MCI5004: Molecular Biomarkers in Clinical Research Anna Karenina and the Careless Null Hypothesis in Omics Data Analysis

Wong Limsoon

Anna Karenina Principle

Happy families are all alike; every unhappy family is unhappy in its own way. Leo Tolstoy www.thequotes.in

Translation

• There are many ways to violate the null hypothesis but only one way that is truly pertinent to the outcome of interest

from the book *Statistics from A to Z — Confusing Concepts Clarified.*

GETTING THE NULL HYPOTHESIS RIGHT

Example 1

MCI5004, 2017

Copyright 2017 © Wong Limsoon

	Group						
SNP	Genotypes	Cont	rols [n(%)]	Cases	s [n(%)]	χ ²	P value
rs123	AA	1	0.9%	0	0.0%		4.78E-21 ^b
	AG	38	35.2%	79	97.5%		
	GG	69	63.9%	2	2.5%		

A seemingly obvious conclusion

- A scientist claims the SNP rs123 is a great biomarker for a disease
 - If rs123 is AA or GG, unlikely to get the disease
 - If rs123 is AG, a 3:1 odd of getting the disease
- A straightforward χ^2 test. Anything more/wrong?

Careless null hypothesis

6

"Effective" H0

 rs123 alleles are identically distributed <u>in the two samples</u>

Assumption

 Distributions of rs123 alleles in the two samples are identical to the two populations

Apparent H0

 rs123 alleles are identically distributed in the two populations

Apparent H1

 rs123 alleles are differently distributed in the two populations

Refined null hypothesis

i.e. sample

is biased

Refined H0

- Distributions of rs123 alleles in the two samples are identical to the two populations, **and**
- rs123 alleles are identically distributed in the two populations

- Refined H1
 - Distributions of rs123 alleles in the two samples are different from the two
 - populations, **or**
 - rs123 alleles are differently distributed in the two populations

Sample bias is revealed by domain logic

Group							
SNP	Genotypes	Cont	rols [n(%)]	Case	s [n(%)]	χ²	P value
rs123	AA	1	0.9%	0	0.0%		4.78E-21 ^b
	AG	38	35.2%	79	97 <mark>.</mark> 5%		
	GG	69	63.9%	2	2.5%		

- AG = 38 + 79 = 117, controls + cases = 189 ⇒ population is ~62% AG ⇒ population is >9% AA, unless AA is lethal
- "Big data check" shows AA is non-lethal for this SNP ⇒ sample is biased

Food for thought

9

Refined H0

- Distributions of rs123 alleles in the two samples are identical to the two populations, and
- rs123 alleles are identically distributed in the two populations

- Refined H1
 - Distributions of rs123 alleles in the two samples are different from the two populations, or
 - rs123 alleles are differently distributed in the two populations
- Suppose distributions of rs123 alleles in the samples are identical to the populations and the test is significant
- Can we say rs123 mutation causes the disease?

Three types of reasoning

Deduction

- All men are mortal
- Socrates is a man
- ⇒Socrates is mortal

Induction

- Socrates is a man
- Socrates is mortal
- \Rightarrow All men are mortal,

provided there is no counter example

Abduction

- All men are mortal
- Socrates is mortal
- \Rightarrow Socrates is a man,

provided there is no other explanation of Socrates' mortality

Abduction in action

Hypothesis

 If rs123 mutation causes disease, the statistical test is significant

		(broup			
Genotypes	Cont	rols [n(%)]	Cases	s [n(%)]	χ ²	P value
AA	1	0.9%	0	0.0%		4.78E-21 ^b
AG	38	35.2%	79	97.5%		
GG	69	63.9%	2	2.5%		
	Genotypes AA AG GG	Genotypes Cont AA 1 AG 38 GG 69	Genotypes Controls [n(%)] AA 1 0.9% AG 38 35.2% GG 69 63.9%	Genotypes Controls [n(%)] Cases AA 1 0.9% 0 AG 38 35.2% 79 GG 69 63.9% 2	Genotypes Controls [n(%)] Cases [n(%)] AA 1 0.9% 0 0.0% AG 38 35.2% 79 97.5% GG 69 63.9% 2 2.5%	Genotypes Controls [n(%)] Cases [n(%)] χ² AA 1 0.9% 0 0.0% AG 38 35.2% 79 97.5% GG 69 63.9% 2 2.5%

- Observation
 - Statistical test is significant
- Conclusion by abduction
 - rs123 mutation causes disease
 - provided there is no other explanation for the test to be significant

Discussion

SNP

rs123

Group

0 0.0%

Cases [n(%)]

79 97.5%

2 2.5%

P value

4.78E-21^b

Genotypes Controls [n(%)]

0.9%

38 35.2%

69 63.9%

AA

AG

GG

Abbreviation: SNP, single nucleotide polymorphism.

12

Hypothesis

- If rs123 mutation causes disease, the statistical test is significant
- Observation

- Statistical test is significant

Conclusion by abduction

- rs123 mutation causes disease
- provided there is no other explanation for the test to be significant
- How to incorporate "provided there is no other explanation" into the analysis?

How about this?

13

- Choose a sample of Cases and a sample of Controls such that for each stratification p1/p2, the distribution of p1/p2 in Cases is same as the distribution of p1/p2 in Controls
 - i.e. equalize / control for other factors
- Then test:
 - H0
 - X's alleles are identically distributed in the two samples

- H1
 - X's alleles are differently distributed in the two samples

- This makes the significance of the test independent of other explanations
- It does not say "no other explanation"

Or this?

14

• Look for another gene X such that

• H0

- Distributions of X's alleles in the two samples are identical to the two populations, and
- X's alleles are identically distributed in the two populations

• H1

- Distributions of X's alleles in the two samples are different from the two populations, **Or**
- X's alleles are differently distributed in the two populations
- When the red part of H1 is false, this implies gene X mutation is an alternative explanation for the significance of rs123 mutation and thus the disease. Why?

Example 2

MCI5004, 2017

Copyright 2017 © Wong Limsoon

A seemingly obvious conclusion

Overall

	Α	В
lived	60	65
died	100	165

Looks like treatment A is better

What is happening here?

Women

Ν/	^	n
IVI	e	
	_	

	Α	В
lived	40	15
died	20	5

	A	В
lived	20	50
died	80	160

Looks like treatment B is better

Careless null hypothesis

"Effective" H0

 Treatments are identically distributed in the two samples

Assumption

 All other factors are equalized in the two samples

Treatments are identically distributed in the two populations

Apparent H1

 Treatments are differently distributed in the two populations

Refined null hypothesis

18

Refined H0

- All other factors are equalized in the two samples, and
- Treatments are identically distributed in the two samples

Refined H1

- Some factors are not equalized in the two samples, **Or**
- Treatments are differently distributed in the two populations
- Any other thing missing?

A/B sample not equalized in other attributes, viz. sex

Overall

Men

	Α	В
lived	60	65
died	100	165

Women

	Α	В
lived	40	15
died	20	5

	Α	В
lived	20	50
died	80	160

Taking A

- Men = 100 (63%)
- Women = 60 (37%)

Taking B

- Men = 210 (91%)
- Women = 20 (9%)

 Exercise: Explain what causes A to be better than B overall

In statistical hypothesis testing, the **null distribution** is the probability **distribution** of the test statistic when the **null** hypothesis is true. For example, in an F-test, the **null distribution** is an F-**distribution**.

GETTING THE NULL DISTRIBUTION RIGHT

Example 3

MCI5004, 2017

Copyright 2017 © Wong Limsoon

A seemingly obvious conclusion

- A multi-gene signature is claimed as a good biomarker for breast cancer survival
 - Cox's survival model p-value << 0.05
- A straightforward Cox's proportional hazard analysis. Anything more/wrong?

Almost all random signatures also have p-value < 0.05

- Theoretical null distribution used in Cox's proportion hazard analysis does not match the empirical null distribution
- What can we do about this?

 $\log_{10}(0.05)$

p–value (log₁₀)

Venet et al., PLOS Comput Biol, 2011

MCI5004, 2017

Copyright 2017 © Wong Limsoon

Careless null hypothesis

"Effective" H0

- The biomarker's values are identically distributed in the two populations
- Assumption
 - The null distribution models real world

The biomarker's values are identically distributed in the two populations

Apparent H1

The biomarker's values are differently distributed in the two populations

Refined null hypothesis

Refined H0

- The biomarker's values are identically distributed in the two populations, and
- The null distribution models real world

Refined

- The biomarker's values are differently distributed in the two populations, **Or**
- The null distribution does not model real world

Example 4

MCI5004, 2017

Copyright 2017 © Wong Limsoon

Gene-selection methods have poor reproducibility

- Low % of overlapping genes from diff expt in general
 - Prostate cancer
 - Lapointe et al, 2004
 - Singh et al, 2002
 - Lung cancer
 - Garber et al, 2001
 - Bhattacharjee et al, 2001
 - DMD
 - Haslett et al, 2002
 - Pescatori et al, 2007

Datasets	DEG	POG
Prostate	Top 10	0.30
Cancer	Тор 50	0.14
	Top100	0.15
Lung	Тор 10	0.00
Cancer	Тор 50	0.20
	Top100	0.31
DMD	Тор 10	0.20
טועוט	Тор 50	0.42
	Top100	0.54

Zhang et al, *Bioinformatics*, 2009

MCI5004, 2017

Contextualizing based on pathways may help

28

- Each disease phenotype has some underlying cause
- There is some unifying biological theme for genes that are truly associated with a disease subtype
- Uncertainty in selected genes can be reduced by considering biological processes of the genes
- The unifying biological theme is basis for inferring the underlying cause of disease subtype

ORA-Paired

29

- Let g_i be genes in a given pathway P
- Let p_i be a patient
- Let q_k be a normal

- Let $\Delta_{i,j,k} = \text{Expr}(g_i,p_j) \text{Expr}(g_i,q_k)$
- H0: Pathway P is irrelevant to the diff betw patients and normals, so genes in P behave similarly in patients and normals
- \Rightarrow t-test whether $\Delta_{i,j,k}$ is a distribution with mean 0

Lim et al., JBCB, 13(4):1550018, 2015.

Copyright 2017 © Wong Limsoon

What null distribution is appropriate?

30

- degrees of freedom
 t-distribution with n+m degrees of freedom
 - Generate null distribution by genelabel permutation

t-distribution with n*m

 Generate null distribution by classlabel permutation

- ORA-Paired
- Let g_i be genes in a given pathway P
- Let p_j be a patient
- Let q_k be a normal
- Let ∆_{i,j,k} = Expr(g_i,p_j) -Expr(g_i,q_k)
- H0: Pathway P is irrelevant to the diff betw patients and normals, so genes in P behave similarly in patients and normals
- \Rightarrow t-test whether $\Delta_{i,j,k}$ is a distribution with mean 0

and so, the genes in P behave similarly in patients and normals"

By the null hypothesis, a dataset and any of its class-label permutations are exchangeable

Testing the null hypothesis

- \Rightarrow Get null distribution by class-label permutations
 - What happens when sample size is small?

Lim et al., JBCB, 13(4):1550018, 2015.

31

SOMETIMES CHANGING PERSPECTIVE HELPS

Almost all random signatures also have p-value < 0.05

 Instead of asking whether a signature is significant, ask what makes a signature (random or otherwise) significant

Venet et al., PLOS Comput Biol, 2011

Wilson Goh, private communication, 2017

- Proliferation is a hallmark of cancer
- Hypothesis: proliferationassociated genes make a signature significant

Copyright 2017 © Wong Limsoon

MCI5004, 2017

SUMMARY

MCI5004, 2017

Copyright 2017 © Wong Limsoon

Anna Karenina Principle

36

- Careless null / alternative hypothesis due to forgotten assumptions
 - Distributions of the feature of interest in the two samples are identical to the two populations
 - Features not of interest are equalized / controlled for in the two samples
 - No other explanation for significance of the test
 - Null distribution models the real world
- These make it easy to reject the carelessly stated null hypothesis and accept an incorrect alternative hypothesis

Avoiding wrong conclusion, Getting deeper insight

37

- Check for sampling bias
 - Are the distributions of the feature of interest in the two samples same as that in the two populations?
- Check for exceptions
 - Are there large subpopulations for which the test outcome is opposite?
 - Are there large subpopulations for which the test outcome becomes much more significant?
- Check for validity of the null distribution
 - Can you derive it from the null hypothesis?