
Bioinformatics and  

Biomarker Discovery 

Part 2: Tools  

Limsoon Wong 

13 September 2016 

For written notes on this lecture, please read chapter 3 of The Practical Bioinformatician. Alternatively, please read 

“Rule-Based Data Mining Methods for Classification Problems in Biomedical Domains”, a tutorial at PKDD04 by 

Jinyan Li and Limsoon Wong, September 2004. http://www.comp.nus.edu.sg/~wongls/talks/pkdd04/ 
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Outline 

• Overview of Supervised Learning 

 

• Decision Trees Ensembles 

– Bagging 

 



Overview of Supervised Learning 
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Computational Supervised Learning 

• Also called classification 

 

• Learn from past experience, and use the learned 

knowledge to classify new data 

 

• Knowledge learned by intelligent algorithms 

 

• Examples:  

– Clinical diagnosis for patients 

– Cell type classification 
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Data 

• Classification application involves > 1 class of 

data. E.g.,  

– Normal vs disease cells for a diagnosis problem 

 

• Training data is a set of instances (samples, 

points) with known class labels 

 

• Test data is a set of instances whose class labels 

are to be predicted 
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Training data:  X Class labels Y 

f(X) 

f(): A classifier, a mapping, a hypothesis 

Test data:  U Predicted class labels 

f(U) 

Process 
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x11      x12       x13       x14      …      x1n 

x21      x22       x23       x24      …      x2n 

x31      x32       x33       x34      …      x3n 

    …………………………………. 

xm1     xm2      xm3       xm4     …      xmn 

n features (order of 1000) 

m samples 

class 

P 

N 

P 

 

N 

gene1   gene2   gene3  gene4   …   genen 

Relational Representation  

of Patient Data 
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Importance of Rule-Based Methods 

• Systematic selection of a small number of 

features used for the decision making 

  Increase the comprehensibility of the knowledge 

patterns 

 

• C4.5 and CART are two commonly used rule 

induction algorithms---a.k.a. decision tree 

induction algorithms 
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A B A 

B A 

x1 

x2 

x4 

x3 

> a1 

> a2 

Structure of Decision Trees 

• Every path from root to a leaf forms a decision rule 

– If x1 > a1 &  x2 > a2, then it’s A class 

• C4.5, CART, two of the most widely used 

• Easy interpretation, but accuracy generally unattractive 

Leaf nodes 

Internal nodes 

Root node 

B 

A 
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9 Play samples 

 

5 Don’t 

 

A total of 14. 

A Simple Dataset 



11 

MCI5004, 13/9/2016 Copyright 2016 © Limsoon Wong 

2 

outlook 

windy humidity 

Play 

Play 

Play 
Don’t 

Don’t 

sunny 

overcast 

rain 

<= 75 
> 75 false 

true 

2 
4 

3 
3 

A Decision Tree 

• Construction of a tree is equivalent to determination of the 

root node of the tree and the root node of its sub-trees 

Exercise: What is the accuracy of this tree? 
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No 

An 

Example 

Outlook 

Sunny Overcast Rain 

Humidity 

High Normal 

Wind 

Strong Weak 

No Yes 

Yes 

Yes No 

Outlook Temperature Humidity Wind    PlayTennis 
 Sunny        Hot            High    Weak       ? 

Source: Anthony Tung 
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Most Discriminatory Feature 

• Every feature can be used to partition the training 

data 

 

• If the partitions contain a pure class of training 

instances, then this feature is most 

discriminatory 
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Example of Partitions 

• Categorical feature 

– Number of partitions of the training data is equal to 

the number of values of this feature 

 

• Numerical feature 

– Two partitions 
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Outlook Temp Humidity Windy  class 

Sunny  75 70  true Play 

Sunny  80 90   true Don’t 

Sunny  85 85   false Don’t 

Sunny   72 95  true Don’t 

Sunny  69 70  false Play 

Overcast 72 90  true Play 

Overcast 83 78  false Play 

Overcast 64 65  true Play 

Overcast 81 75  false Play 

Rain  71 80  true Don’t 

Rain  65 70  true Don’t 

Rain   75 80  false  Play 

Rain  68 80  false  Play 

Rain  70 96  false Play 

Instance # 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Categorical feature Numerical feature 
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Total 14 training  

instances 

1,2,3,4,5 

P,D,D,D,P 

6,7,8,9 

P,P,P,P 

10,11,12,13,14 

D, D,  P,  P, P 

Outlook = 

sunny 

Outlook =  

overcast 

Outlook = 

rain 

A categorical feature is 

partitioned based on its 

number of possible values 
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Total 14 training  

instances 

5,8,11,13,14 

P,P, D, P, P 

1,2,3,4,6,7,9,10,12 

P,D,D,D,P,P,P,D,P 

Temperature 

<= 70  

Temperature 

> 70  

A numerical feature is 

generally partitioned by 

choosing a “cutting point” 
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Steps of Decision Tree Construction 

• Select the “best” feature as the root node of the 
whole tree 

 

• Partition the dataset into subsets using this 
feature so that the subsets are as “pure” as 
possible 

 

• After partition by this feature, select the best 
feature (wrt the subset of training data) as the 
root node of this sub-tree 

 

• Recursively, until the partitions become pure or 
almost pure 
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Measures to Evaluate  

Which Feature is Best 

• Gini index 

 

• Information gain 

 

• Information gain ratio 

 

• T-statistics 

 

• 2 

 

• … 
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Gini Index 

• Gini index is the expected value of the ratio of the 

diff of two arbitrary specimens to the mean value 

of all specimens 

• Closer to 0, means the samples are “pure” 
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Gini Index 

• Gini index of a node: the weighted average of the 

purity (measured by Gini) of subtrees at the node 

 If each subtree is “pure”, this node is good 



Decision Tree Ensembles 
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• h1, h2, h3 are indep classifiers w/ accuracy = 60% 

• C1, C2 are the only classes 

• t is a test instance in C1 

• h(t) = argmaxC{C1,C2} |{hj {h1, h2, h3} | hj(t) = C}| 

• Then prob(h(t) = C1) 

  = prob(h1(t)=C1 & h2(t)=C1 & h3(t)=C1) + 

        prob(h1(t)=C1 & h2(t)=C1 & h3(t)=C2) + 

      prob(h1(t)=C1 & h2(t)=C2 & h3(t)=C1) + 

      prob(h1(t)=C2 & h2(t)=C1 & h3(t)=C1)  

  = 60% * 60% * 60% + 60% * 60% * 40% + 

     60% * 40% * 60% + 40% * 60% * 60% = 64.8% 

Motivating Example 
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Bagging 

• Proposed by Breiman (1996) 

 

• Also called Bootstrap aggregating 

 

• Make use of randomness injected to training data 
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Main Ideas 

50 p + 50 n Original training set 

48 p + 52 n 49 p + 51 n 53 p + 47 n … 
A base inducer such as C4.5 

A committee H of classifiers: 

    h1                           h2              ….                  hk 

Draw 100 samples 

with replacement 
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Decision Making by Bagging 

Given a new test sample T 

Exercise: What does the above formula mean? 
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Significantly 

improves 

cross-batch 

prediction 

accuracy in 

gene 

expression 

profile 

analyses  

Batch effect in training / testing sets 



Concluding Remarks… 
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What have we learned? 

• Decision Trees 

 

• Decision Trees Ensembles 

– Bagging 

 

• There are many other approaches of interest, but 

no time to cover here … 

– Support vector machine (SVM) 

– Nearest neighbour (kNN) 

– Naïve Bayes 
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