MCI5004: Molecular Biomarkers in Clinical Research

Principal Component Analysis in Biomarker Discovery

Wong Limsoon
Plan

PCA

PCA in biomarker selection

Batch effects

PCA for isolating batch effects

PCA at the level of protein complexes / biological pathway subnetworks
PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA, intuitively

Credit: Alessandro Giuliani
PCA, in brief

\(X_{\text{raw}} \) \hspace{1cm} n \text{ samples } \times p \text{ genes data matrix}

\(\mu \) \hspace{1cm} \text{mean vector of each gene}

\(X = X_{\text{raw}} - \mu \) \hspace{1cm} \text{the centered matrix}

\(V \) \hspace{1cm} p \times k \text{ eigenvectors; i.e. the PCA}

\(Z = X V \) \hspace{1cm} \text{the } k \text{ PC projections}

How to get \(V \)?
PCA, in modern English 😊

Introduction

- Technique quite old: Pearson (1901) and Hotelling (1933), but still one of the most used multivariate techniques today.
- Main idea:
 - Start with variables X_1, \ldots, X_p.
 - Find a rotation of these variables, say Y_1, \ldots, Y_p (called principal components), so that:
 - Y_1, \ldots, Y_p are uncorrelated. Idea: they measure different dimensions of the data.
 - $\text{Var}(Y_1) \geq \text{Var}(Y_2) \geq \ldots \geq \text{Var}(Y_p)$. Idea: Y_1 is most important, then Y_2, etc.

Definition of PCA

- Given $X = (X_1, \ldots, X_p)'$.
- We call $a'X$ a standard linear combination (SLC) if $\sum a_i^2 = 1$.
- Find the SLC $a_{(1)}' = (a_{11}, \ldots, a_{p1})$ so that $Y_1 = a_{(1)}'X$ has maximal variance.
- Find the SLC $a_{(2)}' = (a_{12}, \ldots, a_{p2})$ so that $Y_2 = a_{(2)}'X$ has maximal variance, subject to the constraint that Y_2 is uncorrelated to Y_1.
- Find the SLC $a_{(3)}' = (a_{13}, \ldots, a_{p3})$ so that $Y_3 = a_{(3)}'X$ has maximal variance, subject to the constraint that Y_3 is uncorrelated to Y_1 and Y_2.
- Etc...
PCA, a nice tutorial for dummies

https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction

Principal Component Analysis 4 Dummies: Eigenvectors, Eigenvalues and Dimension Reduction

Having been in the social sciences for a couple of weeks it seems like a large amount of quantitative analysis relies on Principal Component Analysis (PCA). This is usually referred to in tandem with eigenvalues, eigenvectors and lots of numbers. So what's going on? Is this just mathematical jargon to get the non-maths scholars to stop asking questions? Maybe, but it's also a useful tool to use when you have to look at data. This post will give a very broad overview of PCA, describing eigenvectors and eigenvalues (which you need to know about to understand it) and showing how you can reduce the
A couple of nice free add-on for doing PCA in Excel

http://wak2.web.rice.edu/bio/Kamakura_Analytic_Tools.html

SIZE AND SHAPE VARIATION IN THE PAINTED TURTLE.¹
A PRINCIPAL COMPONENT ANALYSIS

Pierre Jolicoeur and James E. Mosimann²

Walker Museum, University of Chicago
and
Institut de Biologie, Université de Montréal

(Received for publication July 11, 1960)
<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>74</td>
<td>37</td>
</tr>
<tr>
<td>94</td>
<td>78</td>
<td>35</td>
</tr>
<tr>
<td>96</td>
<td>80</td>
<td>35</td>
</tr>
<tr>
<td>101</td>
<td>84</td>
<td>39</td>
</tr>
<tr>
<td>102</td>
<td>85</td>
<td>38</td>
</tr>
<tr>
<td>103</td>
<td>81</td>
<td>37</td>
</tr>
<tr>
<td>104</td>
<td>83</td>
<td>39</td>
</tr>
<tr>
<td>106</td>
<td>83</td>
<td>39</td>
</tr>
<tr>
<td>107</td>
<td>82</td>
<td>38</td>
</tr>
<tr>
<td>112</td>
<td>89</td>
<td>40</td>
</tr>
<tr>
<td>113</td>
<td>88</td>
<td>40</td>
</tr>
<tr>
<td>114</td>
<td>86</td>
<td>40</td>
</tr>
<tr>
<td>116</td>
<td>90</td>
<td>43</td>
</tr>
<tr>
<td>117</td>
<td>90</td>
<td>41</td>
</tr>
<tr>
<td>119</td>
<td>93</td>
<td>41</td>
</tr>
<tr>
<td>120</td>
<td>89</td>
<td>40</td>
</tr>
<tr>
<td>120</td>
<td>93</td>
<td>44</td>
</tr>
<tr>
<td>121</td>
<td>95</td>
<td>42</td>
</tr>
<tr>
<td>125</td>
<td>93</td>
<td>45</td>
</tr>
<tr>
<td>127</td>
<td>96</td>
<td>45</td>
</tr>
<tr>
<td>128</td>
<td>95</td>
<td>45</td>
</tr>
<tr>
<td>131</td>
<td>95</td>
<td>46</td>
</tr>
<tr>
<td>135</td>
<td>106</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>length</th>
<th>width</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>81</td>
<td>38</td>
</tr>
<tr>
<td>103</td>
<td>84</td>
<td>38</td>
</tr>
<tr>
<td>103</td>
<td>86</td>
<td>42</td>
</tr>
<tr>
<td>105</td>
<td>86</td>
<td>40</td>
</tr>
<tr>
<td>109</td>
<td>88</td>
<td>44</td>
</tr>
<tr>
<td>123</td>
<td>92</td>
<td>50</td>
</tr>
<tr>
<td>123</td>
<td>95</td>
<td>46</td>
</tr>
<tr>
<td>133</td>
<td>99</td>
<td>51</td>
</tr>
<tr>
<td>133</td>
<td>102</td>
<td>51</td>
</tr>
<tr>
<td>133</td>
<td>102</td>
<td>51</td>
</tr>
<tr>
<td>134</td>
<td>100</td>
<td>48</td>
</tr>
<tr>
<td>136</td>
<td>102</td>
<td>49</td>
</tr>
<tr>
<td>137</td>
<td>98</td>
<td>51</td>
</tr>
<tr>
<td>138</td>
<td>99</td>
<td>51</td>
</tr>
<tr>
<td>141</td>
<td>105</td>
<td>53</td>
</tr>
<tr>
<td>147</td>
<td>108</td>
<td>57</td>
</tr>
<tr>
<td>149</td>
<td>107</td>
<td>55</td>
</tr>
<tr>
<td>153</td>
<td>107</td>
<td>56</td>
</tr>
<tr>
<td>155</td>
<td>115</td>
<td>63</td>
</tr>
<tr>
<td>155</td>
<td>117</td>
<td>60</td>
</tr>
<tr>
<td>158</td>
<td>115</td>
<td>62</td>
</tr>
<tr>
<td>159</td>
<td>118</td>
<td>63</td>
</tr>
<tr>
<td>162</td>
<td>124</td>
<td>61</td>
</tr>
<tr>
<td>177</td>
<td>132</td>
<td>67</td>
</tr>
</tbody>
</table>

Credit: Alessandro Giuliani
<table>
<thead>
<tr>
<th></th>
<th>length</th>
<th>width</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>1.00000</td>
<td>0.97831</td>
<td>0.96469</td>
</tr>
<tr>
<td>width</td>
<td>0.97831</td>
<td>1.00000</td>
<td>0.96057</td>
</tr>
<tr>
<td>height</td>
<td>0.96469</td>
<td>0.96057</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Credit: Alessandro Giuliani

Width = 19.94 + 0.605*Length
Principal components

<table>
<thead>
<tr>
<th></th>
<th>PC1 (98%)</th>
<th>PC2 (1.4%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>0.992</td>
<td>-0.067</td>
</tr>
<tr>
<td>Width</td>
<td>0.990</td>
<td>-0.100</td>
</tr>
<tr>
<td>Height</td>
<td>0.986</td>
<td>0.168</td>
</tr>
</tbody>
</table>

PC1 = 33.78*Length + 33.73*Width + 33.57*Height

PC2 = -1.57*Length - 2.33*Width + 3.93*Height

Presence of an overwhelming size component explaining system variance comes from the presence of a ‘typical’ common shape
Displacement along pc1 = size variation (all positive terms)
Displacement along pc2 = shape deformation (both positive and negative terms)
Female turtles are larger and have more exaggerated height 😊
Exercise

Madrid and Warsaw are at almost the same distance to Latium cities

Are Madrid and Warsaw near each other?

PCA of distance matrix of European cities to Latium cities

<table>
<thead>
<tr>
<th>Variables</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC1</td>
</tr>
<tr>
<td>Rome</td>
<td>0.9997</td>
</tr>
<tr>
<td>Frosinone</td>
<td>0.9973</td>
</tr>
<tr>
<td>Latina</td>
<td>0.9987</td>
</tr>
<tr>
<td>Rieti</td>
<td>0.9909</td>
</tr>
<tr>
<td>Viterbo</td>
<td>0.9964</td>
</tr>
<tr>
<td>Explained variance</td>
<td>0.9965</td>
</tr>
</tbody>
</table>

PC1 accounts for >99% of variance
PC1 correlates with distance of European cities to Latium cities

PC2, PC3, ... account for < 1% of variance
Are PC2, PC3, ... useless / non-informative?
Intuitive points

PCA gives the axes that orthogonally account for variance in the data

PCs correspond to explanations / factors giving rise to the variance

Coefficient of a variable in a PC suggests how relevant that variable is for that PC

Surprising point

PCs accounting for a very small portion of the variance can also be informative, if you know how to find these
Caution: PCA is not scale invariant

Suppose we have measurements in kg and meters, and we want to have principal components expressed in grams and hectometers

Option 1: multiply measurements in kg by 1000, multiply measurements in meters by 1/100, and then apply PCA

Option 2: apply PCA on original measurements, and then re-scale to the appropriate units

These two options generally give different results!

Credit: Marloes Maathuis
Re-scaling in PCA

When to re-scale

Variables in different units should be re-scaled

Variables in same units but have very different variances should be re-scaled

How to re-scale

Divide each variable by its deviation

Simple linear interpolation to e.g. [0, 1]

Take log
PCA IN BIOMARKER SELECTION
PCA in biomarker selection

When PCA is applied e.g. on gene expression data,

\textit{PCs w/ large variance} \approx \textit{diff expressed pathways}

\textit{Variables w/ large coefficient/loading in a PC} \approx \textit{key genes in the pathway associated with that PC}

PCA can be a useful biomarker-selection approach

\textit{E.g., biomarkers} \approx \textit{genes w/ high loading}

\text{Loading of gene } x = \sum_j | \alpha_{xj} \cdot \sigma_j^2 |, \text{ where } \alpha_{xj} \text{ is coefficient of } x \text{ in PC}_j, \text{ and } \sigma_j^2 \text{ is variance of PC}_j
Example

Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR-ABL, MLL genome rearrangements, Hyperdiploid > 50

The subtypes look similar

Diff subtypes respond differently to same Tx

Over-intensive Tx
- Development of secondary cancers
- Reduction of IQ

Can we diagnosis the subtypes based on gene expression profiling?

Under-intensive Tx
- Relapse
PCA in ALL subtype diagnosis

Steps:
- Identify genes with high variance
- Perform PCA on them
- Plot using PC1 to 3
Induction of hypothesis

The PCs capture different biological pathways. The values of PCs capture different states of these pathways.

Hypothesis: If patient X has ALL subtype T, X’s biological pathways are in state S_T.

Observation: John’s biological pathways are in state S_T.

Abduction: John has ALL subtype T.

... and abduction during diagnosis
BATCH EFFECTS
What are batch effects?

Batch effects are unwanted sources of variation caused by different processing dates, handling personnel, reagent lots, equipment/machines, etc.

Batch effects is a big challenge faced in biological research, especially towards translational research and precision medicine.
Visualizing batch effects

Rank variables / genes by variance
Keep those with high variance (e.g. top 30-50%)
Perform PCA on them
Make scatter plot of the first 2-3 PCs
 Do the subjects clusters by batch?
Make paired boxplot of each PC wrt class and batch variables
 Is PC more correlated with batch?
Sometimes, a gene expression study may involve batches of data collected over a long period of time.

PCA scatter plot

Samples from different batches are grouped together, regardless of subtypes and treatment response.

Image credit: Difeng Dong’s PhD dissertation, 2011
Paired boxplots of PCs

It is easier to see which PC is enriched in batch effects by showing, side by side, the distribution of values of each PC stratified by class and suspected batch variables.
Normalization

Aim of normalization:
Reduce variance w/o increasing bias

Scaling method
Intensities are scaled so that each array has same average value
E.g., Affymetrix’s

Xform data so that probe intensity distribution is same on all arrays
E.g., \(\frac{x - \mu}{\sigma} \)

Quantile normalization

Gene fuzzy score, GFS
Quantile normalization

- Given \(n \) arrays of length \(p \), form \(X \) of size \(p \times n \) where each array is a column
- Sort each column of \(X \) to give \(X_{\text{sort}} \)
- Take means across rows of \(X_{\text{sort}} \) and assign this mean to each elem in the row to get \(X'_{\text{sort}} \)
- Get \(X_{\text{normalized}} \) by arranging each column of \(X'_{\text{sort}} \) to have same ordering as \(X \)

Implemented in some microarray s/w, e.g., EXPANDER
In such a case, batch effect may be severe... to the extent that you can predict the batch that each sample comes!

⇒ Need normalization to correct for batch effect

After quantile normalization

Image credit: Difeng Dong’s PhD dissertation, 2011
Caution: It is difficult to eliminate batch effects effectively.

Green and orange are normal samples differing in processing date.

a: Before normalization

b: Post normalization

c: Checks on individual genes susceptible to batch effects

d: Clustering after normalization (samples still cluster by processing date)

Leek et al, Nature Reviews Genetics, 11:733-739, 2010
Caution: “Over normalized” signals in cancer samples

A gene normalized by quantile normalization (RMA) was detected as down-regulated DE gene, but the original probe intensities in cancer samples were not diff from those in normal samples

A gene was detected as an up-regulated DE gene in the non-normalized data, but was not identified as a DE gene in the quantile-normalized data

Exercise

Why normalization methods like mean scaling, z-score, and quantile normalization sometimes do not work well?

Suppose you have two batches of gene expression data, and two phenotypes: \{(A_1, B_1), (A_2, B_2)\}. How should you do quantile normalization?

- \(Q(A_1, A_2, B_1, B_2)\)
- \(Q(A_1, A_2), Q(B_1, B_2)\)
- \(Q(A_1, B_1), Q(A_2, B_2)\)
- \(Q(A_1). Q(A_2), Q(B_1) Q(B_2)\)

Interesting homework for you
Gene fuzzy score (GFS)

Raw gene expression → gene ranks within microarrays → fuzzified scores

Ranks rather than absolute values
No assumption on identical expression distribution

Fuzzification
Reduced fluctuations from minor rank differences
Noise from rank variation in low-expression genes discarded

Evaluating quality

An ideal normalization method should produce a silhouette score distribution that is high and stable.
Observations

The GFS null distribution is stable, with high silhouette scores.

For GFS, the score obtained from the top 15% highest variance genes is always in the top quartile of the null distribution.
PCA FOR ISOLATING BATCH EFFECTS
PCA for isolating batch effects

When a batch effect is observed, it is common practice to apply a batch-effect removal or correction method

But this does not necessarily work well in practice. Also, if the data does not fit the correction method’s assumptions, it may lead to false positives

Instead, we may opt for a more direct strategy by simply removing PCs (usually PC1) enriched in batch effects, and deploying the remaining PCs as features for analysis
Goh & Wong, “Protein complex-based analysis is resistant to the obfuscating consequences of batch effects”, *BMC Genomics* 18(Suppl2):142, 2017

Batch effects dominate PC1

Determine PCs associated with batch using paired boxplots of PCs
Samples separate by class post PC1 removal, no batch subgrouping

A and B are different datasets with different batch effects inserted

Batch effects dominate

Class-effect discrimination recovered

(Notation: A/B_D/D*_1/2 refers to the dataset, class and batches respectively)
Exercise

This “Batch effect-mitigation by PC removal” approach works in “PCA space”

How to do this in the original gene space? I.e., how to produce a batch-corrected gene expression matrix?
Exercise

Suggest a modification to the formula below to avoid selecting genes laden with batch effects

PCA can be a useful biomarker-selection approach

- E.g., biomarkers ≈ genes w/ high loading

 \[\text{Loading of gene } x = \sum_j | \alpha_{xj} \cdot \sigma_j^2 |, \text{ where } \alpha_{xj} \text{ is coefficient of } x \text{ in PC}_j, \text{ and } \sigma_j^2 \text{ is variance of PC}_j \]
BATCH EFFECT-RESISTANT FEATURE SELECTION
What if class and batch effects are strongly confounded?

Neither batch-effect correction nor PCA work well.

We also do not want to inadvertently lose information on disease subpopulations (which look like batch effects but are meaningful).

⇒ Consider using protein complexes / subnetworks of biological pathways as biomarkers / context for biomarker selection.
FSNET --- a protein complex-based feature-selection methods. Use expression rank-based weighting method (viz. GFS) on individual proteins, followed by intra-class-proportion weighting

And for comparison …

SP is the protein-based two-sample t-test

Goh & Wong, “Protein complex-based analysis is resistant to the obfuscating consequences of batch effects”, *BMC Genomics*, 18(Suppl 2):142, 2017
FSNET

\(\beta(g, C) \)
Proportion of tissues in class C that have protein g among their most-abundant proteins

\[\text{Score}(S, p, C) \]
Score of protein complex S and tissue p weighted based on class C

\(f_{\text{SNET}}(S, X, Y, C) \)
Complex S is differentially high in sample set X and low in sample set Y, weighted based on class C, when \(f_{\text{SNET}}(S, X, Y, C) \) is at largest 5% extreme of t-distribution

\[
\beta(g_i, C_j) = \sum_{p \in C_j} \frac{f_s(g_i, p_k)}{|C_j|}
\]

\[
\text{score}(S, p_k, C_j) = \sum_{g_i \in S} f_s(g_i, p_k) \cdot \beta(g_i, C_j)
\]

\[
f_{\text{SNET}}(S, X, Y, C_j) = \frac{\text{mean}(S, X, C_j) - \text{mean}(S, Y, C_j)}{\sqrt{\frac{\text{var}(S, X, C_j)}{|X|} + \frac{\text{var}(S, Y, C_j)}{|Y|}}}
\]
Network-based methods are enriched for class-related variation (Real data)

A

SP

- **PC1 Class**
 - normal:
 - cancer:

- **PC2 Class**
 - normal:
 - cancer:

D

FSNET

- **PC1 Class**
 - normal:
 - cancer:

- **PC2 Class**
 - normal:
 - cancer:

PCA on SP-selected genes: Class & batch effects are confounded; cf. PC2

PCA on FSNET-selected complexes: Class & batch effects are less confounded in top PCs
Top complex-based features are strongly associated with class, not batch effects. In contrast, both class and batch variability are present in the top variables selected by SP.
CONCLUDING REMARKS
What have we learned?

PCA is a useful paradigm for biomarker selection.

PCA is not just a visualization tool; it can also be used for dealing with batch effects.

When class & batch effects are deeply confounded at the level of proteins / genes, it is might be better to analyze at the level of protein complexes / pathway subnetworks.
References

[Batch effects] Leek et al., *Nature Reviews Genetics*, 11:733-739, 2010

