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i Topics

= Gene Regulatory Networks (GRNSs)

= Reverse engineering methods for
reconstructing GRNs

= Information theory foundation for our method
= The DFL algorithm

= Experimental results

= Conclusion

= Summary
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!L GRNs macro-view

Gene
Input regulatory
signals P | 4
component
A4 s

\ 4
Primary Terminal
outputs = outputs =
Changed RNA P> Changed cell
and ||3rotein behaviors and
complements structures

A |

: feedback circuitry

YGG 01-0086

Gene regulatory networks, Courtesy of Genomes to Life Program of U.S. Department of

Energy, http://www.doegenomestolife.org.

Input signals are from both intra-cellular and inter-cellular sources. The upper dashed arrow is the
signaling responses, which may act directly on cell behaviors and structures. The solid and the
dashed arrows at the bottom are direct and indirect feedbacks respectively.
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GRN for Arabidopsis thaliana
flower morphogenesis
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Experimental data supporting the GRN of
Arabidopsis thaliana flower morphogenesis

Interactions

Main evidence

Main references

AG —| API
APl —| AG

APl —>LFY
AP3/PI —> AP3/PI
EMFI —| APLLFY
EMFI —> TFLI
LFY —> 4G

LFY > API

LFY —> AP3

LFY—> Pl

LFY —| TFL1

LUG —| 4G

SUP —| AP3

SUP | PI

TFLI —|AG

TFLI —|LFY

UFO > AP3
UFO—> Pl

API mRNA accumulates uniformly in ag-1 mutant flowers

Sepals are replaced by carpels, and petals by stamens in apd mutants. 4G mRNA found
in all the lower primordium of ap -7 plants

Reduction of LFY mRNA n ap/ cal double mutants (independent pathways)

APZ and PImRNA levels are not maintained in ap3-3. pi-1 or double mutants.

Co-immunoprecipitation of AP3 and PI proteins
Inferred by morphological evidence that EMF I inhibits the Howering promoting genes

Inferred by morphological evidence that EMF I activates the lale late-flowering genes
Early expression of 4G 1s abnormally low i {fi-6 Nowers

API mRNA delayed in [fy mutants. Earlier APT promoter induction in plants

overexpressing LFY

Amount and domain of AP3 expression reduced i [fi-6 mutants

Amount and domain of P expression reduced m /fi-6 mutants

Plants overexpressing LFY are very similar to 1] mutants

Ectopic expression of AG n fue-1 mutants

Ectopic expression of 4P3 in sup-1 mutants

Contrary to wild type, Pl expression is not reduced in the center of sup-1 flowers
Inferred from morphological evidence. Double mutants ap/-1 ap2-
activity. which is rescued with the addition of #/17 mutation

2 have a disrupted C

Precocious appearance of [oral buds expressing LFY in (f11-2 plants
AP3 protein and messenger levels reduced n wfo-2 plants

PImRNA reduced in early stages of lower development m wfo-2 plants

Gustalson-Brown ef al_ (1994)
Bowman et al. (1993)
Weigel and Meverowitz ( 1993)
Weigel and Nilsson (1995)
Bowman et al. (1993)
Kempin et al. (1995)
Goto and Meverowitz (1994)
Jack et al (1992)
Mendoza and Alvarez-Buvlla (1998)
Mendoza and Alvarez-Buvlla (1998)
Weigel and Meverowitz (1993)
Weigel and Nilsson { 1995)
Parcy et al. (1998)
eigel and Meyerowilz ( 1993)
eigel and Meyerowitz ( 1993)
-_th and Nilsson (1995)
Liu and Meyerowilz {1995)
Sakat et al. (1993)
Goto and Meverowitz (1994)
Mendoza and Alvarez-Buylla (1998)

Weigel et al. {1992)
Levin and Meverowitz (1995)

Levin and Meverowitz (1995)

Table Courtesy of Mendoza et al. 1999

7/21/2004

Zheng Yun, BIRC, SCE, NTU



i Reverse engineering?

= By mapping the output of each gene to the inputs
of other genes, it Is possible to reverse engineer

developmental circuits and even whole networks.

Meredith L. Howard and Eric H. Davidson.Development 271:109-118.
2004

= |If the expression of gene A is regulated by proteins
B and C, then A’s expression level is a function of
the joint activity levels of B and C.
Nir Friedman.SCIENCE 303:799-805.2004
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Information theory
foundation of our approach

ZP = 2)logP(X = x)

H(Y|X) = ZZ;@ x, y)logp(y|x)

@D I(X:Y) = H(Y) — H(Y[X) = H(X) - HX]Y)
Theorem 2.1 If the mutual information between X and Y

is equal to the entropy of Y, i.e., I(X:Y )= H(Y), thenY
is a function of X.
Deﬁnltmn 51 IFHY)—I1I(XY)<exH(Y), thenY

X)) where € is a significant factor:

/ N
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i Models under consideration

Xi(t+1) = fi(Xa(t)..... Xix(t)),

= Boolean networks: (Liang, Fuhrman. & Somogyi
1998), (Akutsu, Miyano & Kuhara 1999),
(Wuensche 1998), etc.

= Generalized Logical Formalism (GLF): (Sanchez
& Thieffy 2001), (Thomas & d'Ari 1990),
(Thomas, Thieffry & Kaufman 1995), etc.

= Partial Linear Differential Equations (PLDE):
(Mendoza, et al. 1999.), (Mestl et al. 1995), (de
Jong et al. 2002), etc.
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ineering approac

i Reverse eng

Gene expression data

0
0

State-transition pairs
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How much data

Theorem 3.1 (Akutsu 1998) Q(2* + Fklogan) transi-

tion pairs are necessary in the worst case to identify the

Boolean network of maximum indegree < k.

We generalize Theorem by Akutsu 1998 to meet the
multilevel datasets.

Theorem 3.2 Q(b¥ + klogyn) transition pairs are neces-
sary in the worst case to identify the qualitative GRN mod-
els of maximum indegree < k and the maximum number of
discrete level for variables < b.

N = ¢ x (b + klogyn). -
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‘L The DFL algorithm

Search methods:

REVEAL(Liang et al.
1998): dashed line

O((bF + klogyn)nt+1)

DFL: solid line
O((kbF + E2logyn)n?)
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Experiments for time
C

omplexity
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Sensitivity

predicted |predicted
as positive |as negative
positive | TP FN
negative | FP TN
o No. of correct positive predictions
Sensitivity = _
wrt positives No. of positives
B TP
- TP+FN
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Experiments for sensitivity
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‘L Reconstruct GLF Model

abc ABC

oooo0o A simple example of GLF from

001 001

010 1ol (Thieffry and Thomas 1998).

011 0oz
012 012

| DFL

A’ B

009@ A 02 06 -07

B 03 0 0.3

\Gﬂ C' 07 06 02
9

Table 4. The correlation coefficient matrix of
the GLF example in Figure 6.
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Experiments on yeast cycle-

cycle gene e
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Xpression profiles

Cell-cycle expression profiles,

from Cho et al. 1998, cover
approximately two full cell

cycles.
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Figure 7. The learned GRN model. (a) The
number of discrete levels for gene expres-
sion value is 3 and the indegree of the GRN
is set to 5. (b) Idem, where the base for gene
expression value is 4. The regulators are rep-
resented by ovals. The directed edge from
Gene A to Gene B means that Gene A is a
regulator of Gene B. The solid edges repre-
sent regulatory relations that have been veri-
fied by other approaches. The dashed edges
represent regulatory relations that have not
been verified.
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Literature Evidences

Gene Regulator (Protein) Evidence
M1 S4 S6 F1 F2 N1 87

MBP1 | *3 ¥ 34 34 434 [19]. [26]
SWI4 ¥34  *3 *34 *3 *34 ¢ [19].[26]
SWI6 4 * 34 3 *34 *4 [19].[26]
FKHI | *4  *3 *q o w *34  ¥34 3 [19]. [26]
FKH2 4 34 *3 3 *34 *4 *3 [19].[26]
NDD1 34 34 F *34 *4 #3 [19].[26]
SKN7 | 34 *3  *34 *3 %34 *34 | [19]

“*” means regulatory relations. For example, “* in the first
cell of first line means that Mbpl gives MBP1 gene autoreg-
ulation [19]. “3” and “4” represent the regulatory relations
found with the DFL algorithm when the bases for expres-
sion values are 3 and 4 respectively. M1, S4, S6, F1. F2, N1
and S7 are Mbpl. Swi4, Swi6, Fkhl. Fkh2, Ndd1 and Skn7
respectively.

Table 5. The literature evidences for the GRN

model in Figure 7 and Figure 8.
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The ¢-Function method

7/21/2004

Figure 8. The learned GRN model for yeast
cell cycle with the ¢ function method. (a) The
base for gene expression value is 3, the inde-
gree of the GRN is 5, and the ¢ is 0.2. (b) The
base for gene expression value is 4, the inde-
gree of the GRN is 5, and the ¢ is 0.15. The
legends are the same as those of Figure 7.
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A comparison with K2 for
learning Bayesian networks

Figure 9. The combined GRN models. (a)
Combined model of Figure 7 and Figure 8.
(b) Combined Bayesian network structure
learned with the K2 algorithm where the base
for expression value is set to 3 and 4 respec-
tively. The legends are the same as those of
those of Figure 7.
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‘L Accuracy and precision

No. of correct predictions

Accuracy = - —
No. of predictions
B TP+TN
TP+ TN+ FP + FN
No. of correct positive predictions
Precision =
WIT positives No. of positives predictions

1P

TP + IP >
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The comparison of prediction

performances
Accur. Sensi. Preci.
DFL (b = 3) 65 67 90
DFL (b = 4) 63 60 96
DFL (Combined) | 80 83 92
K2 (b= 3) 27 17 88
K2 (b=4) 22 12 83
K2 (Combined) 33 24 91

Table 6. The accuracy, sensitivity and preci-
sion of the DFL algorithm and the K2 algo-

rithm.

7/21/2004

Zheng Yun, BIRC, SCE, NTU

)

21



i Conclusion

= The DFL algorithm is more efficient than
current algorithms for reconstructing
gualitative models of GRNs without loss of
prediction performances.

= The g-Function method is a good supplement
to the DFL algorithm.

= The DFL algorithm identifies biologically
meaningful GRN models from a limit gene
expression profile.
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* Questions and suggestions

Thanks for your interests!

7/21/2004 Zheng Yun, BIRC, SCE, NTU

23



i Acknowledgements

We appreciate Prasanna R Kolatkar and
Ng See-Kiong for their reviews on an early
version of this paper.

We also thank the two anonymous reviews
of the paper.

7/21/2004 Zheng Yun, BIRC, SCE, NTU

24



	Dynamic Algorithm for Inferring Qualitative Models of Gene Regulatory Networks
	Topics
	GRNs macro-view
	GRN for Arabidopsis thalianaflower morphogenesis
	Experimental data supporting the GRN of Arabidopsis thaliana flower morphogenesis
	Reverse engineering?
	Information theory foundation of our approach
	Models under consideration
	Reverse engineering approach
	How much data
	The DFL algorithm
	Experiments for time complexity
	Sensitivity
	Experiments for sensitivity
	Reconstruct GLF Model
	Experiments on yeast cycle-cycle gene expression profiles
	Literature Evidences
	The -Function method
	A comparison with K2 for learning Bayesian networks
	Accuracy and precision
	The comparison of prediction performances
	Conclusion
	Questions and suggestions
	Acknowledgements

