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ABSTRACT
Motivation: Recently, a cyclin dependent kinase (CDK) inhibitor,
CYC202, is studied for its anti-tumor effect in human Nasopharyngeal
Carcinoma (NPC) cells in vitro and in vivo. Both cell lines and
patients in the study responded to the drug treatment differently.
Our target is to understand the drug action of CYC202 in these
NPC samples as well as to identify escape pathways for the drug-
resistant NPC individuals. Existing computational tools focus on
pathway enrichment analysis by identifying informative genes which
are differently expressed between two response groups, but little
information on the interplay between selected genes is provided.
The identifications are too general and hardly sufficient to generate
specific hypotheses for our research purpose.
Results: We design a drug pathway identification system, the Drug
Pathway Decipherer (DPD), to identify genetic responsive pathways
to drug treatment. DPD generates hypotheses of specific genetic
pathways based on the knowledge of canonical biological pathways,
which promises the identifications to be properly interpreted in a
biological context. By applying DPD to the NPC datasets, we find the
suppression of RAS-ERK cell proliferation pathway and PI3K-NFκB-
IAP anti-apoptotic pathway correlate well with the effective CYC202
treatment in NPC cells both in vitro and in vivo. These observations
are further confirmed with the associated medical assays. On the
other hand, drug escape pathways may be heterogeneous for non-
responders. Based on our identifications, we give suggestions to
optimize the treatment of these CYC202-resistant NPC patients.
Availability: The Drug Pathway Decipherer is available at
http://www.comp.nus.edu.sg/∼wongls/projects/drug-pathway/DPD-v1.
It is implemented in JAVA.
Contact: dongdife@comp.nus.edu.sg, ccy@ccmu.edu.cn,
bmow@westexcellence.com, and wongls@comp.nus.edu.sg
Supplementary information: Supplementary data are available at
http://www.comp.nus.edu.sg/∼wongls/projects/drug-pathway.

INTRODUCTION
Biological pathway information has been incorporated into gene
expression analysis to understand drug treatment response in disease
populations (Soh et al., 2007). Some works focus on the enrichment
analysis of gene groups extracted from pathways (Zeeberg et al.,
2003; Doniger et al., 2003; Subramanian et al., 2005; Sivachenko

et al., 2005, 2007). Zeeberg et al. (2003) and Doniger et al.
(2003) use the hypergeometric test to determine statistically over-
represented pathways in a given list of differentially expressed genes
along treatment. Subramanian et al. (2005) propose the gene set
enrichment analysis (GSEA), which uses a weighted Kolmogorov-
Smirnov statistics to compare the two sets of distributions and also
uses resampling to estimate false discovery rates (FDR). Sivachenko
et al. (2005, 2007) split genes into separate regulatory groups, each
sharing the same transcriptional regulators, and evaluate these gene
groups in a GSEA-like manner. Other research groups identify
responsive genetic networks under drug treatment (Zien et al., 2000;
Ideker et al., 2002; Hanisch et al., 2002; Guo et al., 2007). Hanisch
et al. (2002) cluster genes with a metric preferring both genetic
co-expression and short distance within a network topology. Zien
et al. (2000) exhaustively enumerate all possible gene combinations
on a metabolic pathway, and select the most co-expressed gene
group as the responsive pathway. Ideker et al. (2002) extend the
method of Zien et al. (2000) to a protein-protein interaction network,
and use an annealed random selection to generate candidate gene
subnetworks for statistical evaluation. Guo et al. (2007) follow
Ideker et al. (2002), but their evaluation is based on the co-
expression between interacted genes rather than the significance of
expression change of genes on the identified subnetworks.

However, most existing works fall short on several issues (Soh
et al., 2007): these works provide little information on the interplay
between selected genes; the collection of pathways that can be
used, evaluated and ranked against the observed expression data
is limited; and the generated hypotheses are still too general to
guide further research and treatment. In this paper, we present a
drug pathway identification system, which we called Drug Pathway
Decipherer1 (DPD), to identify genetic responsive pathways of
drug treatment. Different from existing works, DPD generates
hypotheses of specific genetic pathways based on the knowledge of
canonical biological pathways, which promises the identifications
to be properly interpreted in a biological context. We apply DPD to
two NPC gene expression datasets in our recent research. CYC202
(Cyclacel Ltd, Dundee, United Kingdom; Seliciclib; R-roscovitine),

1 DPD is a framework for statistical evaluation of known genetic pathways
against gene expression data. It consists of 4 partitions distributed on two
biological levels. Figure 1 gives the diagram of its workflow.
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Fig. 1. The workflow of DPD. (a) Data source: Structured signaling pathways and drug treatment gene expression data are taken as the input. (b) Data
preprocessing: Signaling pathways are modeled as graphs, and gene expression change under drug treatment are computed. (c) Pathway analysis: Pairwise
genetic relationships are extracted from the modeled signaling pathways and evaluated against the preprocessed gene expression data. (d) Hypothesis
generation: Co-expressed genetic relationships are selected to be connected into complete genetic pathways, and statistical tools are performed to generate
drug pathway hypotheses. Signaling pathway status are estimated based on the hypothesized genetic pathways.

a CDK inhibitor, is studied for its anti-tumor effect in human NPC
cells in vitro and in vivo. 3 NPC cell lines and 13 NPC patients
were treated with CYC202, and the expression of selected genes
were measured during the process of the treatment. Both cell lines
and patients in the study responded to the drug treatment differently.
Our target is to understand the drug action of CYC202 in these NPC
samples as well as to identify escape pathways for the drug-resistant
NPC individuals. As a result of applying DPD to the datasets, we
find that both of the identifications from the in vitro and in vivo
experiments are consistent with the result of associated medical
assays as well as the pathogenesis mechanism of NPC and known
drug action of CYC202 from the literature. Thus, we show that
DPD provides a reasonable statistical framework for genetic drug
responsive pathway identification in drug treatment gene expression
data. In addition, the current version of DPD allows users to
construct, remove, and modify biological pathways for their own
research purposes.

SYSTEM AND METHODS
Data source
Both NPC gene expression datasets contain 380 genes selected for
apoptosis, cell proliferation, and cell cycle regulation. For the in
vitro set, 3 cell lines, CNE1, CNE2 and HK1 were measured for
their gene expression before the treatment of CYC202, and 2hs, 4hs,
6hs, 12hs and 24hs after the treatment, respectively. It was observed
that CNE1 responded poorly to the treatment; CNE2 responded in a
limited way; and HK1 fully responded. For the in vivo set, 12 NPC
samples and 1 non-tumor sample were taken from NPC patients,
who were traced for their response to the treatment of CYC202.

Gene expression were measured before and after the treatment. 7
patients were reported to have a molecular response to the treatment.

With respect to the selected genes in the datasets, 4 related
signaling pathways are extracted from KEGG pathway database
(October 17, 2007) (Kanehisa et al., 2002): ERK pathway
(hsa04010), JNK/p38 pathway (hsa04010), G1/S cell cycle
progression (hsa04110) and Apoptosis pathway (hsa04210). The
extracted pathway diagrams are available in Figure Suppl1.

Preprocessing data source
In order to capture gene expression change in response to drug
treatment, the original gene expression data are transformed into the
Relative Expression2 (RE). Rather than a log-ratio transformation,
RE describes expression change in multiples in a linear scale, which
allows the pairwise drug effect on gene expression can be measured
by a linear correlation metric. Signaling pathways can be modeled as
directed graphs, for a consistent denotation, we formally define: A
signaling pathway γ is a directed graph (P, I), with P the vertex set,
representing the collection of proteins on pathway, and I the edge
set, representing the collection of interactions between proteins. An
interaction is a triplet i = 〈p1, p2, s〉, with p1, p2 ∈ P and s ∈ S ,
where S = {$stimulation, $suppression} is the set of terms used to
denote interaction types.

Extracting genetic relationships
Assuming G is a gene set, and T = {$positive, $negative}, is an
associated terminology set used to describe relations between genes

2 Given a time-course gene expression dataset E, its corresponding RE
dataset is R, where ei j and ri j are the original expression value and RE value
of gene i at time point j, respectively. If ei j > ei0, then ri j = ei j/ei0 − 1;
otherwise, ri j = 1 − ei0/ei j.
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in G, a genetic relationship (or simply a relationship) is a triplet
q = 〈g1, g2, t〉, with g1, g2 ∈ G and t ∈ T .

The extraction of genetic relationships from a signaling pathway
is a mapping from interaction to relationship. Proteins are mapped
to their encoding genes, and $stimulation and $suppression are
mapped to $positive and $negative, respectively. As a protein can
be encoded by more than one gene, multiple genetic relationships
are extracted from one interaction.

Scoring a genetic pathway
A genetic pathway ϑ is a string of connected genes (without loop),
started with a source gene and ended with a sink gene w.r.t.
the structure of a signaling pathway (see supplementary data for
examples of the identified genetic pathways). It can be decomposed
into a set of consecutive relationships. Thus, to score a genetic
pathway, we first introduce the function to score a relationship.

Given a relationship q = 〈g1, g2, t〉, if the expression of g1 and g2
are measured at multiple time points (as our in vitro dataset), then
the correlation of q is:

Corr(q) = Corr(−→rg1 ,
−→rg2 ),

where Corr(−→rg1 ,
−→rg2 ) is the Pearson correlation coefficient between

RE vectors −→rg1 and −→rg2 . If gene expression are only measured at two
time points (as our in vivo dataset), then the correlation is estimated
simply by comparing the post-treatment RE of the two genes:

Corr(q) =
sgn(rpost

g1 ) × sgn(rpost
g2 ) ×mini=1,2 |r

post
gi |

max j=1,2 |r
post
g j |

.

Corr(q) is then transformed into a z-score, z(q), from the sample-
wise correlation background. z(q) are then summed up over all k
relationships in ϑ to produce an aggregated z-score, z(ϑ), for the
entire genetic pathway3:

z(ϑ) =
1
√

k

∑
q∈ϑ

(−1)αz(q),

where α = 0 if q.relation = $positive; α = 1 if q.relation =
$negative, which suggests if two genes have a $negative relation,
their RE are expected to be negatively correlated as well.

For each pathway ϑ, genes on pathway are permuted 10000 times
to estimate the p-value of z(ϑ), denoted by score(ϑ). Intuitively, the
pathway score represents the consistency between a genetic pathway
and the expression change of genes on it.

Generating hypotheses
Genetic pathways s.t. the statistical requirement of p-value4 and
FDR5 are selected as the identified genetic pathway hypotheses.

3 We follow the statistics of Ideker et al. (2002), which promises that if z(q)
follows a standard distribution, then z(ϑ) will also be distributed according
to a normal distribution.
4 Since the pathway score itself is a measurement of p-value, the statistical
significance control is straight forward.
5 To select the proper p-value threshold for FDR control, we first rank the
scores of pathways which pass the p-value filtering. Then, we identify the
maximal rank index j, s.t. p j <

j·α
CN ·N

, where p j is j-th ranked p-value;
α is the user specified threshold; N is the total number of hypotheses; and
CN =

∑N
i=1

1
i , is the constant for dependent test (Herrington, 2002).

Since multiple genetic pathways are identified for a single signaling
pathway, to evaluate the drug effect, we estimate the signaling
pathway status based on the genetic identifications. The pathway
score is converted into a probability metric, confidence, denoted by
con f (ϑ), where con f (ϑ) = 1 − score(ϑ). Each gene g on a genetic
pathway has a relation (or indirect relation) with the downstream
cellular event (denoted as virtual node in the pathway diagram, see
figure Suppl1), which is called the impact of gene g on pathway ϑ,
denoted by impactϑ(g). If g is a suppressor of the downstream event,
then impactϑ(g) = −1, which means the downstream event has a
negative correlation with the expression regulation of g; otherwise,
impactϑ(g) = 16.

Thus, for a signaling pathway γ, let ϑ ∼ γ represent the identified
genetic pathway ϑ for γ, and Gϑ represent the gene set on ϑ. The
signaling pathway status Zγi is a weighted aggregation of RE of
genes on the identified genetic pathways of γ, respecting to their
pathway impact, at time point i, with the weight being the fraction
of the confidence of a genetic pathway compared to that of whole
identifications, which is in formula:

Zγi =
∑
ϑ∼γ

∑
g∈Gϑ

(
1
| Gϑ |

× impactϑ(g) × rgi ×
con f (ϑ)∑
ϑ′∼γ con f (ϑ′)

)
.

Similarly, the confidence of status of γ is a weighted aggregation of
the confidence of ϑ, represented in formula as:

con f (Zγ) =
∑
ϑ∼γ

(
con f (ϑ) ×

con f (ϑ)∑
ϑ′∼γ con f (ϑ′)

)
.

The pathway status is an aggregation of expression regulation
of genes on the identified genetic drug responsive pathways of a
signaling pathway. Therefore, it can be used as a benchmark to
compare the regulation of signaling pathways between samples.
In our study, we compare pathway status between NPC cell
lines along the treatment of CYC202. To evaluate whether the
identifications can well differentiate signaling pathway regulation
between cell lines, we compute the maximal difference of pathway
status between them7, and permutate the hypothesized genes for
10000 times within the same signaling pathway to get the statistical
significance of the difference.

RESULTS AND DISCUSSION
We apply DPD to our NPC gene expression datasets to identify
CYC202 responsive pathways in vitro and in vivo with p≤0.05
and FDR≤0.5. For cell lines, gene expression at all 6 time points
are used as the input; for patients, pre- and post- treatment data
are used. Table 1 shows the identified genetic pathways in 3 NPC
cell lines, together with their pathway scores. We discover RAS-
ERK cell proliferation pathway and PI3K-NFκB-IAP anti-apoptotic
pathway in all 3 cell lines, but for the other two signaling pathways,

6 Under this definition, a gene may have both positive and negative impact
to the downstream cellular event, due to its multiple roles in different genetic
pathways of the same signaling pathway. However, there would be no
contradiction, since the measurement of gene impact is genetic pathway
based.
7 The maximal difference of status of pathway γ between sample s1 and s2
is computed as diff γ(s1, s2) = maxi |Z

γs1
i − Zγs2

i |.

3



Dong et al

Table 1. The identified genetic pathways for 3 NPC cell lines: Genes for replacement are separated by “/”; “→” and “–p” represent “$positive” and “$negative”
relation between two genes, respectively.

Signaling Pathway Genetic Pathway Score Confidence
CNE1

ERK Mitogen→GRB2→SOS2→HRAS→RAF1→MAP2K1→MAPK1/MAPK3→Cell Proliferation ≤ 0.001 ≥ 0.999
Apoptosis PIK3CB→PTEN→AKT2/AKT3→CHUK/IKBKB/IKBKG→NFKB2→BIRC2/BIRC5–pApoptosis ≤ 0.0002 ≥ 0.9998
JNK/p38 Stress→MAP3K12→MAP2K7→MAPK9→Cell Mortality ≤ 0.04 ≥ 0.9665

G1/S CCND1→CDK4–pRB1–pE2F2/E2F3→G1/S Progression ≤ 0.01 ≥ 0.9906
CNE2

ERK Mitogen→GRB2→SOS1→MRAS/KRAS/NRAS/RRAS→BRAF→MAP2K1→MAPK1→Cell Proliferation ≤ 0.03 ≥ 0.9885
Apoptosis PIK3CA/PIK3CB→PTEN→AKT1→IKBKB→RELA→BIRC2/BIRC5–pApoptosis ≤ 0.01 ≥ 0.9949
JNK/p38 Cytokinin→MAP4K3/TRAF2→MAP3K1→MAP2K4→MAPK8/MAPK10→Cell Mortality ≤ 0.04 ≥ 0.9658

HK1
ERK Mitogen→GRB2→SOS1→HRAS→BRAF→MAP2K1/MAP2K2→MAPK1/MAPK3→Cell Proliferation ≤ 0.04 ≥ 0.9646

Apoptosis PIK3R1→PTEN→AKT2/AKT3→IKBKB→NFKB2/RELA→BCL2/BIRC2–pApoptosis ≤ 0.04 ≥ 0.9663
G1/S CUL1→SKP2→CDKN1A–pCDK6–pRB1–pE2F2/E2F3→G1/S Progression ≤ 0.04 ≥ 0.9645

Fig. 2. Comparable status of ERK pathway and Apoptosis pathway of the 3 NPC cell lines along the treatment of CYC202.

Fig. 3. Results of the associated medical assays to measure the cell viability and apoptosis level under the treatment of CYC202 for NPC cell lines: (a) The
results of trypan blue test for measuring the cell viability along the drug treatment. (b) The extent of caspase-dependent apoptosis. zVAD.fmk is a caspase
activity inhibitor.

no consensus is reached (see Figure Suppl3-5 for diagrams of the
identifications of cell lines highlighted on the studied signaling
pathways). The identification of the anti-apoptotic pathway is
interesting, since it suggests the negative control system of cell death
responds more significantly to the treatment of CYC202 than the
death receptor and mitochondrial regulated pro-apoptotic pathways
in NPC cell lines.

To evaluate the biological significance of our identifications,
we estimate the status of these signaling pathways with the
identified genetic pathways along the process of treatment. Figure 2
shows the status of ERK pathway and Apoptosis pathway (the
status of JNK/p38 pathway and G1/S progression are shown
in Figure Suppl2). Associated significance evaluations of the

Table 2. The statistical significance (p-values) of the difference of
signaling pathway status between cell lines.

Comparison Group ERK Apoptosis JNK/p38 G1/S
CNE1 vs. CNE2 < 0.0001 0.0028 0.2921 -
CNE1 vs. HK1 < 0.0001 0.0006 - 0.4992
CNE2 vs. HK1 0.0004 0.0022 - -

difference of pathway status between cell lines are given in Table 2.
The identified genetic pathways on both ERK pathway (4E-4)
and Apoptosis pathway (2.8E-3) show a superior of differentiating
pathway status to the other genes on the same signaling
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Table 3. The post-treatment signaling pathway status of the NPC patients: The “response” column
shows the molecular response to the treatment of CYC202.

Patient Response ERK JNK/p38 G1/S Apoptosis
Status Conf. Status Conf. Status Conf. Status Conf.

Pt5 P(ositive) -2.25 0.98 -3.08 0.99 - - 1.34 0.99
Pt8 P - - -1.01 0.99 - - 0.82 0.98
Pt9 P -0.97 0.98 - - 0.76 0.95 - -
Pt14 P - - - - -0.61 0.99 -0.86 0.99
Pt16 P -0.20 0.99 -0.20 0.95 0.29 0.99 1.42 0.97
Pt17 P -1.02 0.99 -1.02 0.99 -0.33 0.96 1.01 0.99
Pt19 P - - -0.86 0.98 - - 0.91 0.98
Pt18 No Tumor -0.15 0.99 - - 0.28 0.99 0.13 0.99
Pt1 N(egative) 0.21 0.95 0.52 0.99 1.06 0.97 -1.00 0.98
Pt7 N -0.10 0.97 -0.68 0.96 0.28 0.98 0.11 0.98
Pt10 N 1.02 0.99 1.16 0.99 - - -1.57 0.97
Pt15 N - - - - - - -1.01 0.98
Pt20 N 1.30 0.98 - - -0.93 0.96 -1.68 0.99

pathway. ERK pathway regulates cell survival, proliferation and
differentiation. Whenever this pathway is suppressed, cell viability
decreases. In Figure 2, ERK pathway is significantly suppressed in
the responder, HK1, but less down regulated or almost unchanged in
the half-responder, CNE2, and the resister, CNE1. This observation
is consistent with the known drug response of these three cell
lines. We then evaluate the hypothesis of ERK pathway with the
associated trypan blue test, which is used to measure the cell
viability along the procedure of the drug treatment (Figure 3 (a)).
The results show the coherence between the cell viability and the
status of ERK pathway, which support our hypothesis. Apoptosis
pathway, regulating cell death, is on the other hand induced in HK1
rather than in CNE1 and CNE2. This observation is also consistent
with the known cellular drug response of the cell lines, and is
further confirmed with the extra medical assays, which show that
the inhibition of caspase activity prohibits apoptosis in HK1 most
(Figure 3 (b)).

The identified genetic pathways and the post-treatment signaling
pathway status of the NPC patients are shown in Figure suppl6-18
and Table 3, respectively. Pt18 is a non-tumor sample. Other patients
are classified into two groups w.r.t. their molecular response to the
treatment. In Table 3, the pathway status of Pt18 does not changed
much under the treatment of CYC202, which can be attributed to
the drug specificity to tumor cells. Thus, the pathway status of Pt18
provides a benchmark to evaluate the drug response of the other
patients. An significant and interesting observation is that the post-
treatment status of ERK pathway and Apoptosis pathway in two
responding groups can be almost perfectly separated by that of Pt18
(Except for 14 on Apoptosis pathway). This observation suggests
the suppression of ERK pathway and the induction of Apoptosis
pathway is related to effective CYC202 treatment in vivo, which
agree with the conclusion of the in vitro experiment.

Since DPD generate specific hypotheses on genetic pathways, we
compare it with the leading edge analysis of GSEA. The same 4
signaling pathways are taken as the test gene sets for GSEA. For
cell lines, CNE1 and HK1 are compared by the RE at 12hrs after
the treatment. The difference of RE between two cell lines is used

as the metric for gene ranking. Gene sets are permuted 1000 times
for statistical evaluation. For patients, the analysis is performed
on RE between two response groups. T-statistics is used to rank
the genes. The response class labels are permuted 1000 times for
statistical evaluation. The statistical thresholds for p-value and FDR
are 0.05 and 0.25, respectively. All other parameters for GSEA are
with default values.

Only Apoptosis pathway is enriched by GSEA in both datasets
with statistical significance. Figure 4 compares the results of the
genes selected by the leading edge analysis of GSEA and the
identified pathways of DPD on Apoptosis pathway. For cell lines,
both GSEA and DPD identify the pattern of PI3K-NFκB-IAP anti-
apoptotic pathway (Figure 4a and 4b), whose biological significance
has been confirmed in the previous experiments. However, GSEA
misses gene AKT on the pathway, and selects some irrelevant genes
on other pathways. This is because the purpose of the leading edge
analysis is to select genes expressed differently between the two
response groups, but the relationships between genes of selection
are ignored. When performed to the patient dataset, GSEA does
not identity any strong genetic pathway pattern (Figure 4c), but for
DPD, multiple pathways with different significance are identified
(Figure 4d). The most significant identification is still PI3K-NFκB-
IAP pathway, which indicates the main genetic response of patients
on Apoptosis pathway is similar to that of cell lines. Another
discovery is the death receptor regulated pro-apoptotic pathway.
This pathway is previously undiscovered in the in vitro experiments,
which means there exists alternative apoptosis regulation pathway
for CYC202 in NPC patients rather than in cell lines. Thus, we
show that, compared with the leading edge analysis of GSEA, DPD
generates more biologically meaningful results, which can be used
as a guide for further drug research and disease treatment. Based on
our identifications, we give proposal to the CYC202-resistant NPC
patients for their disease treatment (Table 4).

In addition, despite the feasibility of pathway identification for
individuals, DPD is also capable of discovering consistent drug
responsive pathway in a specific population. To show this point,
we treat the RE of two response groups of patients as the input
of DPD respectively, and compare the identifications on Apoptosis
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Fig. 4. Contrast results of the genes identified by the leading edge analysis of GSEA and the pathways identified by DPD: (a) GSEA performed on the in vitro
dataset. The identified genes are highlighted. (b) DPD performed on the in vitro dataset. Since the identifications of CNE1 and HK1 on Apoptosis pathway
are the same, the pathway is highlighted in the figure. (c) GSEA performed on the in vivo dataset. (d) DPD performed on the in vivo dataset. Color density
represents the frequency of a pathway identified in patients.

pathway. Results show that for responders, both PI3K-NFκB-
IAP anti-apoptotic pathway and the mitochondria regulated pro-
apoptotic pathway are identified, but for the non-responders, only
the anti-apoptotic pathway is identified8 (Figure Suppl19-20).

Epstein-Barr Virus (EBV) infection is known to play a critical
role in the pathogenesis of NPC (Pathmanathan et al., 1995).
The dysregulation of multiple signaling pathways, including
NFκB, MAPK, JAK-STAT and PI3K-AKT are induced by EBV
infection (Tsao et al., 2002). Particularly, it is specified that the
up regulation of NFKB2 and BIRC5 (IAP) contribute in increasing
resistance to apoptosis, and the role of BIRC5 in resisting apoptosis
in NPC has been confirmed by RNA interference (Shi et al., 2006).
On the other hand, CYC202 inhibits CDK2, -7 and -9 through
competitive inhibition of ATP binding (Mcclue et al., 2002). CDK7
and CDK9 phosphorylate the carboxyl terminal domain of RNA

8 This identification is reasonable. For GSEA, 3 genes are identified on the
mitochondria regulated pro-apoptotic pathway (Figure 4(c)), which suggests
these genes are differently regulated during the treatment of CYC202. The
results of DPD show that the identified difference by GSEA is mainly
because of the pathway regulation in the drug-responsive group.

polymerase II, which initiates the gene transcription. Due to the
suppression of gene transcription, the greatest effect is observed
on gene products with short mRNA and protein half life, such
as apoptosis regulators, including NFκB targeted genes and IAP
family (Lam et al., 2001). The suppression of genes involved
in ERK pathway and anti-apoptotic pathway, including MAPK1,
MAPK3, MCL1, BCL2, BIRC4 and BIRC5, are frequently
observed associated with the treatment of CYC202 (Meijer et al.,
1997; Whittaker et al., 2004; Alvi et al., 2005; Raje et al.,
2005; Smith and Yue, 2006; Lacrima et al., 2005). In the present
study, DPD identifies the different regulation of RAS-ERK cell
proliferation pathway and PI3K-NFκB-IAP anti-apoptotic pathway
between two drug response groups both in vitro and in vivo, which
are consistent with the known drug action of CYC202 and the
pathogenesis mechanism of NPC from the literature. Thus, we
conclude that these two pathways are the main drug pathways of
CYC202 in human NPC cells. On the other hand, due to the
diversity of individual genetic environment of patients, the identified
escape pathways are heterogeneous. The dysregulation of NFκB
pathway and MAPK pathway are both commonly observed in
CYC202-resistant patients. More details are included in the personal
treatment proposals (Table 4).
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Table 4. Treatment proposal for CYC202-resistant NPC patients, based on
the identifications of DPD.

Patient Comments
Patient1 PI3K-NFκB-IAP pathway and G1/S progression are

dysregulated. JNK/p38 pathway is activated only by the
cytokinin regulation. Radiotherapy is suggested to be
used together with CYC202 to further activate the stress
regulated JNK/p38 pathway to promote the suppression of
NFκB activity and the induction of caspase activity.

Patient7 No significant drug-resistant pathway pattern is identified
for this patient. We suggest to increase the dose of CYC202
or to combine the treatment with other CDK inhibitors,
such as Olomoucine and Staurosporine, to further suppress
the cell cycle progression.

Patient10 The pathway regulation shows full resistance to the
treatment of CYC202. Both ERK pathway and PI3K-
NFκB-IAP anti-apoptotic pathway are dysregulated. It is
suggested to use other therapy, such as radiotherapy, to
replace the treatment of CYC202.

Patient15 This patient shows a significant resistant pattern to the
drug treatment on both pro- and anti-apoptotic pathway.
There is no identification for other signaling pathways.
Radiotherapy is recommended to be used in stead of
CYC202. An alternatively is to use drugs that regulate
apoptosis via other pathways, such as p53 regulated pro-
apoptotic pathway.

Patient20 PI3K-BAD anti-apoptotic pathway is identified rather than
the NFκB regulated one. The function of NFκB is suspected
to be dysregulated. Drugs regulating apoptosis via NFκB-
independent pathway are recommended.

CONCLUSIONS AND FUTURE WORK
In this paper, we introduce our drug pathway identification system,
DPD, to identify responsive genetic pathways under drug treatment.
We apply the system to two gene expression datasets of human
NPC cells treated with a CDK inhibitor, CYC202, in vitro and
in vivo. The identifications suggest RAS-ERK cell proliferation
pathway and PI3K-NFκB-IAP anti-apoptotic pathway are the main
CYC202 regulated pathways in NPC, and for non-responders, the
escape pathways are heterogeneous. In addition, DPD is compared
with GSEA for the feasibility of generating biological meaningful
hypotheses. It is shown that the results of DPD is more interpretable
in a biological context and more useful for guiding further drug
research and disease treatment. Finally, based the biologically
meaningful identifications on the NPC datasets, we conclude that
DPD provides a reasonable statistical framework for genetic drug
responsive pathway identification in drug treatment gene expression
data. However, we need to specify that due to the limitation of
the NPC study, an apparent problem of our research is that only
limited signaling pathways are available for evaluation in the current
package of DPD, and we have not tested DPD on other datasets. To
overcome this issue, we have started extracting large scale cancer
related pathways from several public pathway databases, and the
results of applying DPD to other datasets will be presented in our
future work.
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