MCI5004: Molecular Biomarkers in Clinical Research

Principal Component Analysis in Biomarker Discovery

Wong Limsoon
Plan

PCA
PCA in biomarker selection

Batch effects
PCA for isolating batch effects

PCA at the level of protein complexes / biological pathway subnetworks
PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA, intuitively

Credit: Alessandro Giuliani
PCA, a la Pearson (1901)

For example:—Let $P_1, P_2, \ldots P_n$ be the system of points with coordinates $x_1, y_1; x_2, y_2; \ldots x_n, y_n$, and perpendicular distances $p_1, p_2, \ldots p_n$ from a line AB. Then we shall make

$$U = S(y^2) = a \text{ minimum.}$$

If y were the dependent variable, we should have made

$$S(y' - y)^2 = a \text{ minimum.}$$

Credit: Alessandro Giuliani
PCA, in modern English 😊

Introduction

- Technique quite old: Pearson (1901) and Hotelling (1933), but still one of the most used multivariate techniques today
- Main idea:
 - Start with variables X_1, \ldots, X_p
 - Find a rotation of these variables, say Y_1, \ldots, Y_p (called principal components), so that:
 - Y_1, \ldots, Y_p are uncorrelated. Idea: they measure different dimensions of the data.
 - $\text{Var}(Y_1) \geq \text{Var}(Y_2) \geq \ldots \text{Var}(Y_p)$. Idea: Y_1 is most important, then Y_2, etc.

Definition of PCA

- Given $X = (X_1, \ldots, X_p)'$
- We call $a'X$ a standard linear combination (SLC) if $\sum a_i^2 = 1$
- Find the SLC $a_{(1)}' = (a_{11}, \ldots, a_{p1})$ so that $Y_1 = a_{(1)}'X$ has maximal variance
- Find the SLC $a_{(2)}' = (a_{12}, \ldots, a_{p2})$ so that $Y_2 = a_{(2)}'X$ has maximal variance, subject to the constraint that Y_2 is uncorrelated to Y_1.
- Find the SLC $a_{(3)}' = (a_{13}, \ldots, a_{p3})$ so that $Y_3 = a_{(3)}'X$ has maximal variance, subject to the constraint that Y_3 is uncorrelated to Y_1 and Y_2
- Etc...
PCA, a nice tutorial for dummies

https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction

Principal Component Analysis 4 Dummies: Eigenvectors, Eigenvalues and Dimension Reduction

Having been in the social sciences for a couple of weeks it seems like a large amount of quantitative analysis relies on Principal Component Analysis (PCA). This is usually referred to in tandem with eigenvalues, eigenvectors and lots of numbers. So what’s going on? Is this just mathematical jargon to get the non-maths scholars to stop asking questions? Maybe, but it’s also a useful tool to use when you have to look at data. This post will give a very broad overview of PCA, describing eigenvectors and eigenvalues (which you need to know about to understand it) and showing how you can reduce the
Nice free Excel add-on

http://wak2.web.rice.edu/bio/Kamakura_Analytic_Tools.html
SIZE AND SHAPE VARIATION IN THE PAINTED TURTLE.¹
A PRINCIPAL COMPONENT ANALYSIS

Pierre Jolicoeur and James E. Mosimann²

Walker Museum, University of Chicago
and
Institut de Biologie, Université de Montréal

(Received for publication July 11, 1960)
TABLE 1
CARAPACE DIMENSIONS OF PAINTED TURTLES (*Chrysemys picta marginata*) IN MM.

<table>
<thead>
<tr>
<th>24 Males</th>
<th>24 Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>width</td>
</tr>
<tr>
<td>93</td>
<td>74</td>
</tr>
<tr>
<td>94</td>
<td>78</td>
</tr>
<tr>
<td>96</td>
<td>80</td>
</tr>
<tr>
<td>101</td>
<td>84</td>
</tr>
<tr>
<td>102</td>
<td>85</td>
</tr>
<tr>
<td>103</td>
<td>81</td>
</tr>
<tr>
<td>104</td>
<td>83</td>
</tr>
<tr>
<td>106</td>
<td>83</td>
</tr>
<tr>
<td>107</td>
<td>82</td>
</tr>
<tr>
<td>112</td>
<td>89</td>
</tr>
<tr>
<td>113</td>
<td>88</td>
</tr>
<tr>
<td>114</td>
<td>86</td>
</tr>
<tr>
<td>116</td>
<td>90</td>
</tr>
<tr>
<td>117</td>
<td>90</td>
</tr>
<tr>
<td>117</td>
<td>91</td>
</tr>
<tr>
<td>119</td>
<td>93</td>
</tr>
<tr>
<td>120</td>
<td>89</td>
</tr>
<tr>
<td>120</td>
<td>93</td>
</tr>
<tr>
<td>121</td>
<td>95</td>
</tr>
<tr>
<td>125</td>
<td>93</td>
</tr>
<tr>
<td>127</td>
<td>96</td>
</tr>
<tr>
<td>128</td>
<td>95</td>
</tr>
<tr>
<td>131</td>
<td>95</td>
</tr>
<tr>
<td>135</td>
<td>106</td>
</tr>
</tbody>
</table>

Credit: Alessandro Giuliani
Pearson Correlation Coefficients,

<table>
<thead>
<tr>
<th></th>
<th>length</th>
<th>width</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>1.00000</td>
<td>0.97831</td>
<td>0.96469</td>
</tr>
<tr>
<td>width</td>
<td>0.97831</td>
<td>1.00000</td>
<td>0.96057</td>
</tr>
<tr>
<td>height</td>
<td>0.96469</td>
<td>0.96057</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Width = 19.94 + 0.605\times\text{Length}

Credit: Alessandro Giuliani
Principal components

<table>
<thead>
<tr>
<th></th>
<th>PC1 (98%)</th>
<th>PC2 (1.4%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>0.992</td>
<td>-0.067</td>
</tr>
<tr>
<td>Width</td>
<td>0.990</td>
<td>-0.100</td>
</tr>
<tr>
<td>Height</td>
<td>0.986</td>
<td>0.168</td>
</tr>
</tbody>
</table>

PC1 = 33.78*Length + 33.73*Width + 33.57*Height

PC2 = -1.57*Length – 2.33*Width + 3.93*Height

Presence of an overwhelming size component explaining system variance comes from the presence of a ‘typical’ common shape
Displacement along pc1 = size variation (all positive terms)
Displacement along pc2 = shape deformation (both positive and negative terms)
<table>
<thead>
<tr>
<th>unit</th>
<th>sex</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>PC1(size)</th>
<th>PC2(shape)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T25</td>
<td>F</td>
<td>98</td>
<td>81</td>
<td>38</td>
<td>-1.15774</td>
<td>0.80754832</td>
</tr>
<tr>
<td>T26</td>
<td>F</td>
<td>103</td>
<td>84</td>
<td>38</td>
<td>-0.99644</td>
<td>-0.1285916</td>
</tr>
<tr>
<td>T27</td>
<td>F</td>
<td>103</td>
<td>86</td>
<td>42</td>
<td>-0.7822</td>
<td>1.37433475</td>
</tr>
<tr>
<td>T28</td>
<td>F</td>
<td>105</td>
<td>86</td>
<td>40</td>
<td>-0.82922</td>
<td>0.28526912</td>
</tr>
<tr>
<td>T29</td>
<td>F</td>
<td>109</td>
<td>88</td>
<td>44</td>
<td>-0.55001</td>
<td>1.4815252</td>
</tr>
<tr>
<td>T30</td>
<td>F</td>
<td>123</td>
<td>92</td>
<td>50</td>
<td>0.027368</td>
<td>2.47830153</td>
</tr>
<tr>
<td>T31</td>
<td>F</td>
<td>123</td>
<td>95</td>
<td>46</td>
<td>-0.05281</td>
<td>0.05408829</td>
</tr>
<tr>
<td>T32</td>
<td>F</td>
<td>133</td>
<td>99</td>
<td>51</td>
<td>0.418589</td>
<td>0.8961967</td>
</tr>
<tr>
<td>T33</td>
<td>F</td>
<td>133</td>
<td>102</td>
<td>51</td>
<td>0.498425</td>
<td>0.33681756</td>
</tr>
<tr>
<td>T34</td>
<td>F</td>
<td>133</td>
<td>102</td>
<td>51</td>
<td>0.498425</td>
<td>0.33681756</td>
</tr>
<tr>
<td>T35</td>
<td>F</td>
<td>134</td>
<td>100</td>
<td>48</td>
<td>0.341684</td>
<td>-0.774911</td>
</tr>
<tr>
<td>T36</td>
<td>F</td>
<td>136</td>
<td>102</td>
<td>49</td>
<td>0.479888</td>
<td>-0.8299156</td>
</tr>
<tr>
<td>T37</td>
<td>F</td>
<td>137</td>
<td>98</td>
<td>51</td>
<td>0.457949</td>
<td>0.76721682</td>
</tr>
<tr>
<td>T38</td>
<td>F</td>
<td>138</td>
<td>99</td>
<td>51</td>
<td>0.501055</td>
<td>0.50628189</td>
</tr>
<tr>
<td>T39</td>
<td>F</td>
<td>141</td>
<td>105</td>
<td>53</td>
<td>0.780215</td>
<td>0.10640554</td>
</tr>
<tr>
<td>T40</td>
<td>F</td>
<td>147</td>
<td>108</td>
<td>57</td>
<td>1.129025</td>
<td>0.9605915</td>
</tr>
<tr>
<td>T41</td>
<td>F</td>
<td>149</td>
<td>107</td>
<td>55</td>
<td>1.055392</td>
<td>0.06026089</td>
</tr>
<tr>
<td>T42</td>
<td>F</td>
<td>153</td>
<td>107</td>
<td>56</td>
<td>1.161368</td>
<td>0.2215593</td>
</tr>
<tr>
<td>T43</td>
<td>F</td>
<td>155</td>
<td>115</td>
<td>63</td>
<td>1.687277</td>
<td>1.8693869</td>
</tr>
<tr>
<td>T44</td>
<td>F</td>
<td>158</td>
<td>115</td>
<td>62</td>
<td>1.696753</td>
<td>1.1717077</td>
</tr>
<tr>
<td>T45</td>
<td>F</td>
<td>159</td>
<td>118</td>
<td>63</td>
<td>1.833086</td>
<td>1.00956637</td>
</tr>
<tr>
<td>T46</td>
<td>F</td>
<td>162</td>
<td>124</td>
<td>61</td>
<td>1.962323</td>
<td>-1.261771</td>
</tr>
<tr>
<td>T47</td>
<td>F</td>
<td>177</td>
<td>132</td>
<td>67</td>
<td>2.662548</td>
<td>-1.0787317</td>
</tr>
<tr>
<td>T48</td>
<td>F</td>
<td>155</td>
<td>117</td>
<td>60</td>
<td>1.620491</td>
<td>0.09690818</td>
</tr>
<tr>
<td>T1</td>
<td>M</td>
<td>93</td>
<td>74</td>
<td>37</td>
<td>-1.46649</td>
<td>2.0129924</td>
</tr>
<tr>
<td>T2</td>
<td>M</td>
<td>94</td>
<td>78</td>
<td>35</td>
<td>-1.42356</td>
<td>0.26342486</td>
</tr>
<tr>
<td>T3</td>
<td>M</td>
<td>96</td>
<td>80</td>
<td>35</td>
<td>-1.33735</td>
<td>-0.258445</td>
</tr>
<tr>
<td>T4</td>
<td>M</td>
<td>101</td>
<td>84</td>
<td>39</td>
<td>-0.98842</td>
<td>0.4920881</td>
</tr>
<tr>
<td>T5</td>
<td>M</td>
<td>102</td>
<td>85</td>
<td>38</td>
<td>-0.98632</td>
<td>-0.2361914</td>
</tr>
<tr>
<td>T6</td>
<td>M</td>
<td>103</td>
<td>81</td>
<td>37</td>
<td>-1.11528</td>
<td>-0.043547</td>
</tr>
<tr>
<td>T7</td>
<td>M</td>
<td>104</td>
<td>83</td>
<td>39</td>
<td>-0.96555</td>
<td>0.44687352</td>
</tr>
<tr>
<td>T8</td>
<td>M</td>
<td>106</td>
<td>83</td>
<td>39</td>
<td>-0.93257</td>
<td>0.29303841</td>
</tr>
<tr>
<td>T9</td>
<td>M</td>
<td>107</td>
<td>82</td>
<td>38</td>
<td>-0.98269</td>
<td>-0.066727</td>
</tr>
<tr>
<td>T10</td>
<td>M</td>
<td>112</td>
<td>89</td>
<td>40</td>
<td>-0.63393</td>
<td>-0.8042059</td>
</tr>
<tr>
<td>T11</td>
<td>M</td>
<td>113</td>
<td>88</td>
<td>40</td>
<td>-0.64405</td>
<td>-0.6966061</td>
</tr>
<tr>
<td>T12</td>
<td>M</td>
<td>114</td>
<td>86</td>
<td>40</td>
<td>-0.68078</td>
<td>-0.4047389</td>
</tr>
<tr>
<td>T13</td>
<td>M</td>
<td>116</td>
<td>90</td>
<td>43</td>
<td>-0.42133</td>
<td>0.10845233</td>
</tr>
<tr>
<td>T14</td>
<td>M</td>
<td>117</td>
<td>90</td>
<td>41</td>
<td>-0.48485</td>
<td>-0.9039457</td>
</tr>
<tr>
<td>T15</td>
<td>M</td>
<td>117</td>
<td>91</td>
<td>41</td>
<td>-0.45824</td>
<td>-1.0882131</td>
</tr>
<tr>
<td>T16</td>
<td>M</td>
<td>119</td>
<td>93</td>
<td>41</td>
<td>-0.37202</td>
<td>-1.610083</td>
</tr>
<tr>
<td>T17</td>
<td>M</td>
<td>120</td>
<td>89</td>
<td>40</td>
<td>-0.50198</td>
<td>-1.4175463</td>
</tr>
<tr>
<td>T18</td>
<td>M</td>
<td>120</td>
<td>93</td>
<td>44</td>
<td>-0.23552</td>
<td>-0.2831547</td>
</tr>
<tr>
<td>T19</td>
<td>M</td>
<td>121</td>
<td>95</td>
<td>42</td>
<td>-0.24581</td>
<td>-1.6640875</td>
</tr>
<tr>
<td>T20</td>
<td>M</td>
<td>125</td>
<td>93</td>
<td>45</td>
<td>-0.11305</td>
<td>-0.1986272</td>
</tr>
<tr>
<td>T21</td>
<td>M</td>
<td>127</td>
<td>96</td>
<td>45</td>
<td>-0.00023</td>
<td>-0.9047645</td>
</tr>
<tr>
<td>T22</td>
<td>M</td>
<td>128</td>
<td>95</td>
<td>45</td>
<td>-0.01035</td>
<td>-0.7971646</td>
</tr>
<tr>
<td>T23</td>
<td>M</td>
<td>131</td>
<td>95</td>
<td>46</td>
<td>0.079136</td>
<td>-0.559302</td>
</tr>
<tr>
<td>T24</td>
<td>M</td>
<td>135</td>
<td>106</td>
<td>47</td>
<td>0.477846</td>
<td>2.4250481</td>
</tr>
</tbody>
</table>

Female turtles are larger and have more exaggerated height 😊

Credit: Alessandro Giuliani
Exercise

Madrid and Warsaw are at almost the same distance to Latium cities

Are Madrid and Warsaw near each other?

PCA of distance matrix of European cities to Latium cities

PC1 accounts for >99% of variance
PC1 correlates with distance of European cities to Latium cities

PC2, PC3, … account for < 1% of variance
Are PC2, PC3, … useless / non-informative?

<table>
<thead>
<tr>
<th>Variables</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC1</td>
</tr>
<tr>
<td>Rome</td>
<td>0.9997</td>
</tr>
<tr>
<td>Frosinone</td>
<td>0.9973</td>
</tr>
<tr>
<td>Latina</td>
<td>0.9987</td>
</tr>
<tr>
<td>Rieti</td>
<td>0.9909</td>
</tr>
<tr>
<td>Viterbo</td>
<td>0.9964</td>
</tr>
<tr>
<td>Explained variance</td>
<td>0.9965</td>
</tr>
</tbody>
</table>
PC2 & PC3 are the angular orientation of European cities centered on Latium

So you can tell Madrid is not near Warsaw
Intuitive points

PCA gives the axes that orthogonally account for variance in the data

PCs correspond to explanations / factors giving rise to the variance

Coefficient of a variable in a PC suggests how relevant that variable is for that PC

Surprising point

PCs accounting for a very small portion of the variance can also be informative, if you know how to find these
Caution: PCA is not scale invariant!

Suppose we have measurements in kg and meters, and we want to have principal components expressed in grams and hectometers.

Option 1: multiply measurements in kg by 1000, multiply measurements in meters by 1/100, and then apply PCA.

Option 2: apply PCA on original measurements, and then re-scale to the appropriate units.

These two options generally give different results!

Credit: Marloes Maathuis
Re-scaling in PCA

When to re-scale

Variables in different units should be re-scaled

Variables in same units but have very different variances should be re-scaled

How to re-scale

Divide each variable by its deviation

Simple linear interpolation to e.g. [0, 1]

Take log
PCA IN BIOMARKER SELECTION
PCA in biomarker selection

When PCA is applied e.g. on gene expression data,

PCs w/ large variance \(\approx\) **diff expressed pathways**

Variables w/ large coefficient/loading in a PC \(\approx\) **key genes in the pathway associated with that PC**

PCA can be a useful biomarker-selection approach

E.g., biomarkers \(\approx\) **genes w/ high loading**

\[
\text{Loading of gene } x = \sum_j | \alpha_{xj} * \sigma_j^2 |, \text{ where } \alpha_{xj} \text{ is coefficient of } x \text{ in } \text{PC}_j, \text{ and } \sigma_j^2 \text{ is variance of } \text{PC}_j
\]
Example

Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR-ABL, MLL genome rearrangements, Hyperdiploid>50

Diff subtypes respond differently to same Tx
Over-intensive Tx
Development of secondary cancers
Reduction of IQ

Under-intensive Tx
Relapse

The subtypes look similar
Can we diagnosis the subtypes based on gene expression profiling?
PCA in ALL subtype diagnosis

Steps:

- Identify genes with high variance
- Perform PCA on them
- Plot using PC1 to 3
Induction of hypothesis

The PCs capture different biological pathways. The values of PCs capture different states of these pathways.

Hypothesis: If patient X has ALL subtype T, X’s biological pathways are in state S_T.

... and abduction during diagnosis

Observation: John’s biological pathways are in state S_T.

Abduction: John has ALL subtype T.
BATCH EFFECTS
What are batch effects?

Batch effects are unwanted sources of variation caused by different processing date, handling personnel, reagent lots, equipment/machines, etc.

Batch effects is a big challenge faced in biological research, especially towards translational research and precision medicine.
Visualizing batch effects

Rank variables / genes by variance

Keep those with high variance (e.g. top 30-50%)

Perform PCA on them

Make scatter plot of the first 2-3 PCs

Do the subjects clusters by batch?

Make paired boxplot of each PC wrt class and batch variables

Is PC more correlated with batch?
Sometimes, a gene expression study may involve batches of data collected over a long period of time...

PCA scatter plot

Samples from diff batches are grouped together, regardless of subtypes and treatment response

Image credit: Difeng Dong’s PhD dissertation, 2011
Paired boxplots of PCs

It is easier to see which PC is enriched in batch effects by showing, side by side, the distribution of values of each PC stratified by class and suspected batch variables.
Normalization

Aim of normalization:
Reduce variance w/o increasing bias

Scaling method
Intensities are scaled so that each array has same average value
E.g., Affymetrix’s

Xform data so that probe intensity distribution is same on all arrays
E.g., \((x - \mu) / \sigma\)

Quantile normalization

Gene fuzzy score, GFS
Quantile normalization

- Given \(n\) arrays of length \(p\), form \(X\) of size \(p \times n\) where each array is a column.
- Sort each column of \(X\) to give \(X_{\text{sort}}\).
- Take means across rows of \(X_{\text{sort}}\) and assign this mean to each elem in the row to get \(X'_{\text{sort}}\).
- Get \(X_{\text{normalized}}\) by arranging each column of \(X'_{\text{sort}}\) to have same ordering as \(X\).

- Implemented in some microarray s/w, e.g., EXPANDER.
In such a case, batch effect may be severe... to the extent that you can predict the batch that each sample comes!

⇒ Need normalization to correct for batch effect

Image credit: Difeng Dong’s PhD dissertation, 2011
Caution: It is difficult to eliminate batch effects effectively

Green and orange are normal samples differing in processing date

a: Before normalization

b: Post normalization

c: Checks on individual genes susceptible to batch effects

d: Clustering after normalization (samples still cluster by processing date)

Leek et al, Nature Reviews Genetics, 11:733-739, 2010
Caution: “Over normalized” signals in cancer samples

A gene normalized by quantile normalization (RMA) was detected as down-regulated DE gene, but the original probe intensities in cancer samples were not diff from those in normal samples.

A gene was detected as an up-regulated DE gene in the non-normalized data, but was not identified as a DE gene in the quantile-normalized data.

Wang et al. Molecular Biosystems, 8:818-827, 2012
Simulated data

Real one-class data from a multiplex experiment (no batches); n = 8
Randomly assigned into two phenotype classes D and D*, 100x
20% biological features are assigned as differential, and a randomly selected effect size (20%, 50%, 80%, 100% and 200%) added to D*
Half of D and D* are assigned to batch 1, and the other half assigned to batch 2. A randomly selected batch effect (20%, 50%, 80%, 100% and 200%) is added to all features in batch 1
Batch-effect correction can introduce false positives

Precision is strongly affected by batch correction via COMBAT

⇒ False +ve are added post-batch correction. Data integrity is affected

Post-batch correction does not restore performance to where no batch is present
Exercise

Why normalization methods like mean scaling, z-score, and quantile normalization sometimes do not work well?

Suppose you have two batches of gene expression data, and two phenotypes: \{ (A_1, B_1), (A_2, B_2) \}. How should you do quantile normalization?

- \(Q(A_1, A_2, B_1, B_2) \)
- \(Q(A_1, A_2), Q(B_1, B_2) \)
- \(Q(A_1, B_1), Q(A_2, B_2) \)
- \(Q(A_1). Q(A_2), Q(B_1) Q(B_2) \)

Interesting homework for you
Preprocessing w/ these methods reduces quality of subsequent predictive models in ~25% of the cases

Gene fuzzy score (GFS)

Raw gene expression → gene ranks within microarrays → fuzzified scores

Ranks rather than absolute values
No assumption on identical expression distribution

Fuzzification
Reduced fluctuations from minor rank differences
Noise from rank variation in low-expression genes discarded
Evaluating quality

An ideal normalization method should produce a silhouette score distribution that is high and stable.
Observations

The GFS null distribution is stable, with high silhouette scores.

For GFS, the score obtained from the top 15% highest variance genes is always in the top quartile of the null distribution.
PCA FOR ISOLATING BATCH EFFECTS
PCA for isolating batch effects

When a batch effect is observed, it is common practice to apply a batch-effect removal or correction method.

But this does not necessarily work well in practice. Also, if the data does not fit the correction method’s assumptions, it may lead to false positives.

Instead, we may opt for a more direct strategy by simply removing PCs (usually PC1) enriched in batch effects, and deploying the remaining PCs as features for analysis.
Determine PCs associated with batch using paired boxplots of PCs

Batch effects dominate PC1
Removal of batch effect-laden PCs removes most batch effects
Samples separate by class post PC1 removal, no batch subgrouping

A and B are different datasets with different batch effects inserted

Batch effects dominate
Class-effect discrimination recovered

(Notation: A/B_D/D*_1/2 refers to the dataset, class and batches respectively)
Exercise

Suggest a modification to the formula below to avoid selecting genes laden with batch effects

PCA can be a useful biomarker-selection approach

- E.g., biomarkers \approx genes w/ high loading
 - Loading of gene $x = \sum_j |\alpha_{xj} \cdot \sigma_j^2|$, where α_{xj} is coefficient of x in PC_j, and σ_j^2 is variance of PC_j
Suggest a modification to the formula below to avoid selecting genes laden with batch effects

PCA can be a useful biomarker-selection approach

- E.g., biomarkers \(\approx \) genes w/ high loading

 \[
 \text{Loading of gene } x = \sum_j | \alpha_{xj} \cdot \sigma_j^2 |, \text{ where } \alpha_{xj} \text{ is coefficient of } x \text{ in PC}_j, \text{ and } \sigma_j^2 \text{ is variance of PC}_j
 \]

Restrict the summation to PCs that are not laden w/ batch effects
BATCH EFFECT-RESISTANT FEATURE SELECTION
What if class and batch effects are strongly confounded?

Neither batch-effect correction nor PCA work well

We also do not want to inadvertently lose information on disease subpopulations (which look like batch effects but are meaningful)

⇒ Consider using protein complexes / subnetworks of biological pathways as biomarkers / context for biomarker selection
FSNET --- a protein complex-based feature-selection methods. Use expression rank-based weighting method (viz. GFS) on individual proteins, followed by intra-class-proportion weighting

And for comparison …

SP is the protein-based two-sample t-test

Goh & Wong, “Protein complex-based analysis is resistant to the obfuscating consequences of batch effects”, *BMC Genomics*, 18(Suppl 2):142, 2017
FSNET

\(\beta(g, C) \)
Proportion of tissues in class C that have protein g among their most-abundant proteins

Score(S,p,C)
Score of protein complex S and tissue p weighted based on class C

\[\beta(g_i, C_j) = \sum_{p \in C_j} \frac{fs(g_i, p_k)}{|C_j|} \]

\[\text{score}(S, p_k, C_j) = \sum_{g_i \in S} fs(g_i, p_k) \times \beta(g_i, C_j) \]

\[f_{SNET}(S, X, Y, C) = \frac{\text{mean}(S, X, C_j) - \text{mean}(S, Y, C_j)}{\sqrt{\frac{\text{var}(S,X,C_j)}{|X|} + \frac{\text{var}(S,Y,C_j)}{|Y|}}} \]
Network-based methods are enriched for class-related variation (Real data)

PCA on SP-selected genes: Class & batch effects are confounded; cf. PC2

PCA on FSNET-selected complexes: Class & batch effects are less confounded in top PCs
Top complex-based features are strongly associated with class, not batch

FSNET captures class effects & is robust against batch effects. In contrast, both class and batch variability are present in the top variables selected by SP
CONCLUDING REMARKS
What have we learned?

PCA is a useful paradigm for biomarker selection

PCA is not just a visualization tool; it can also be used for dealing with batch effects

When class & batch effects are deeply confounded at the level of proteins / genes, it is might be better to analyze at the level of protein complexes / pathway subnetworks
References

[Batch effects] Leek et al., *Nature Reviews Genetics*, 11:733-739, 2010

