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Abstract

Motivation: Processing of large data files is unavoidable in genomic pipelines. Many tools that do this are either
stand-alone languages or command-line tools. There is an impedance mismatch when these tools are used with a host
programming language to support more complex analysis.
Results: A novel concept, Synchrony iterator, is introduced. It allows efficient algorithms underlying such tools to be
easily expressed. As a demonstration, the powerful GenoMetric Query Language (GMQL) is emulated using Synchrony
iterators in Scala/Python, and the resulting equivalents of these queries are very efficient. Notably, a user can freely
intermix GMQL-like queries with other features of Scala/Python, thereby overcoming the impedance mismatch problem.
Availability: Implementations of Synchrony iterator and Synchrony GMQL, in both Scala and Python 3, are available
at https://www.comp.nus.edu.sg/~wongls/projects/synchrony.
Contact: dcsstef@nus.edu.sg and wongls@comp.nus.edu.sg
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Introduction

Some tools have emerged that exploit the intrinsic structures in

genomic datasets to achieve efficiency in processing these large

datasets. E.g., the GenoMetric Query Language (GMQL) [5] is

a declarative language for processing large quantities of genomic

regions, and BEDOPS [6] is a popular command-line toolkit for

extracting and manipulating genomic regions.

A challenge, from the perspective of a programmer imple-

menting these tools, is the impedance mismatch between the

programming language used for the implementation and the

kind of algorithms needed in these bioinformatics tools. Modern

programming languages provide good support which makes pro-

grams manipulating large collections more readable. Yet it

is still difficult to implement efficient algorithms (e.g. inter-

sect collections of genomic regions under non-trivial matching

conditions [9]) in an easy-to-understand way.

There are two further challenges, this time from a user-

programmer’s perspective. One is that, as these tools provide a

rich set of operators on genomic data, the user-programmer has

to familiarize himself with their thick manuals to use them effe-

ctively, even if he is a competent programmer. The other is that

an impedance mismatch [2] often arises when using these stand-

alone tools in conjunction with a host programming language,

to perform more complex analysis on genomic data.

This paper addresses these three challenges. Firstly, we

describe Synchrony iterator, a novel class of iterators enabling

efficient sychronized iterations over multiple collections to be

expressed in simple-to-understand comprehension syntax [1].

Synchrony iterator is efficient and can succinctly implement

those efficient algorithms alluded to in the first challenge above.

Secondly, this implies that a user who has mastered Synch-

rony iterator, which is a single programming construct, as

opposed to a thick manual of many genomic operators, is alre-

ady able to implement typical genomic queries in a simple and

efficient way. So, it also addresses the second challenge.

Thirdly, we use Synchrony iterator to emulate GMQL. This

emulation results in a Scala/Python library, Synchrony GMQL.

This library naturally embeds GMQL into Scala/Python. One

can thus freely intermix GMQL-like operators into Scala and

Python programs, addressing the third challenge. Remarka-

bly, Synchrony GMQL is implemented in about 4,000/1,500

lines of Scala/Python codes, as counted by cloc. Despite the
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simplicity of its implementation, Synchrony GMQL outper-

forms a local installation of GMQL [5]. This is a testimonial

to Synchrony iterator as an elegant idea for expressing efficient

synchronized iterations on multiple collections in a succinct and

easy-to-understand way.

Methods

Basics of Synchrony iterator

We describe Synchrony iterator using our Python implemen-

tation, as Python is likely more familiar to the reader. For

convenience, we refer to a Synchrony iterator as “eiterator”, as

it is an enhanced iterator. An eiterator ys = EIterator(Y, cl)

can be constructed from any iterable object Y (e.g. a list);

where cl is an optional argument which is a function for relea-

sing resources held for Y when the eiterator is no longer needed.

Although the eiterator ys can be used as an iterator of the ele-

ments of Y in the usual manner, it is endowed with several

additional methods, including syncedWith which characterizes

its conceptual novelty. The pertinent method syncedWith is

described below, along with some supporting methods.

• ys.syncedWith(x, bf, cs) returns a list vs equivalent to

list(filter(cs, takewhile(lambda y, x : bf(y, x) or cs(y, x),

ys)) and also updates ys to an eiterator equivalent to

dropwhile(lambda y, x : bf(y, x) or cs(y, x)).prepend(vs).

• ys.preprend(vs) updates ys by prepending elements in the

list vs to the front of ys.

• ys.peekahead(n) returns [ ] if there are fewer than n elements

left in ys; otherwise, it returns [y] where y is the nth element

in ys, without removing y or any other elements from ys.

• ys.close() releases resources held for ys. It is automatically

invoked when accessing the last element in ys, but it can be

invoked earlier to terminate the iteration on ys midway.

Synchrony iterator is an efficient mechanism for “synchroni-

zing” iterations on two or more collections. To appreciate this

aspect, let X and Y be two lists. Let (x << x′ | X) mean x

appears before x′ in X, and (y << y′ | Y ) mean y appears

before y′ in Y . A predicate bf(y, x) is said to be “monotonic”

wrt (X,Y ) if (i) for each y in Y , bf(y, x) implies bf(y, x′) whe-

never (x << x′ | X); and (ii) for each x in X, bf(y, x) implies

bf(y′, x) whenever (y′ << y | Y ). A predicate cs(y, x) is said

to be “antimonotonic” wrt a monotonic predicate bf(y, x) if (i)

for each y in Y , bf(y, x) and ¬cs(y, x) implies ¬cs(y, x′) whe-

never (x << x′ | X); and (ii) for each x in X, ¬bf(y, x) and

¬cs(y, x) implies ¬(y′, x) whenever (y << y′ | Y ).

Theorem 1 (cf. [9]) Let syncmap be the program below.

def syncmap(X,Y,bf ,cs ,f):

ys = EIterator(Y)

return [f(x,ys.syncedWith(x,bf ,cs)) for x in X]

Let X and Y be two lists, bf(y, x) be monotonic wrt (X,Y ),

cs(y, x) be antimonotonic wrt bf(y, x), and f(x, vs) has time

complexity O(|vs|). Then,

1. syncmap(X,Y, bf, cs, f) produces the same list as

[f(x, [y for y in Y if cs(y, x)]) for x in X].

2. syncmap(X,Y, bf, cs, f) has time complexity O(|X|+k|Y |),
provided there is some k such that for each y in Y , there

are at most k elements x in X satisfying cs(y, x).

From part 1 of the theorem, syncmap(X,Y, bf, cs, f) produ-

ces a list same as that produced by [f(x, [y for y in Y if

cs(y, x)]) for x in X]. Suppose for each y in Y , there are

at most k elements x in X satisfying cs(y, x). Then [f(x, [y

for y in Y if cs(y, x)]) for x in X] has quadratic comple-

xity, O(|X| · k|Y |). In contrast, by part 2 of the theorem,

syncmap(X,Y, bf, cs, f) has linear complexity, O(|X| + k|Y |).
So, the Synchrony iterator-based program is far more efficient.

This tremendous gain in efficiency illustrates the power-

ful synchronized iteration mechanism effected by the seem-

less interaction between Synchrony iterator and comprehen-

sion syntax. For each x in X, vs = ys.syncedWith(x, bf, cs)

is computed. By definition of syncedWith, vs is same as

list(filter(cs, takewhile(lambda y, x : bf(y, x) or cs(y, x), ys)).

The function takewhile stops the iteration on ys as soon as it

encounters an element y such that both bf(y, x) and cs(y, x)

are false. This is due to part (ii) of the antimonotonicity of cs,

¬bf(y, x) and ¬cs(y, x) implies ¬cs(y′, x) for all subsequent ele-

ments y′ in Y . So, the iteration on Y for this x is safely stopped

early, avoiding a full iteration on Y . Recall also from the defini-

tion of syncedWith that ys is updated to an eiterator equivalent

to dropwhile(lambda y, x : bf(y, x) or cs(y, x)).prepend(vs).

This means on the next x, the iteration on Y does not start from

the beginning of Y . Rather it starts from the elements of vs pre-

pended previously, and continues on to where the iteration for

the previous x stops. This is due to part(i) of the antimonoto-

nicity of cs, bf(y, x) and ¬cs(y, x) implies ¬cs(y, x′) for all x′

coming after x. So, provided bf is monotonic wrt (X,Y ), the

antimonotonicity of cs implies that each x in X is “seen” by

a different segment of Y , with overlaps |vs| ≤ k on average,

resulting in O(|X|+ k|Y |) complexity.

Synchrony iterators on large files

Our Synchrony iterator implementation provides the class EFile

for representing large data files. Let f be a file containing a list

of entries. Let df be an incremental deserializer function for

reading entries in f ; i.e. df sequentially fetches a few entries at

a time, on demand. Let sf be a serializer function for writing

entries in f . Then OnDiskEFile(f, sf, df) constructs an EFile

representing the file f , while TransientEFile(vs, sf, df) constru-

cts an EFile representing an iterable or eiterator vs that can

be serialized to and deserialized from disk using sf and df . An

EFile vf provides a number of methods, including:

• vf.eiterator(), which produces a new Synchrony iterator

on vf . If vf represents a file on disk, this eiterator uses the

incremental deserializer associated with vf to read a few

sequential entries in vf at a time as needed. So, a Synchrony

iterator keeps only a small segment of a large file in memory.

• vf.serialized(), which serializes vf to disk.

• vf.sorted(), which sorts vf on disk using the canonical orde-

ring defined on vf . The sorting is done by chopping vf into

m chunks, sorting each chunk in memory and writing to a

temporary file, then merging the m files. The in-memory

sorting has linearithmic complexity, while the final mer-

ging has linear complexity. However, due to disk access,

the former is dominated by the latter; thus, near-linear

performance is observed when vf has many items.

• vf.mergedWith(f1, ..., fn), which merges vf , f1, ..., fn, assu-

ming all these EFile objects are already pre-sorted using

their respective canonical ordering.
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BED files and sample files

We use Synchrony iterator on genomic data files, in particular,

BED files compatible with the popular BEDOPS [6] toolkit. A

BED file is an on-disk list of BED entries. A BED entry is a

region on a chromosome and has some annotations associated

with it. It is represented in our implementation as an object in

the class Bed. A region on chromosome ch, starting at position

st, ending at position en, on strand sn, that has annotations

{name = nm, score = sc, ...} is represented as a Bed object

x = Bed({chrom : ch, chromStart : st, chromEnd : en, strand :

sn, name : nm, score : sc, . . .}). Any annotation ` on the BED

entry represented by a Bed object x can be accessed as x.`, e.g.

x.chrom is the chromosome of the BED entry.

We often want to compare BED entries based on their

chromosomal positions or loci. So, a predicate object p =

BedPred(y, x) provides predicates on the loci of Bed objects y

and x, including the followings:

• p.isBefore(), which is True iff the locus of y is before the

locus of x in the “canonical ordering” of loci. Loci are

canonically ordered by (chrom, chromStart, chromEnd, strand).

• p.overlap(n), which is True iff the locus of y overlaps the

locus of x by at least n bases.

• p.dl(n), which is True iff the locus of y does not overlap that

of x and the distance between them is less than n bases.

It is a simple exercise to prove the proposition below. Thus

these predicates (and others which we have omitted here) can

be used in conjunction with Synchrony iterator.

Proposition 2 Let X and Y be two BED files sorted based

on the canonical ordering on loci; and p = BedPred(y, x) is

a predicate object on y and x, which are respectively Bed

objects representing some BED entries in Y and X. Then

p.isBefore() is monotonic wrt (X,Y ), and p.overlap(n) and

p.dl(n) are both antimonotonic wrt p.isBefore().

BED files are represented by the class BedEFile, a subclass of

EFile. This class has two main constructors: OnDiskBedEFile(f)

for constructing a BedEFile object representing the BED file f ,

and TransientBedEFile(vs) for constructing a BedEFile object

representing an iterable or eiterator vs of Bed objects.

Some metadata can also be associated with an entire BED

file. A BED file and its associated metadata is called a “sam-

ple.” Our Synchrony iterator implementation provides a class

Sample for representing samples. Its constructor Sample(vf, d)

constructs a Sample object representing the BedEFile object

vf and its metadata d (which is a dictionary.) Let s be a

Sample object. Then s.bedFile returns its BedEFile object; s.`

returns the value of its metadata labelled as ` in the dicti-

onary; s.bedFileUpdated(vf) constructs a new Sample object

with BedEFile object vf and the same metadata as s; and

s.metaUpdated(d) constructs a new Sample object with metadata

d and the same BedEFile object as s.

A sample file is an on-disk list of samples. Sample files are

represented by the class SampleEFile, a subclass of EFile. This

class also has two main constructors: OnDiskSampleEFile(f) for

constructing a SampleEFile object representing the sample file

f , and TransientSampleEFile(vs) for constructing a SampleEFile

object representing an iterable or eiterator vs of Sample objects.

Overview of GMQL

GMQL [5] features a list of operators to create, store, and

process datasets defined in common genomic data formats.

Some GMQL operators mirror relational algebra operators, e.g.

SELECT, PROJECT and GROUP. Some GMQL operators are

genomic-specific, e.g. MAP, JOIN, and COVER.

GMQL is optimized for sample files containing many sam-

ples, with each sample having a large BED file. A GMQL query

is decomposed into metadata and region operations. Metadata

operations are evaluated before region operations. Usually, the

effect of a metadata operation is to filter or remove samples

from the input. Thus, only samples contributing to the result

are passed to data loaders. For region operations, GMQL achi-

eves high performance by binning the genome into chunks and

comparing different bins concurrently [4].

For benchmarking, we deploy GMQL on a local installation

of Apache Spark, which simulates a small cluster on a single

multicore machine. We refer to this as the GMQL command-

line interface, or CLI. The machine is a laptop with 2.6 GHz

6-Core i7, 16 GB 2667 MHz DDR4, 500 GB SSD.

Synchrony emulation of GMQL

Many queries have common idiomatic structures, which can

be abstracted as re-usable query operators. GMQL operators

are examples of these. We use Synchrony iterator to imple-

ment a Scala/Python library, Synchrony GMQL, that replicates

all GMQL operators; i.e. Synchrony iterator is used instead of

GMQL’s binning strategy. Two examples (MAP and COVER)

are provided below, to illustrate the ease and succinctness of the

emulation. Full details of the emulation of all GMQL operators

are at www.comp.nus.edu.sg/~wongls/projects/synchrony.

Emulation of MAP

Consider the GMQL MAP query, MAP() U V, where U and V
are SampleEFile objects. For each Sample s in U , each Sample t

in V, and each Bed entry x in s.bedFile, this query counts the

number of Bed entry y in t.bedFile whose locus overlaps with

the locus of x. If naively executed, the time complexity of this

query is Ω(|U| · |V| ·m2), assuming each BED file has m entries.

It has a very succinct and far more efficient implementation

below as maps(U,V), which forms every pair of samples and pro-

cesses the BED files of the pair by mapr(X,Y ) to count overlaps

using Synchrony iterator; see the four lines of codes delineated

as the function synchro(xs, ys). By Theorem 1, despite its sim-

plicity, this implementation has complexity O(|U|·|V|·(k+1)m),

when no region overlaps more than k << m other regions.

Notably, the linear part (k+1)m is achieved without using any

specialized interval indices (e.g. [3].)

def bf(y,x): return BedPred(y,x). isBefore ()

def cs(y,x): return BedPred(y,x). overlap (1)

def mapr(X,Y):

def synchro(xs ,ys):

for x in xs:

ss = lambda y: BedPred(y,x). sameStrand ()

vs = filter(ss, ys.syncedWith(x,bf ,cs))

yield Bed ({**x.dict(),’count ’: len(vs)})

xs,ys = (X.eiterator (),Y.eiterator ())

tr = synchro(xs,ys)

cl = lambda : (xs.close(),ys.close ()))

return TransientBedEFile(EIterator(tr,cl))

www.comp.nus.edu.sg/~wongls/projects/synchrony
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def maps(U, V):

def aux(S,T):

for s in S:

for t in T:

b = mapr(s.bedFile ,t.bedFile)

yield s.bedFileUpdated(b)

S,T = (U.serialized (),V.serialized ())

it = aux(S,T)

cl = lambda : it.close()

return TransientSampleEFile(EIterator(it,cl))

Emulation of COVER

Consider the GMQL query COVER(n, m) U , where n,m > 0

and U is a SampleEFile. Conceptually, it produces “maximal”

regions in the underlying genome that each overlaps n to m

number of regions in the BED files of the samples in U .

It is implemented below as covers(minmax,U), where

covers(betw(n,m),U) realizes the query COVER(n, m) U ,

while covers(atleast(n),U) realizes COVER(n, ANY) U .

def atleast(n): return lambda i: n <= i

def betw(n,m): return lambda i: n <= i <= m

def coverr(minmax ,XS):

# mm comprises all regions in XS.

first ,rest = (XS[0],XS[1:])

mm = first.mergedWith (*rest). serialized ()

# rf comprises start and end positions in mm

def mp(mm ,f):

it = mm.eiterator (). map(f)

tf = TransientBedFile(it)

return tf.serialized ()

ss = mp(mm,lambda r: r.start ())

ee = mp(mm,lambda r: r.end ())

rf = ss.mergedWith(ee.sorted)

.distinct (). serialized ()

ss.destruct (); ee.destruct ()

# make histogram of regions , histo. each bar

# in histo is a segment , with a count on

# no. of regions in mm overlapping it.

# omit segments whose count fails minmax.

def synchro(minmax ,rf,mm):

for x in rf:

vs = mm.syncedWith(x,bf ,cs)

ht = len(vs)

if ht == 0 or not(minmax(ht)): continue

en = min([v.chromEnd for v in vs])

yield Bed({’chrom’: x.chrom ,

’chromStart ’: x.chromStart ,

’chromEnd ’: en ,

’name’: "", ’score’: 0,

’strand ’: ".", ’count’: ht})

hh = synchro(minmax ,rf ,mm)

ch = lambda : (rf.destruct(),mm.destruct ())

histo = EIterator(hh ,ch)

# concatenate adjoining segments in histo.

def concat(histo):

aj = lambda y,x: BedPred(y,x). overlap (0)

while histo.hasNext ():

acc = histo.next()

while (histo.hasNext () and

aj(acc ,histo.peekahead (1)[0])):

nxt = histo.next()

acc.chromEnd = nxt.chromEnd

yield acc

eit = concat(histo)

cl = lambda : histo.close ()

return TransientBedEFile(EIterator(eit ,cl))

def covers(minmax ,U):

b = coverr(minmax ,[s.bedFile for s in U])

return TransientSampleEFile ([ Sample(b ,{})])

Here, covers first extracts XS = [s.bedFile for s in U ], which

are the BED files associated with the samples in U . Then all

the regions in these BED files are extracted in a new BED

file mm and all the start and end positions of these regions are

extracted into another new BED file rf. A Synchrony iterator

is then used in the function synchro(minmax, rf, mm) to generate

for each x in rf—where x is overlapped by i number of regions

in mm, and i satisfies the constraint minmax—a new region with

the same start position as x but with its end position set to

the nearest end position among the regions in mm that overlap

x. This list of new regions is denoted as histo in the program.

Finally, the function concat(histo) merges regions in histo that

overlap each other, to produce the maximal regions desired.

All the steps above are linear in the total number of regions

in all the samples, except for a substep needed in producing

rf: The substep is the sorting of end positions (ee), which has

the usual linearithmic time complexity of sorting. However, this

linearithmic component is masked by disk access when proces-

sing large BED files. I.e., the overall time performance observed

in practice is very close to linear. Again, this is achieved without

using any specialized genomic interval indices (e.g. [3].)

Performance comparisons

To show that Synchrony GMQL, which is based on Synchrony

iterator, has similar or better performance than GMQL CLI,

we have chosen four representative operators: MAP, COVER,

JOIN, and SELECT. The first three showcase the power of

Synchrony iterator when processing large genomic data files,

while the last shows that the emulation is also efficient for

GMQL operators which do not need Synchrony iterator.

For MAP, the GMQL query chosen is MAP() U V, which

we saw earlier. The equivalent Synchrony GMQL query is

mapS(mapR())(U,V). Note that, in contrast to the maps and mapr

functions shown earlier, mapS and mapR are Synchrony GMQL

functions that fully emulate MAP in all its parameters.

For COVER, the chosen query is COVER(1, ANY) U . Its

Synchrony GMQL equivalent is coverS(coverR(atleast(1)))(U).

Different from the covers and coverr functions shown earlier,

coverS and coverR are Synchrony GMQL functions that fully

emulate COVER in all its parameters.

For JOIN, the GMQL query chosen is JOIN(DL(0); output:

int) U V. For each Sample s in U , each Sample t in V, this

query searches for all regions in t.bedFile which have dista-

nce less than 0 to any region in s.bedFile; i.e. it looks for

regions in Sample t’s BED file that overlap with regions in

Sample s’s BED file. This query outputs the intersection (viz.

overlapping area) of each pair of matching regions. The equiva-

lent in Synchrony GMQL is joinS(joinR(Overlap(1), output =

intersect))(U,V). Here, joinS(f)(U,V) forms all possible pairs

of Sample objects in (U,V), and applies f to each of these
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pairs; joinR(Overlap(1), output = intersect) is the Synchrony

iterator-based function for joining two BED files, where the

Overlap(1) predicate makes the semantic intention more clear.

For SELECT, the GMQL query chosen is SELECT(region:

(chr==chr1 OR chr==chr2)) U . For every Sample s in U , this

query selects all regions found on the first or second chro-

mosome of s.bedFile. The equivalent in Synchrony GMQL is

onRegion(selectR(lambda r : r.chrom == "chr1" or r.chrom ==

"chr2"))(U). Here, onRegion(f)(U) applies f to s.bedFile for

each s in U , and selectR(lambda r : r.chrom == "chr1" or r.chrom

== "chr2") selects regions on chr1 or chr2.

Performance is compared based on the criteria below.

1. Execution time. The queries are run on 9 datasets, cf. the

Datasets section, spanning the two dimensions of number

of samples and number of lines (i.e. regions) per sample.

Execution time includes writing query results to disk.

2. Time complexity. Each query is also run on a second group

of datasets. These alternative test cases are meant to show

how the time complexity (viz., execution time) increases

with respect to either the number of samples, or the number

of regions per sample, when the other measure is fixed.

3. Memory usage. Scala executes on top of the Java Virtual

Machine (JVM). To verify that Synchrony GMQL main-

tains its performance even when a low amount of memory

is allocated to the JVM, the queries are run two times; once

by allocating 2GB of memory to the JVM, and another time

by allocating 128MB of memory.

As GMQL CLI is based on Scala, we compare our Synchrony

GMQL implementation in Scala with it. Our Scala imple-

mentation can be run in strictly sequential mode and also in

sample-parallel mode (In this mode, each BED file is processed

sequentially, but the BED files of different samples are proces-

sed in parallel on all 6 cores of the test machine.) We also show

the performance of our Synchrony GMQL implementation in

Python for information purpose; it is expected to be an order

or two of magnitude slower as it is interpreter-based.

Datasets

Table 1. describes all datasets used in the above comparisons.

There are 9 reference datasets, named SS through BB, that

provide examples of different type of input data, viz., either

with large amount of samples, many regions per samples, or a

combination of both. All regions come from transcription factor

ChIP-Seq experiments (i.e., regions are TF binding sites.) Data

was extracted from two public repositories, ENCODE [8] and

Cistrome [10]. Synthetic metadata is created to match each

sample. The name labeling provides a cue of the contents. The

first letter (S, M, or B) refers to the number of samples in

the dataset (1 sample, 10 samples, or 100 samples). The second

letter refers to the number of regions in each sample (1,000 regi-

ons, 10,000 regions, or 100,000 regions). E.g., MS is a dataset

with 10 samples, each containing 1,000 regions. 13 additional

datasets (s1l1000 through s1l1000000) are used for two different

scaling studies wrt the number of samples (at fixed number of

regions), and wrt the number of regions (at fixed number of

samples). For the use-case described in the Discussion section,

we use a dataset of 10 ChIP-seq experiments from cell line

MCF-7, and a set of gene regions from RefSeq. We syntheti-

cally increased the number of genes by replicating the regions

10 times, to better simulate larger scenarios.

Table 1. Datasets used in Synchrony GMQL performance testing.

.

Name Sample Regions Size [MB]

SS 1 1000 0.08

SM 1 10000 0.86

SB 1 100000 9.58

MS 10 1000 0.95

MM 10 10000 8.74

MB 10 100000 96.00

BS 100 1000 14.42

BM 100 10000 86.33

BB 100 100000 696.35

s1l1000 1 1000 0.06

s5l1000 5 1000 0.34

s10l1000 10 1000 0.67

s20l1000 20 1000 2.13

s50l1000 50 1000 5.15

s75l1000 75 1000 7.52

s100l1000 100 1000 10.20

s1l1 1 1 0.00

s1l10 1 10 0.00

s1l100 1 100 0.01

s1l10000 1 10000 0.60

s1l100000 1 100000 7.09

s1l1000000 1 1000000 71.25

MCF-7 10 424096 24.90

ncbiRefSeqGenes10X 1 314364 49.70

Discussion

Use case: TFBS found in promoters

Consider this fairly complex query: Given a set of transcri-

ption factor binding sites (TFBS) from a single transcription

factor (TF), and a set of genes of interest, all of which are

located on the positive strand of human DNA, identify all

TFBS that are found in the promoters of said genes. For

simplicity, assume that both the TFBS and the genes sample

files, TL and GL, are already sorted according to chromosome,

start, end, and strand. Assume also that for each gene, the

promoter is located between 2,000 bp upstream and 1,000 bp

downstream of its transcription start site (TSS), and the TSS

is located at the very first base of the gene.

In GMQL, this query is written below using a combination

of PROJECT, MAP, and SELECT: PROJECT takes care of

resizing each gene to locate the promoter area; MAP counts

how many promoters intersect each TFBS; and SELECT filters

out all TFBS that do not match any promoters.

PLS = SELECT(region: strand == +) GL;

PRM = PROJECT(region_update:

start as start - 2000,

stop as start + 1000) PLS;

MAT = MAP() TL PRM;

RES = SELECT(region: count >0) MAT;

The same query is expressed below in Python via Synchrony

GMQL functions mirroring the GMQL operators.

pls = selectR(lambda r: r.strand == "+")

prm = projectR ({

’chromStart ’: lambda r: r.chromStart - 2000,

’chromEnd ’: lambda r: r.chromStart + 1000})
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PRM = onRegion(lambda r: prm(pls(r)))(GL)

MAT = mapS(mapR ())(TL , PRM)

RES = onRegion(selectR(lambda r: r.count >0))( MAT)

We test the two queries using MCF-7 as the TFBS list

TL and ncbiRefSeqGenes10X as the gene list GL; cf. Datasets

section. Sequential Synchrony GMQL produces its results in

2.75 seconds (average of 10 runs, stdev = 0.09), while parallel

Synchrony GMQL does this in 1.94 seconds (average of 10 runs,

stdev = 0.07.) GMQL CLI finishes in 56.14 seconds (average of

10 runs, stdev = 2.26.) Python Synchrony GMQL completes

in 35.44 seconds (average of 10 runs, stdev = 0.88.) So, Scala

Synchrony GMQL is 20 to 30 times faster than GMQL CLI on

this example, while the Python version is 1.58 times faster.

Naturally embedded genomic queries

So far, our queries all have SampleEFile as input and output.

This is because we are emulating GMQL: It is a standa-

lone query language which can only take SampleEFile as input

and produce SampleEFile as output. For more complex pro-

cessing, the input/output is often needed to be something

else. So, one has to switch between GMQL and a more gene-

ral host programming language, and suffers the inconvenience

of impedance mismatch. Since Synchrony GMQL is a natu-

ral embedding of GMQL-like features into Scala/Python, this

impedance mismatch disappears.

The short Python program below illustrates this.

[ (p, tf, s)

for p in PRM

for tf in TL

for b in [mapr(tf.bedFile , p.bedFile )]

for f in [selectR(lambda r: r.count > 0)(b)]

for s in [f.serialized ()] ]

In this program, which also implements the “TFBS found in

promoters” query, PRM and TL are as defined earlier and eva-

luate to SampleEFile; and mapr is as defined earlier (in the

section on emulating MAP) and evaluates to BedEFile. The

output is a list of triples (p, tf, s), where p is a Sample from

PRM, tf is a Sample from TL, and s is a BedEFile containing those

regions in tf.bedFile that overlap some regions in p.bedFile.

The twist here is that the output is no longer a SampleEFile,

but is the triple (p, tf, s). In a situation where GL (and thus

PRM) contains multiple samples (each being a separate list of

gene promoters), outputting such a triple is natural for keeping

track of the provenance of s (i.e. it is derived from which p

and tf.) This illustrates the free mixing of Synchrony GMQL

operations and results with any other features in the host

programming language. This natural embedding of efficient

genomic querying capability into a host programming langu-

age brings great convenience in more complex data processing

and analysis pipelines.

Execution time comparisons

Figure 1 shows the results of running the MAP, JOIN, COVER,

and SELECT on datasets SS through BB. For all four queries,

Synchrony GMQL outperforms GMQL CLI by large margins

on nearly all datasets. The exceptions are MAP and JOIN

on BB, where GMQL CLI outperforms sequential Synchrony

GMQL. On BB, 10000 pairs of samples are compared. GMQL

CLI is able to do these in parallel on all 6 cores of the test

machine, while sequential Synchrony GMQL is strictly sequ-

ential. Parallel Synchrony GMQL processes samples in parallel

MAP JOIN

COVER SELECT
Fig. 1. Timing of GMQL CLI and Synchrony GMQL for MAP, JOIN,

COVER, and SELECT queries on 9 reference datasets SS, ..., BB. Time

in seconds. Each average is done over 30 runs, except for BM and BB,

which are done up to 5 runs due to time constraints. Purple: GMQL CLI.

Blue: Sequential Synchrony GMQL. Green: Parallel Synchrony GMQL.

Yellow: Python Synchrony GMQL.

but BED files sequentially. Thus, parallel Synchrony GMQL is

faster than sequential Synchrony GMQL on all queries on mul-

tiple samples, but has similar efficiency on the COVER query

as COVER first merges the BED files in the samples into a

single BED file. GMQL CLI is parallel at both sample and

BED file levels, via binning [4]. GMQL CLI’s poorer perfor-

mance suggests that the brute-force parallelism provided by a

SPARK implementation of quadratic algorithms on MAP and

JOIN cannot compete with Synchrony GMQL’s Synchrony ite-

rator, until the number of samples and/or regions is sufficiently

high to keep all 6 cores on the test machine fully busy.

Time complexity as a function of sample and region counts

The query joinS(joinR(Overlap(1), output = intersect))(U,V)

compares each U in U to each V in V, and computes the inter-

section of each region in U to each region in V . Assuming

each region in V overlaps at most k regions in U , and each

BED file has at most m regions, the intersections of regions

are computed by a Synchrony iterator in O((k + 1)m) time

complexity; cf. Theorem 1. So the overall time complexity is

O(|U| · |V|(k + 1)m). This theoretical upperbound is consistent

with the charts for JOIN in Figure 2, when one ignores the sub-

seconds part of the figure caused by fluctuations due to systems

start-up; the quadratic component |U| · |V| in the upper charts,

the linear component (k + 1)m in the lower chart.

The query coverS(coverR(atleast(1)))(U) has theoretical

time complexity which is linearithmic in the total number of

regions in U , and is likely linear in practice (when the lineari-

thmic component is masked by disk access.) This is consistent
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JOIN COVER

Fig. 2. Performance analysis of Sychrony GMQL for JOIN and COVER.

a. Timing as a function of sample count; each sample has a fixed number

of regions (1,000.) b. Same as a., but time in log-scale. c. Timing as a

function of region count; each data point corresponds to one sample with

a given number of regions. Average of 30 runs (error bars = stdev.)

JOIN COVER
Fig. 3. Timing of sequential and parallel Synchrony GMQL for JOIN nd

COVER in two situations: 2GB allocated to the JVM (cyan and blue,

resp. sequential and parallel), and 128MB allocated (margenta and red,

resp.) All times (y-axis) in seconds.

with the observation in the charts for COVER in Figure 2

where, modulo some fluctuations at very low amounts of data

and at systems start-up, linearity is observed.

The query mapS(mapR())(U,V) also has theoretical time com-

plexity O(|U||V|(k + 1)m), with scaling behaviours similar to

JOIN. The query onRegion(selectR(lambda r : r.chrom == "chr1"

or r.chrom == "chr2"))(U) has theoretical time complexity linear

in the total number of regions in U as well. Both their scaling

charts are omitted as these add no further insight.

Execution times in constrained memory situation

Figure 3 shows that the execution time of JOIN and COVER in

Synchrony GMQL do not differ much when a lot (2GB) or little

(128MB) memory is given to the JVM. Similar memory effici-

ency is observed for MAP, and SELECT in Synchrony GMQL;

charts omitted. So, Synchrony iterator does not consume much

memory even when there are large amounts of input data.

Conclusion

Synchrony iterator is a paradigm for expressing, in easy-

to-understand comprehension syntax, efficient genomic data

processing algorithms that require synchronized iterations on

two or more streams of ordered genomic regions. We have

demonstrated how Synchrony iterators can be used to emu-

late the powerful genomic query language GMQL in a succinct

and efficient way. We have shown that the resulting emulation,

Synchrony GMQL, is more efficient than a local installation

of GMQL. Thus, Synchrony iterator is an elegant solution to

impedance mismatch issues that often arise when designing and

implementing genomic data processing pipelines.

Synchrony iterator is designed to keep the technicalities of

synchronized iterations from the user, needing only simple defi-

nitions of the “is before” (denoted as bf in the text) and the

“can see” (cs) predicates to function correctly and efficiently.

While Synchrony iterator is not specifically designed for bioin-

formaticians, its use is natural in genomic dataset processing.

This is because genomic regions are naturally ordered based on

their loci, and because it is often the case that researchers are

interested in questions of proximity between loci.
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