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— Formulate “hypothesis mining” as contextualized comparative pattern
mining. Develop algorithms for hypothesis mining and analysis. Build an / |
easy-to-use system based on these algorithms. ghy
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— Hypothesis as a contextualized comparative pattern
— P-value for controlling false-positive hypothesis 5l
— Comparison between hypotheses to identify actionable hypotheses, A
redundant hypotheses, Simpson’s paradoxes &
. Scope & Deliverables: Wilson Goh (RA) Zhang Haojun (RA) Andre Suchitra (RA)
—  Core algorithms for hypothesis generation and novel analyses described S Lo
above, as well as OLAP operations for exploring hypotheses. i jx) . Qian Jiangwen (FYP student)
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and visualization of OLAP operations Wang Yue (PhD Student)
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(a) Examples of significant hypotheses in dataset adult
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* Achievement #2 * Achievement #3
— Proving necessity of controlling false positives in class-association rule — Finding minimum representative rule set that can 1/ represent all patterns
mining: Many spurious rules are produced if no correction is made with a minimum # of representative patterns and 2/ restore the support of
—  Proving that permutation-based approach is most effective in controlling all patterns with error guarantee
false positives, and develop techniques to make it efficient — Algorithms for doing the above efficiently: MinRPset (efficiently produces
the smallest solution), FlexRPset (trades solution size for higher speed)
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- Implemented these techniques into ARminer _ gy . _ _ _
— Implemented these into the EHTA system, the mining engine of iDIG in I°R
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— iU etal. Finding minimum representative pattern sets. ) -
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* Achievement #4 * Achievement #5
— Association-rule visualization for exploratory data analysis — Management of large collections of frequent itemsets for analysis and
0 Relationship among rules reveal deep info of the data user exploration.
O Summarize this, with visualization, to help users understand the data — Refinement of CPFtree to index to provide efficient exact match,
and to suggest hypotheses to test subset/superset search, etc. of frequent itemsets
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o - Comparative analysis — Liu et al. A performance study of three disk-based structures for indexing and querying
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