μ_i is the mean of that signal in class i, and n_i is the size of class i.

Exercise: Look up other feature selection methods.



Self-fulfilling Oracle

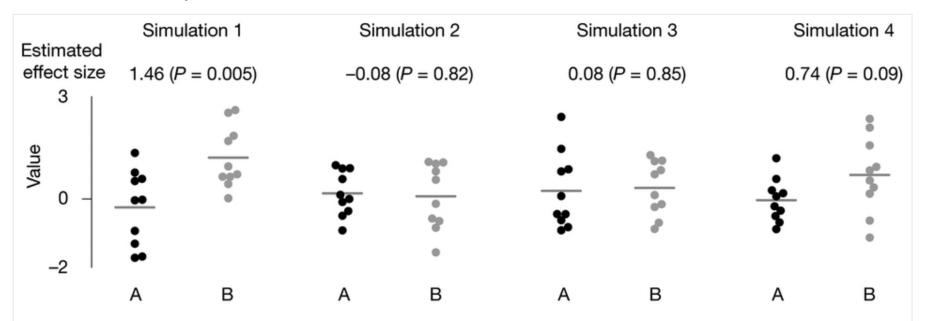
- Construct artificial dataset with 100 samples, each with 100,000 randomly generated features and randomly assigned class labels
- Select 20 features with the best t-statistics (or other methods)

- Evaluate accuracy by cross validation using only the 20 selected features
- The resultant estimated accuracy can be ~90%
- But the true accuracy should be 50%, as the data were derived randomly

Exercise: What went wrong?

Original photographer unknown/
See also www.cs.gmu.edu/~jessica/DimReducDanger.htm

© Eamonn Keogh


P-value Lottery

The fickle P value generates irreproducible results

Lewis G Halsey, Douglas Curran-Everett, Sarah L Vowler & Gordon B Drummond

Nature Methods 12, 179-185 (2015) | doi:10.1038/nmeth.3288

Published online 26 February 2015

We drew samples of ten values at random from each of the populations A and B from Figure 1 to give four simulated comparisons. Horizontal lines denote the mean. We give the estimated effect size (the difference in the means) and the P value when the sample pairs are compared.

Concluding Remarks

What have we learned?

- Methodology of data mining
 - Feature generation, feature selection, feature integration
- Evaluation of classifiers
 - Accuracy, sensitivity, precision
 - Cross validation
- Curse of dimensionality
 - Feature selection concept
 - Self-fulfilling oracle
 - P-value lottery

References

- John A. Swets, Measuring the accuracy of diagnostic systems, Science 240:1285--1293, June 1988
- Trevor Hastie et al., *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*, Springer, 2001. Chapters 1, 7
- Lance D. Miller et al., Optimal gene expression analysis by microarrays, Cancer Cell 2:353--361, 2002
- David Hand et al., Principles of Data Mining, MIT Press, 2001
- Jinyan Li et al., Data Mining Techniques for the Practical Bioinformatician, *The Practical Bioinformatician*, Chapter 3, pages 35—70, WSPC, 2004