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PCA In biomarker selection

Batch effects

PCA for isolating batch effects

PCA at the level of protein complexes / biological
pathway subnetworks
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PCA, a la Pearson (1901) NUS

National University
of Singapore

) 98 ) For example :—Let Py, Py, ... P, be the system of points

‘ with coordinates .c;, ¥y; Zay Yo 3.+ «stn Yn, and perpendicular

. SULLE FUNZIONT BILINEARI distances py, ps, - - . pa trom a line A B. Then we shall make
" U=S8(p?* =a minimum.

W BENINANE. If y were the dependent variable, we should have made

S(y —y)?=a minimum

(1I1. On Lines and Planes of Closest Fit to Systems of Points
in Space. By KarL PrarsoN, F.R.S., University College,
London *.

1) TN many physical, statistical, and biological investi-
: gations it is desirable to represent a system of
soints in plane, three, or higher dimensioned space by the
« best-fitting ”’ straight line or plane.  Analytically this
consists in taking
y=ay+ax, or z=a,+axr+by,
or Z2=Qy+ a2, +UsTq+ A%y + . ..+ 0nT,,
where y, z, 2, &y, &s, . .. £n ave variables, and determining the
“ best “',llues f‘Oll" the ‘constar‘\ts ay, aj, (;l,“ao, ay, Gy @, - . - Gn

Credit: Alessandro Giuliani
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Introduction

m Technique quite old: Pearson (1901) and Hotelling (1933), but still one of the most used
multivariate techniques today

m Main idea:
¢ Start with variables X;,..., X,
¢ Find a rotation of these variables, say Y7.....Y), (called principal components), so that:
m Y7,....Y, are uncorrelated. |dea: they measure different dimensions of the data.

m Var(Yy) > Var(Yz) > ... Var(Y,). Idea: Y; is most important, then Y5, etc.

9 /33
Definition of PCA
m Given X = (Xy,...,X,)
m We call @’X a standard linear combination (SLC) if 3> a? = 1
W Find the SLC “’(1) = (aiy,...,ap1) so that Y7 = a’(l)X has maximal variance
m Find the SLC a’gf) = (a12.....ay2) so that Yy = a’(Q)X has maximal variance, subject to the
constraint that Y5 is uncorrelated to Y;.
m Find the SLC a’3) = (a13....,ap3) so that Y3 = a’(S)X has maximal variance, subject to the
constraint that Y3 is uncorrelated to Y7 and Y5
m Etc...
10 / 33
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. . . EEFNUS
PCA, a nice tutorial for dummies® sz

Principal Component Analysis
4 Dummies: Eigenvectors,
Eigenvalues and
Dimension Reduction

Having been in the social sciences for a couple of weeks it seems like a large amount of
quantitative analysis relies on Principal Cocmponent Analysis (PCA). This is usually
referred to in tandem with eigenvalues, eigenvectors and lots of numbers. So what's
going on? Is this just mathematical jargon to get the non-maths scholars to stop asking
questions? Maybe, but it’s also a useful tool to use when you have to look at data. This
post will give a very broad overview of PCA, describing eigenvectors and eigenvalues
(which you need to know about to understand it} and showing how you can reduce the

Copyright 2020 © Limsoon Wong
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https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction

- EBANUS
Nice free Excel add-on s

[ FREE SOFTWAREDOWN X ' (@) Principal Component Ar X — X
<« C ¢ © wak2.web-rice.edu/bio/Kamakura_Analytic_Tools.html pxg o :

=25 Apps €D Limsoon Wong's Hor @ WhatsApp B myconnect Howto Run Android [} Z&E#ESHEDT [ LEWMARFEDSLT

One person recommends this. Sign Up to ses what your friends

recommend

## 2 Kamakura’s Analytic Tools

This FREE suite of Excel add-ins contains a collection of analytic tools | developed over the years for instructional purposes. These add-ins are now bundled under a single menu in Excel's
Add-Ins tab. This version of the suite works with Office 2010 or newer. If you have Office 2007 or older, you can still install the older, independent Add-Ins. In this new suite you will find the
following tools, which work with data of reasonable sizes for instructional purposes:

WordMap — produces a word cloud that represents both the frequency and the adjacency of words across multiple documents. First, it performs basic text-mining. Then it produces
adjacency measures and finally maps these adjacencies using Multidimensional Scaling or Multiple Correspondence Analysis.

Data merge by keys — allows you to merge two sheets by up to three common key-columns. This is something | know how to do using VLOOKUP, but only with a single key column.
Scatterplot with labels — does something | don’t know how do with Excel, namely, scatter-plotting data with meaningful labels for each data point.

3D Scatterplot — simple tool to produce and rotate 3D scatterplots; all you need is a label and three coordinates for each data point.

K-means clustering — the good-old workhorse for classifying cases based on continuous data

Latent Class Analysis — latent class (or finite mixture) analysis for categorical or ordinal data. It may also be used with interval-scaled (i.e., Likert scale) data.

Correspondence Analysis — very popular space-reduction technique in Europe (particularly in France) for categorical data.

Principal Components Analysis — another extremely popular space-reduction technique, for continuous data.

Dynamic Factor Analysis — similar to Principal Component Analysis, except that the factor scores represent smooth (after filtering out noise) latent trends over time. Great for
Trendspotting!. -

% Kamakura Analytics...z.. ™ Show all X

@ ENG
wod 23-Aug-17
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Growth, 1960, 24, 339-354,

SIZE AND SHAPE VARIATION IN THE PAINTED TURTLE.
A PRINCIPAL COMPONENT ANALYSIS

PIERRE JOLICOEUR AND JAMEsS E. MosiMaNN?

Walker Museum, University of Chicago
and

Institut de Biologie, Université de Montréal

(Received for publication July 11, 1960)

Credit: Alessandro Giuliani

MCI5004, 2020 Copyright 2020 © Limsoon Wong




TABLE 1
CarAPACE DIMENSIONS OF PAINTED TURTLES (Chrysemys picta marginata) IN MM.

24 Males 24 Females
length width height length width height
93 74 37 98 81 38
94 78 35 103 84 38
06 80 35 103 86 42
101 84 39 105 86 40
102 85 38 109 88 44
103 81 37 123 92 50
104 83 39 123 95 46
106 83 30 133 99 51
107 82 38 133 102 51
112 89 40 133 102 51
113 88 40 134 100 48
114 86 40 136 102 49
116 90 43 137 08 51
117 90 41 138 99 51
117 01 41 141 105 53
119 93 41 147 108 57
120 89 40 149 107 55
120 93 44 153 107 56
121 95 42 155 115 63
125 93 45 1553 117 60
127 96 45 158 115 62
128 95 45 159 118 63
131 05 46 162 124 61
135 . 106. 47 177 132 67

Credit: Alessandro Giuliani
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Pearson Correlation Coefficients, Width = 19,94 + 0,605*Length
length width height
length 1.00000 0.97831  0.96469
width 0.97831 1.00000  0.96057
height 0.96469 0.96057  1.00000

Credit: Alessandro Giuliani
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- PC1 (98%) |PC2 (1.4%
Principal kil )'
Length 0,992 -0,067
components oo
Height 0,986 0,168

PC1= 33.78*Length +33.73*Width + 33.57*Height

PC2 = -1.57*Length — 2.33*Width + 3.93*Height

Presence of an overwhelming size component explaining system
variance comes from the presence of a ‘typical’ common shape

Displacement along pcl = size variation (all positive terms)

Displacement along pc2 = shape deformation (both positive and
negative terms)
MCI5004, 2020
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unit
T25
T26
T27
T28
T29
T30
T31
T32
T33
T34
T35
T36
T37
T38
T39
T40
T4l
T42
T43
T44
T45
T46

T48
Tl
T2
T3
T4
T5
T6
T7
T8
T9

T10

T12
T13
T14
Ti5
T16
T17
Ti8
T19
T20
T21
T22
T23
T24

Credit: Alessandro Giuliani
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Length
98
103
103
105
109
123
123
133
133
133
134
136
137
138
141
147
149
153
155
158
159
162
177
155
93
94
96
101
102
103
104
106
107
112
113
114
116
117
117
119
120
120
121
125
127
128
131
135

Width
81
84
86
86
88
92
95
99

102
102
100
102
98
99
105
108
107
107
115
115
118
124
132
117
74
78
80
84
85
81
83
83
82
89
88
86
90
90
91
93
89
93
95
93
96
95
95
106

Height
38
38
42
40
44
50
46
51
51
51
48
49
51
51
53
57
55
56
63
62
63
61
67
60
37
35
35
39
38
37
39
39
38
40
40
40
43
41
41
41
40
44
42
45
45
45
46
a7

PCl(size)
-1,15774
-0,99544
-0,7822
-0,82922
-0,55001
0,027368
-0,05281
0,418589
0,498425
0,498425
0,341684
0,467898
0,457949
0,501055
0,790215
1,129025
1,055392
1,161368
1,687277
1,696753
1,833086
1,962232
2,662548
1,620491
-1,46649
-1,42356
-1,33735
-0,98842
-0,98532
-1,11528
-0,96555
-0,93257
-0,98269
-0,63393
-0,64405
-0,68078
-0,42133
-0,48485
-0,45824
-0,37202
-0,50198
-0,23552
-0,24581
-0,11305
-0,00023
-0,01035
0,079136
0,477846

PC2(shape)
0,80754832
-0,1285916
1,37433475
0,28526912
1,4815252
2,47830153
0,05403839
0,88961967
0,33681756
0,33681756
-0,774911
-0,8289156
0,76721682
0,50628189
0,10640554
0,96505915
0,06026089
0,22145593
1,86903869
1,17117077
1,00956637
-1,261771
-1,0787317
0,09690818
2,01289241
0,26342486
-0,258445
0,49260881
-0,2361914
-0,0436547
0,44687352
0,29353841
-0,066727
-0,8042059
-0,6966061
-0,4047389
0,10845233
-0,9039457
-1,0882131
-1,610083
-1,4175463
-0,2831547
-1,6640875
-0,1986272
-0,9047645
-0,7971646
-0,559302
-2,4250481
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Female turtles are
larger and have more
exaggerated height ©
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Exercise
Madrid and Warsaw are at
almost the same distance to
Latium cities

Are Madrid and Warsaw
near each other?

Giuliani et al., Physics Letters A, 247:47-52, 1998

Distances of European cities (km) from the main cities of Latium

Amsterdam
Athens
Barcelona
Beograd
Berlin
Bem

Bonn
Bruselles
Bucharest
Budapest
Calais
Copenhagen
Dublin
Edinburgh
Frankfurt
Hamburg
Helsinki
Istanbul
Lisbon
London
Luxembourg
Madrid
Marseille
Moscow
Munich
Oslo

Paris
Prague
Sofia
Stockholm
Warsaw
Vienna

Rome Latina Frosinone Viterbo  Rieti
430 447 449 415 409
47 321 331 346 Jed
283 305 293 292 271
227 222 236 220 238
393 400 409 3T 373
227 249 247 220 205
353 370 372 339 330
388 406 406 a7l 365
364 355 368 359 378
268 261 274 246 259
418 448 446 418 405
510 522 527 492 491
622 645 641 615 600
637 635 655 625 B15
318 133 336 302 205
435 448 453 417 414
727 729 739 106 713
452 430 443 443 464
615 637 622 624 604
474 404 493 464 456
325 346 346 315 307
449 470 458 460 440
200 223 213 202 183
782 773 T8 759 774
230 245 250 216 213
664 675 682 646 645
365 386 383 357 343
305 i3 320 286 290
204 273 286 280 301
653 658 668 632 636
435 433 444 413 421
255 2534 265 233 240
227 246 246 214 205

Zurich
MCI5004, 2020




PCA of distance matrix of NUS
European cities to Latium cities

of Singapore
Factor loadings and proportions of explained variance

Variables Components
PCl1 PC2 PC3 PC4 PC5

Rome 0.9997 0.0137 —{.0184 —0.0120 0.0001
Frosinone 0.9973 —0.0715 0.0132 (.0011 0.0029
Latina 0.9987 —0.0420 —0.0272 0.00538 —0.0024
Rieti 0.9909 0.0162 0.0393 -0,0009 —0.0023
Viterbo 0.9964 0.0837 —0.0070 0.0060 0.0017
Explained variance 0.9965 0.0029 0.000569 0.000043 0.000005

PC1 accounts for >99% of variance

PC1 correlates with distance of European cities to
Latium cities

PC2, PC3, ... account for < 1% of variance
Are PC2, PC3, ... useless / non-informative?

MCI5004, 2020 Copyright 2020 © Limsoon Wong



PC2 & PC3 are

the angular 3 ——T——
orientation of L oaena |
European cities Marsele o
centered on o T wowie Aens e
. o* Paris_ Istanbul
Latium T ok P g I
'-1."' Hamburg * ¢ Sofia
Muniu:h.: s * * Moscow
1k *7 e ~
So you can tell vema® *icpes
Ma’drld IS nOt nea’r :E.DD -E.l?ﬁ CLJSD 1.|T5 3.00
Warsaw PC2
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Intuitive points 85 o

PCA gives the axes that orthogonally account for
variance in the data

PCs correspond to explanations / factors giving rise
to the variance

Coefficient of a variable in a PC suggests how
relevant that variable is for that PC

Surprising point

PCs accounting for a very small portion of the
variance can also be informative, if you know how to
find these

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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Caution: PCA Is not scale invarian

Suppose we have measurements in kg and meters,
and we want to have principal components
expressed in grams and hectometers

Option 1: multiply measurements in kg by 1000,
multiply measurements in meters by 1/100, and then
apply PCA

Option 2: apply PCA on original measurements, and
then re-scale to the appropriate units

These two options generally give different results!

Credit: Marloes Maathuis

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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Re-scaling in PCA 95 e

When to re-scale
Variables in different units should be re-scaled

Variables in same units but have very different
variances should be re-scaled

How to re-scale
Divide each variable by its deviation
Simple linear interpolation to e.g. [0, 1]

Take log

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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PCA IN BIOMARKER
SELECTION
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PCA In biomarker selection

When PCA is applied e.g. on gene expression data,
PCs w/ large variance ~diff expressed pathways

Variables w/ large coefficient/loading in a PC ~key
genes in the pathway associated with that PC

PCA can be a useful biomarker-selection approach
E.g., biomarkers ~genes w/ high loading

Loading of gene x = X | o, * 5% |, where a,; is
coefficient of x in PC;, and o* is variance of PC,

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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Example

Major subtypes: T-ALL, E2A- The subtypes look similar
PBX, TEL-AML, BCR-ABL, ~ =

MLL genome rearrangements,
Hyperdiploid>50

Diff subtypes respond
differently to same Tx

Over-intensive Tx

Development of secondary
cancers

Reduction of I1Q

Can we diagnosis the
subtypes based on gene
expression profiling?

Under-intensiveTx
Relapse

MCI5004, 2020 Copyright 2020 © Limsoon Wong



4 E2A-PBX1
TEL-AMLA1

Steps:

|dentify genes with high variance
Perform PCA on them

Plot using PC1 to 3

MCI5004, 2020 Copyright 2020 © Limsoon Wong




Induction of hypothesis

The PCs capture different biological pathways. The
values of PCs capture different states of these
pathways

Hypothesis: If patient X has ALL subtype T, X’s

biological pathways are in state S-

... and abduction during diagnosis

Observation: John’s biological pathways are in
state Sy

Abduction: John has ALL subtype T

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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BATCH EFFECTS
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What are batch effects? NP%

of Singapore

Batch effects are unwanted sources of variation
caused by different processing date, handling
personnel, reagent lots, equipment/machines, etc.

Batch effects is a big challenge faced in biological
research, especially towards translational research
and precision medicine

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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. . NUS
Visualizing batch effects 9%z

Rank variables / genes by variance
Keep those with high variance (e.g. top 30-50%)
Perform PCA on them

Make scatter plot of the first 2-3 PCs

Do the subjects clusters by batch?

Make paired boxplot of each PC wrt class and batch
variables

Is PC more correlated with batch?

MCI5004, 2020 Copyright 2020 © Limsoon Wong



NUS

Sometimes, a gene expression study - B8 & N
may involve batches of data collected
over a long period of time...

National University
C of Singapore
Time Span of Gene Expression Profiles S a e r p O
Tiage credit: Dong Difsng

@B

%

n
d @® Batchi D AR g T R i :
c!l;llllll |] _.III‘.'! II I II ¥ Batchl D8 """""""""
$58:3:¢ @ Batch2 DO [T Z— : :
e : : T e
® Batch3 D0 [ ? : :
' Batch3 DB g S RS o S

Z3iZcEEEEEEEEE S EERERERES  puvveeeen) R LERNLUO ) e e

£

2o I L . Batch4 DO | 3 m* """""

025 —" 5 % BawchdDs| """"""""" . : ¥ ¥ 4

e G 3 Lo

L 04

03 02
0.1

Samples from diff batches are group'ed thether,
regardless of subtypes and treatment response

Image credit: Difeng Dong’s PhD dissertation, 2011

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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Paired boxplots of PCs

o - It IS easler to see
3 3 | V== which PC is

enriched in batch
effects by showing,

side by side, the
) J distribution of
e e values of each PC
stratified by class
and suspected
f RIS | batch variables
] —— ] —

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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Normalization
Aim of normalization: Xform data so that probe
Reduce variance w/o Intensity distribution is
increasing bias same on all arrays

Eg.,(x-u)/o
Scaling method
Intensities are scaled so ~ Quantile normalization
that each array has same

average value Gene fuzzy score, GFS
E.g., Affymetrix’s

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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Quantile normalization

Density of PM probe intensities for Spikeln chips

« Given n arrays of length p,
form X of size p x n where _
each array is a column

e Sort each column of X to =
give xsort

« Take means across rows L
of X, and assign this
mean to each elem in the
row to get X,

« Get X, ormaiizeg PY @rranging | ¢ Implemented in some

each column of X’ to microarray s/w, e.g.,
have same ordering as X EXPANDER

1.0

— After Quantile Normalization

ensity
06 0.8

04

0.z

oo

MCI5004, 2020 Copyright 2020 © Limsoon Wong



In such a case, batch effect may be FgNUS

severe... to the extent that you can B2 & N US

predict the batch that each sample

comes! CO— National University
3 e of Singapore

= e After quantile

s L e M i sl ? Barck. o0
Bl © RaST T Mg oneill e T itenig : Batch1 D8
L R A OO et g Batch2 DD
Batch2 D8
Batch3 DO
Batch3 DB |
Batchd DO
Batchd D8 | ™

e

TSP L T L e T R e S

|t

1 ol

* @

40 B0

Image credit: Difeng Dong’s PhD dissertation, 2011
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Caution: It is difficult to eliminateE@NUS
batch effects effectively

of Singapore

: ’ Green and orange are
- " normal samples differing in
fo] L5 | processing date
W elapns HHHHHHHH
S RARE N o
2 L= M | a: Before normalization
ample ample . .
o o b: Post normalization
§ 5 Batch1 Batch 2 q
" N I c: Checks on individual
" NP g genes susceptible to batch
e, [ | effects
g . ' £
51N -0 > .
" s L 1 d: Clustering after
e i B E E normalization (samples still
o ol . cluster by processing date)

Nature Reviews | Genetics

Leek et al, Nature Reviews Genetics, 11:733-739, 2010

MCI5004, 2020 Copyright 2020 © Limsoon Wong



non=normalisation R A
. (11 - o ®a . E = E
Caution: “Over L IR T |
- o ©0g° s W ' “ HP - n o
. . i . st e ? ; ;
I d” I Z b3 ses* : o :
normailiZzed signails .4 - RO -0 L S :
E T o = cnu " e ». - y i
in cancer samples  §* CLE ST e
: o [ a -
P - B I PUIS
%Y o } " .
a® o =~ l'.
- _i% I'. ln:l :
A gene normalized by quantile — — ... S
normalization (RMA) was detected Normal — Disease Normal - Disease
as down-regulated DE gene, but el T iod
the original probe intensities in ] g " i ’ o®
cancer samples were not diff from Z . . . :
. = - o s ® o 0
those in normal samples 2 %% @ .F:: o 4 .
E .s-nﬂﬂ%éﬁﬂ Pl .-:.. El:l- o5 o " .E
§ o o . - F.:ID % an :"
A gene was detected as an up- 5 1% % °g ; m"; 30 e
regulated DE gene in the non- e N‘-‘? @oo® o B. %]
normalized data, but was not — oo &% et
identified as a DE gene in the "1 ° , L T —— -
guantile-normalized data Mormal — Disease Nomal  Risnasa

Wang et al. Molecular Biosystems, 8:818-827, 2012
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ZINUS
Simulated data

Control Samples Class D Class D* Class D Class D*

n
c
0000 o0 00 00 00
o
o
0000 00 00-00 00
0000 " 00 00 00 00
1 2 1 2

Simulations

Real one-class data from a multiplex experiment (no batches); n =8
Randomly assigned into two phenotype classes D and D*, 100x

20% biological features are assigned as differential, and a randomly selected
effect size (20%, 50%, 80%, 100% and 200%) added to D*

Half of D and D* are assigned to batch 1, and the other half assigned to
batch 2. A randomly selected batch effect (20%, 50%, 80%, 100% and

200%) is added to all features in batch 1
Copyright 2020 © Limsoon Wong
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Batch-effect correction can NUS
Introduce false positives

of Singapore
No batch Batch COMBAT Quantile Linear-Scaling

p < 0.05; no correction

Precision is strongly
: affected by batch
deE oL kb LF | kg correction via COMBAT

iy
»mw
Wl

. = False +ve are added
1 post-batch correction.
SRS S S B N S R Data integrity is affected

BB L] B R Post-batch correction
f does not restore
performance to where

P: Precision R; Recall F: F-measure

Feature selection via t-test

IS O S I I N I no batch is present
I I L BN 1
3 j

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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Exercise @ Seon ey

Why normalization methods like mean scaling, z-
score, and gquantile normalization sometimes do not
work well?

Suppose you have two batches of gene expression
data, and two phenotypes: { (A, B,), (A,, B,) }. How
should you do quantile normalization?

— Q(Ay, Ay, By, By)

— Q(A, Ay), Q(By, By)

— Q(A1, By), Q(Az, By)

— Q(A). Q(Ay), Q(By) Q(By)

Interesting
homework
for you

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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Answer

These
Mean-scaling Z-score Quantile assum pti ons
normalization normalization
may not hold
* based on absolute * based on absolute + assumption of
gene expression value gene expression value identical distribution ;
s linearity assumption + assumption of across samples Eg ] d |ISease
= sensitivity to outliers gaussian distribution = affected by rank
instability of low and normal
expression genes sam pIeS are
likely to have
different gene-
expression

distributions

Preprocessing w/ these methods reduces quality of subsequent

predictive models in ~25% of the cases
Luo et al. Pharmacogenomics Journal, 10(4):278-291, 2010
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Belorkar & Wong, “GFS: Fuzzy preprocessing for effective gene
expression analysis”, BMC Bioinformatics, 17(S17):1327, 2016 AN US

Gene fuzzy score (GFS)  98mns

Raw gene expression — gene ranks within microarrays — fuzzified scores

0 1 5Score

I
j......_l_ -
theta_1 4=

*
=
n
-
X
|

Fuzzification .

r

g|ueny Jaddn

ra

Ranks rather than absolute values
No assumption on identical expression distribution

Fuzzification
Reduced fluctuations from minor rank differences
Noise from rank variation in low-expression genes discarded
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Evaluating quality

— 55

Select top 15% —_
highest variance ‘ |
e Compute
PLA silhouette score
P d o)
FOCESSE - lter 1 - ——— | PCI,PC2, PC3 —— 55
— Iter 2 L~ —— PC1,PC2, PC3 55 2 =
2
3
=
Randomly select =
0L =1 :
ISt genes ) ker1000 ~—IBGRGRG - 55 1000
- /

An ideal normalization method should produce a
silhoutte score distribution that is high and stable

MCI5004, 2020 Copyright 2020 © Limsoon Wong



Observations

i *
The GFS null é ‘ g
distribution is stable, w/ B

high silhouette scores

GFS Quantile Z-score Raw Mean scaling

(a) Acute Lymphoblastic Leukemia (ALL)
For GFS, the score

obtained from the top
15% highest variance *
genes is always in the

top quartile of the null
distribution ‘

GFS Quantile Z-score Raw  Mean scaling

o

(b) Duschenne Muscular Dystrophy (DMD)

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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PCA FOR ISOLATING BATCH
EFFECTS

Copyright 2020 © Limsoon Wong



PCA for isolating batch effects NUS

When a batch effect is observed, it iIs common
practice to apply a batch-effect removal or
correction method

But this does not necessarily work well in practice.
Also, if the data does not fit the correction method’s
assumptions, it may lead to false positives

Instead, we may opt for a more direct strategy by
simply removing PCs (usually PC1) enriched In
batch effects, and deploying the remaining PCs as
features for analysis

MCI5004, 2020 Copyright 2020 © Limsoon Wong



Goh & Wong, “Protein complex-based analysis is resistant to the obfuscating

consequences of batch effects”, BMC Genomics18(Suppl2):142, 2017 %@ N US
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of Singapore

PC1 Class PC1 Batch

T =
1 =
Determine PCs
N g associated with
- — | ] - batch using
paired boxplots
P of PCs

Batch effects dominate PC1

MCI5004, 2020 Copyright 2020 © Limsoon Wong



PC3

MCI15004, 2020

5 10 15 20

0

-5

-20 -15 -10

Removal of batch effect-laden PCs
removes most batch effects

data_top20var

P
- AN
; \
/ \\ =4
e - S N / I ol
/ / 1aY
\
| / /
;! / ol
L / Er)
N - | /
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301 PC1 removed

B &

%

4

NUS

National University
of Singapore
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Samples separate by class post PCl'NUS
removal, no batch subgrouping

A and B are different datasets with different batch effects inserted

A_D_1 !3 A_D_1 !
Ez c2
B_D_1 B_D_1
1 1
A_D_1 A_D_2
0 0
B_D 1 4 B.D 2
-1
A_D*_1 2 A_D_1
| | 3 §—2
B.D*_1 B.D_1
A_D*_1 A_D 2
B_D*_1 B_D 2
A_D* 2 A_D*_1
B_D* 2 B_D* 1
A_D* 2 A_D* 2
B_D* 2 B D* 2
A_D_2 A_D* 1
B D2 B.D* 1
A_D_2 A_D*_ 2
B_D_2 B_D* 2
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
¢ Qg2 L28 382 gL 88232 ¢ 2228 @gg g8
mmmmmmmmmmmm
Batch effects dominate Class-effect discrimination recovered

(Notation: A/B_D/D*_1/2 refers to the dataset, class and batches respectively)
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Exercise @ Seon ey

Suggest a modification to the formula below to
avoid selecting genes laden with batch effects

PCA can be a useful biomarker-selection approach
« E.g., biomarkers = genes w/ high loading

— Loading of gene x = X | a,* 67 |, where o is
coefficient of x in PC;, and sz is variance of PC,

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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Answer @ ol Uity

Suggest a modification to the formula below to
avoid selecting genes laden with batch effects

PCA can be a useful biomarker-selection approach
« E.g., biomarkers = genes w/ high loading

— Loading of gene x = X | a,* 67 |, where o is
coefficient of x in PC:.|and sz Is variance of PCJ-

Restrict the summation to PCs
that are not laden w/ batch effects

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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BATCH EFFECT-RESISTANT
FEATURE SELECTION
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What if class and batch effects NUS
are strongly confounded?

Neither batch-effect correction nor PCA work well

We also do not want to inadvertently lose
Information on disease subpopulations (which look
like batch effects but are meaningful)

= Consider using protein complexes / subnetworks
of biological pathways as biomarkers / context for
biomarker selection

MCI5004, 2020 Copyright 2020 © Limsoon Wong
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FSNET --- a protein complex-based feature-selection
methods. Use expression rank-based weighting
method (viz. GFS) on individual proteins, followed
by intra-class-proportion weighting

And for comparison ...

SP iIs the protein-based two-sample t-test

Goh & Wong, “Protein complex-based analysis is resistant to the obfuscating
consequences of batch effects”, BMC Genomics, 18(Suppl 2):142, 2017
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1] 1 Score
L 1L }

F I j—.—.—.—.— o | )
S N E theta 1
1 /

i+
F
e
e
5]
Fub

B(g9.C)

Proportion of tissues in class C that
have protein g among their most-
abundant proteins

ajnuenp Jaddn

Score(S,p,C)

Score of protein complex S and £5(0. 1)
tissue p weighted based on class C 3(9;,C;) = \C'.\ :
pkec; J

fsner(S:X,Y,C)

Complex S is differentially highin ~ Score(S,pi, C Zfb (9 px) * B(g:, C)
sample set X and low in sample set gi€S

Y, weighted based on class C, when

fSNET(S’X’Y’C)_ s _at I?‘rgeSt °% mean(S, X, C;) —mean(S,Y,C))
extreme of t-distribution fonpr (S, XY, C) = \/ ‘ ‘

var(S,X,C;) n var(S.Y,C})
X Y]
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Network-based methods are enriche c’% NUS
for class-related variation (Real data)

of Singapore

PC1 Class PC1 Batch PC1 Class PC1 Batch
N . i ! ——————— ——
S — o - | © — o0
N N
o | o | o o
N —_— « . .
I T T ! — — I é T I T B
normal cancer rep1i rep2 normal cancer rep1 rep2
PC2 Class PC2 Batch PC2 Class PC2 Batch
1 R — © 1 © |
<] © { = i —_—
o o < < ] e — —_—
T T | mal | | p1 p2
T T T T
normal cancer rep1 rep2 norma cancer rep rep

PCA on SP-selected genes: Class & batch effects
are confounded; cf. PC2

PCA on FSNET-selected complexes: Class & batch
effects are less confounded in top PCs
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Top complex-based features areE8NUS

National University

strongly associated with class, not batch™
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T T T T
nnnnnnnnnnn p1 p2
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D
1
X
1
- 1
1 P— N
== —— ;
o 1
T T T T
nnnnnnnnnnn p1 ep2

FSNET captures class effects & is robust against batch
effects. In contrast, both class and batch variability are
present in the top variables selected by SP

MCI15004, 2020
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CONCLUDING REMARKS
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NUS
What have we learned? 9z
PCA is a useful paradigm for biomarker selection

PCA iIs not just a visualization tool; it can also be
used for dealing with batch effects

When class & batch effects are deeply confounded
at the level of proteins / genes, it is might be better
to analyze at the level of protein complexes /
pathway subnetworks
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