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. Objectives: . Team Members:
— Theoretical properties of pattern spaces
— Algo for their mining
— Algo for their incremental maintenance
- Ways to build classifiers based on them ' )
. NOVGlty: Wong Limsoon (PI) Feng I</ieng|ing (RA) Lee Terk Shuen (Student)
— Patterns with more complex measures )
— Dynamic aspects of pattern spaces | - q = )
— Improve link with statistics A L= = _;
° Scope & Dellve_rables. | Liu Guimei (RF) Ngo Thanh Son (RA) Wang Yue (Student)
— Understanding of structural properties of pattern spaces
— Algo for mining such pattern spaces & their compact reps 4
- Algo for maintaining such compact reps when underlying db \SSE
changes = =t /
— Accurate classifiers based on such patterns Donny Soh (RA) Wiléoh .Goh (RA)
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— Efficient simultaneous mining of equiv classes of patterns
having good odds ratio, relative risk, y2 & other statistics . DeesetungCaeren pnenarsy Dtz et wngcancer_en bea-dd
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. Associated Technologies of el B

- Fast algo (DPMiner, GrGrowthPBd) for mining of equiv ,]: T E-J:-:- e
classes & positive borders satisfying a variety of statistics T T e T T e P
(c) Lung Cancer (varying /3) (d) Lung Cancer (varying a)
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. Achievement #2 . Achievement #3

— Full understanding of structural changes to pattern equiv — Efficient maintenance of pattern equiv classes when
classes as underlying db evolves =>» Exact characterization transactions are removed

of equiv classes that emerge, disappear, split, or merge . Associated Technology
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. Achievement #4 . Achievement #5
— Efficient maintenance of pattern equiv classes when — Statistically sound choice of # of patterns to use in robust

transactions are removed/ added or threshold is changed pattern-based classifiers

— Fast sampling (using incremental pattern maintenance) for
efficiently applying Central Limit Theorem

. Associated Technology . Associated Technology
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- % Use PSM to improve the algorithm
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Table 1: Comparison of the number of patterns enumerated by PSM+4., FP-
growth™ and GC-growth. Notations: #PSM-+. #FPgrowth* and #GC-growth
denote the approximated number of patterns enumerated by the respectively
algorithims.
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