
Addressing an intensional expressiveness gap of
comprehension syntax

LIMSOON WONG, National University of Singapore, Singapore

Comprehension syntax is widely adopted in modern programming languages as a means for manipulating

collection types. This paper articulates and investigates an apparent gap in the intensional expressive power

between comprehension syntax and relational database systems: (i) All subquadratic algorithms which are

expressible in comprehension syntax, even after allowing some functions commonly available in the collection-

type libraries of modern programming languages, do not compute low-selectivity joins. As database systems

support these joins efficiently, this confirms the intensional expressiveness gap. (ii) A “Synchrony iterator”

construct for synchronized iteration on multiple collections is introduced. This enables more algorithms,

but not functions, to become definable using comprehension syntax. In particular, efficient algorithms for

low-selectivity joins become expressible. So, the ability to iterate on multiple collections in synchrony con-

stitutes an exact characterization of this intensional expressiveness gap. (iii) The proof of this intensional

expressiveness gap relies on a “limited mixing” lemma which states that subquadratic algorithms expressible

using comprehension syntax have limited ability for mixing atomic objects in their inputs. This limited-mixing

lemma is non-query specific and is applicable even when ordered data types are present. It thus considerably

enriches the available theoretical tools for studying intensional expressive power, as these tools are often query

specific and are inapplicable in the presence of ordered data types. It is also a useful intensional counterpart

to Gaifman’s locality property. Gaifman’s locality are very useful for analyzing extensional expressiveness of

first-order query languages on unordered data types, but is not useful on ordered data types. (iv) Incidentally,

efficient interval joins with overlap predicates are obtained as a free byproduct of Synchrony iterator. This

kind of joins are often needed for practical applications such as temporal data and genomic data processing,

but are not supported well in typical relational database systems.

CCS Concepts: • Information systems→ Relational database query languages.

Additional Key Words and Phrases: Intensional expressive power, synchronized iteration, comprehension

syntax

ACM Reference Format:
Limsoon Wong. 2022. Addressing an intensional expressiveness gap of comprehension syntax. J. ACM 1, 1

(January 2022), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 OVERVIEW
Query languages based on comprehension syntax are able to express all relational queries sup-

ported by typical database systems [4, 23]. Moreover, queries written in comprehension syntax

are appealingly simple [3]. So, comprehension syntax has become widely regarded as a means

for embedding collection-type querying capabilities into programming languages. However, join

queries expressed in comprehension syntax are generally compiled into nested loops; this implies

Author’s address: Limsoon Wong, National University of Singapore, School of Computing, 13 Computing Drive, Singapore,

117417, Singapore, wongls@comp.nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0004-5411/2022/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Limsoon Wong

such queries typically have quadratic or even higher time complexity when they are expressed by

means of comprehension syntax.

In contrast, in relational database systems, even in the absence of indices, when joins have

low selectivity, these joins often have O(n logn) time complexity based on (sort-)merge-join algo-

rithms [2]. And when the input relations are pre-sorted on their join attributes in a low-selectivity

join, a merge-join can even be realised with linear time complexity by skipping the sorting steps.

Therefore, there is a potential intensional expressiveness gap between algorithms that can be

realised by comprehension syntax and those used in database systems, viz. algorithms for low-

selectivity joins. The first objective of this paper is to prove that this intensional expressiveness gap

indeed exists. The proof goes via a “limited-mixing” lemma on NRC1(≤). On ordered data types,

NRC1(≤) is equivalent to the flat relational algebra or first-order logic [23]. More pertinently,

there is a simple translation between comprehension syntax and NRC1(≤), and this translation

preserves time complexity. This makes NRC1(≤) a suitable ambient query language for investi-

gating the potential intensional expressiveness gap between comprehension syntax and typical

database systems. The limited-mixing lemma states that all NRC1(≤) queries of subquadratic

time complexity are only able to mix atoms in their input relations in very limited ways. So, these

subquadratic-complexity queries cannot be low-selectivity joins.

The second objective of this paper is to prove that this intensional expressiveness gap remains

even when NRC1(≤) is further augmented by some common functions in typical programming

language libraries. In particular, a limited-mixing lemma is proved when the functions takewhile
and dropwhile, as well as a function for “instantaneous sorting” (a fictitious superfast constant-time

sorting for arbitrary data), are added to NRC1(≤). The functions takewhile and dropwhile are
considered because the iteration construct in NRC1(≤) must always access all elements in the

relation being iterated on; whereas, takewhile and dropwhile are iteration functions which can

stop their iterations mid-way according to some specified conditions. Due to the limited-mixing

lemma onNRC1(≤, takewhile, dropwhile, sort), augmenting comprehension syntax with takewhile
and dropwhile still does not permit low-selectivity joins at subquadratic time complexity to be

realized, even in the presence of instantaneous sorting. So, the intensional expressiveness gap of

comprehension syntax is not due solely to NRC1(≤)’s lack of ability to stop an iteration mid way.

Another limited-mixing lemma is proved when the function fold is added toNRC1(≤, sort). fold
is another function commonly provided in programming language libraries. fold is considered

because it corresponds to structural recursion. This popular workhorse of functional programming

languages tremendously expands the extensional expressive power of NRC1(≤). For example,

transitive closure is expressible in NRC1(≤, fold) [4, 20], but not in NRC1(≤) [9]. The limited-

mixing lemma on NRC1(≤, fold, sort) means that augmenting comprehension syntax with fold
still cannot realize low-selectivity joins at subquadratic time complexity, even in the presence of

instantaneous sorting. So, the intensional expressiveness gap of comprehension syntax is not due

solely to NRC1(≤)’s lack of brute-force horsepower either.

One last limited-mixing lemma is proved when the function zip is added toNRC1(≤, sort). zip is
arguably the most typical function in programming language libraries that simultaneously iterates

on two collections. However, it is a rather limited form of synchronized iteration as it pairs objects

in the two collections strictly by the physical positions, viz. first to first, second to second, and so on.

As a result, it is hard to use zip to express joins. The limited-mixing lemma on NRC1(≤, zip, sort)
confirms the limitations of zip as a means for expressing efficient low-selectivity joins.

One might think that this intensional expressiveness gap is due to NRC1(≤)’s simultaneous

lack of an ability to stop an iteration mid-way and limitation in extensional expressive power.

Indeed, low-selectivity joins can be expressed with subquadratic time complexity using takewhile,
dropwhile, and fold simultaneously. However, while NRC1(≤, takewhile, dropwhile, fold, sort) is

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 3

able to express efficient algorithms for low-selectivity joins, it can also express many other functions

(e.g., transitive closure, and even exponential-time queries when arithmetics operators are available),

which are inexpressible in NRC(≤). In other words, the ability to stop an iteration mid-way and

to perform structural recursion does not constitute a precise characterization of the intensional

expressiveness gap of comprehension syntax.

The third and final objective of this paper is to more precisely characterize this gap. The constructs

eiterator and syncedwith for synchronized iteration on two ormore relations are introduced. Efficient

merge-joins are expressible in NRC1(≤, eiterator , syncedwith), despite NRC1(≤) and NRC1(≤,

eiterator , syncedwith) having the same extensional expressive power. Therefore, the contribution

of eiterator and syncedwith is solely to intensional expressive power, permitting the expression

of a richer repertoire of algorithms but not functions. In other words, synchronized iteration

more precisely characterizes the intensional expressiveness gap between comprehension syntax

and typical database systems. Moreover, as it will be appreciated later, eiterator and syncedwith
syntactically dovetail into comprehension syntax. So, efficient joins expressed inNRC1(≤, eiterator ,
syncedwith) often do not look syntactically too different from the inefficient versions in NRC1(≤).

Hence, comprehension syntax with eiterator and syncedwith can be claimed as a more genuinely

natural embedding of collection-type querying capabilities into programming languages in terms

of both extensional and intensional expressive power. Also, remarkably, efficient interval joins

with overlap predicates which are not well supported by typical database systems come for free in

NRC1(≤, eiterator , syncedwith).

2 NESTED RELATIONAL CALCULUS
The restriction of the nested relational calculus NRC from Buneman et al. [4] and Wong [23] to

flat relations is used as the ambient language here.NRC is equivalent to the usual nested relational

algebra [4, 23]. Its restriction to flat relations, denoted here asNRC1, is equivalent to flat relational

algebra and first-order logic [23]. This ambient language, and its operational semantics and rewrite

rules, are described below.

2.1 Types and expressions
The types and expressions of NRC are given in Figure 1. The type superscripts in the figure are

omitted when there is no confusion. For simplicity, all variable names are assumed to be distinct.

For convenience, all data types are endowed with an order; this query language is denoted as

NRC(≤).

The semantics of a type is just a set of objects built up by nesting sets and records of base-type

objects. Base types are denoted by b (representing atomic values in a database). An object of type

s1 × · · · × sn is a tuple (i.e., a record) whose ith component is an object of type si , for 1 ≤ i ≤ n. An
object of type {s} is a finite set whose elements are objects of type s ; an object of type {s} is called
a set or a “relation.” Moreover, if s = b × · · · × b, then an object of type {s} (or s) is called a “flat

relation.” However, if s contains some set brackets, then an object of type {s} is called a “nested

relation.”

The expression constructs are defined as follows. The expression C denotes objects, including

constants of base types b; the syntax for C will be given in the next subsection. The expression

(e1, . . . , en) forms a tuple whose ith component is the object denoted by ei , for 1 ≤ i ≤ n. The
expression e .πi extracts the ith component of the tuple e . The expressions {}, {e}, and e1 ∪ e2 have
their conventional meaning as set operations. The expression

⋃
{e1 | x ∈ e2} forms the set obtained

by first applying the function f (x) = e1 to each object in the set e2 and then taking their union; that

is,

⋃
{e1 | x ∈ e2} = f (C1) ∪ . . . ∪ f (Cn), where f (x) = e1 and {C1, . . . ,Cn} is the set denoted by e2.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

4 Limsoon Wong

Types in NRC

s ::= b | s1 × · · · × sn | {s}
where b is a base type.

Expressions in NRC

Cs
: s xs : s

e1 : s1 . . . en : sn
(e1, . . . , en) : s1 × · · · × sn

e : s1 × · · · × sn
e .πi : si

1 ≤ i ≤ n

{}s : {s}
e : s

{e} : {s}
e1 : {s} e2 : {s}
e1 ∪ e2 : {s}

e1 : {s} e2 : {t}⋃
{e1 | x

t ∈ e2} : {s}

true : B false : B
e1 : B e2 : s e3 : s
if e1 then e2 else e3 : s

e1 : s e2 : s
e1 < e2 : B

e1 : s e2 : s
e1 = e2 : B

e : {s}
e isempty : B

Fig. 1. NRC.

Besides the object types and their expression constructs above, NRC also has the Boolean type

B as a base type, and the expression constructs true, false, and if e1 then e2 else e3, which have their

conventional meaning as Boolean values and conditional expression. Lastly, the expression e1 < e2
provides a linear ordering on objects of the same type; the expression e1 = e2 checks whether the
objects denoted by e1 and e2 are the same; and the expression e isempty checks whether the set

denoted by e is empty.

The emptiness test e isempty, the equality test e1 = e2, and the ordering test e1 < e2 are provided
for every type s solely for convenience. Actually, they are definable in terms of the tests on base

types b. In particular, the linear ordering on any arbitrarily deeply nested combinations of record

and set types can be lifted—in a manner definable by NRC—from the linear ordering on each base

type b as follows [14]: for tuple types s1 × · · · × sn , it is defined pointwise lexicographically; and

for set types {s}, it is defined a la Wechler [22] based on the Hoare ordering (viz. X ≤ Y iff for all

x ∈ X − Y , there is y ∈ Y − X , such that x ≤ y.)
The notation x ∈ e2 in the

⋃
{e1 | x ∈ e2} construct is an abstraction that introduces the variable

x whose scope is the expression e1. That is, it is part of the syntax and is not a membership test.

This construct is the sole means in NRC for iterating over a set.

If a variable appearing in an expression e is not introduced by a subexpression of the form⋃
{e1 | x ∈ e2} in e , it is called a free variable of e . When it is necessary to explicitly indicate the

free variables of an expression, we write e(x1, ...,x2) or e(®x). An expression e(®x), with free variables

®x can be regarded as a function f (®x) = e(®x). When it is desirable to distinguish the free variables

local to a subexpression e(®x , ®X) of an expression e ′(®X), uppercase is used for the free variables of

the entire expression while lowercase is used for other free variables of the subexpression. Also, an

expression e having no free variable is called a closed expression.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 5

When objects ®C have the same types as the free variables ®x of an expression e(®x), the expression

obtained by replacing each variable xi in ®x in e(®x) by the correspondingCi in ®C is denoted as e[®C/®x].

The result of applying e(®x) as a function to ®C is denoted by e(®C). To make notations lighter, e(®C) is

sometimes also used to denote the expression e[®C/®x]; however, this usage is generally eschewed in

proofs. Sometimes, when it is unimportant to know what the objects ®C are, the notation e(®x) is

used instead of writing e(®C) explicitly.
A “pattern-matching” construct

⋃
{e1 | (x1, . . . ,xn) ∈ e2} is used for convenience. It is a syntactic

sugar for

⋃
{e1[x .π1/x1, . . . ,x .πn/xn] | x ∈ e2}. There is also an easy mechanical translation [3, 23]

between the syntax of NRC and comprehension syntax of the form {e | δ1, . . . ,δn} where each δi
either has the form ®xi ∈ ei or the form ei . The translation is as follows:

• {e | ®x1 ∈ e1,∆} =df
⋃
{{e | ∆} | ®x1 ∈ e1};

• {e | e1,∆} =df if e1 then {e | ∆} else {}; and
• {e | } =df {e}.

Comprehension syntax is used here to write examples, but the reader should understand these

examples as syntactic sugars of the actual NRC expressions. Below are some examples.

Example 2.1. All relational queries [5] are expressible in NRC.

• Πi X =df {x .πi | x ∈ X } is the relational projection;

• σd X =df {x | x ∈ X , d(x)} is the relational selection;
• X ◃▹ Y =df {(x ,y) | (u,x) ∈ X , (v,y) ∈ Y , u = v} is the relational join;
• X ∩ Y =df {x | x ∈ X , not {y | y ∈ Y , y = x} isempty} is the relational intersection.
• X − Y =df {x | x ∈ X , {y | y ∈ Y , y = x} isempty} is the relational difference; and
• X ÷ Y =df {x | (x ,y) ∈ X , Y ⊆ {y ′ |(x ′,y ′) ∈ X , x ′ = x}}, where Y ⊆ Y ′ =df Y − Y ′ isempty,
is the relational division.

Example 2.2. NRC can also express nested relational operations [21].

• unnest R =df {(x ,y)| (X ,y) ∈ R,x ∈ X } unnests the nested relation R; and
• nest R =df {({x | (x ,y) ∈ R,y = v},v) | (u,v) ∈ R} creates a nested version of a relation R,
which groups values in the first column of R by values in the second column of R.

Let NRC1 denote the fragment of NRC where expressions are restricted to flat relation types.

That is, in NRC1, every (sub)expression e(x1, ..., xn) : s where xi : si for 1 ≤ i ≤ n, the types s , s1,
..., sn are all flat relations. It is known that NRC enjoys the conservative extension property [23];

thus, NRC(≤) and NRC1(≤) express the same functions on flat relations, and are equivalent to

flat relational algebra or first-order logic with ordering FO(≤).

Proposition 2.3. NRC(≤), NRC1(≤), and FO(≤) have the same extensional expressive power
on flat relations.

An expression e(®x) in NRC can always be turned into an expression e ′(®y, ®x) such that no

constants or objects appear in it. This can be obtained by introducing fresh free variables ®y and

replacing each object Ci in e(®x) by the variable yi ; then e ′[®C/®y](®x) = e(®x). So, for simplicity, and

without loss of generality, only constant-free expressions are considered when results are stated

and proved in this paper.

2.2 Operational semantics
In order to discuss intensional expressive power, i.e. what algorithms are expressible, it is necessary

to know how an expression of NRC is executed. This is specified in Figure 2 as a call-by-value

operational semantics. A call-by-value operational semantics is widely adopted in programming

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

6 Limsoon Wong

Γ,C ⇓ Γ,C

Γ0, e1 ⇓ Γ1,C1 . . . Γn−1, en ⇓ Γn ,Cn
Γ0, (e1, . . . , en) ⇓ Γn , (C1, . . . ,Cn)

Γ, e ⇓ Γ′, (C1, . . . ,Cn)

Γ, e .πi ⇓ Γ′,Ci
1 ≤ i ≤ n

Γ, {} ⇓ Γ, {}
Γ, e ⇓ Γ′,C

Γ, {e} ⇓ Γ′, {C}
Γ, e1 ⇓ Γ1,C1 Γ1, e2 ⇓ Γ2,C2

Γ, e1 ∪ e2 ⇓ Γ2,C1 ⊕ C2

Γ, e2 ⇓ Γ0, {C1, . . . ,Cn}

Γ0, e1[C1/x] ⇓ Γ1,C
′
1

· · · Γn−1, e1[Cn/x] ⇓ Γn ,C
′
n

Γ,
⋃
{e1 | x ∈ e2} ⇓ Γn ,C

′
1
⊕ · · · ⊕ C ′

n

Γ, true ⇓ Γ, true Γ, false ⇓ Γ, false

Γ, e1 ⇓ Γ1, true Γ1, e2 ⇓ Γ2,C
Γ, if e1 then e2 else e3 ⇓ Γ2,C

Γ, e1 ⇓ Γ1, false Γ1, e3 ⇓ Γ3,C
Γ, if e1 then e2 else e3 ⇓ Γ3,C

Γ, e1 ⇓ Γ1,C1 Γ1, e2 ⇓ Γ2,C2

Γ, e1 < e2 ⇓ Γ2, true
C1 < C2

Γ, e1 ⇓ Γ1,C1 Γ1, e2 ⇓ Γ2,C2

Γ, e1 < e2 ⇓ Γ2, false
C1 ≮ C2

Γ, e1 ⇓ Γ1,C1 Γ1, e2 ⇓ Γ2,C2

Γ, e1 = e2 ⇓ Γ2, true
C1 = C2

Γ, e1 ⇓ Γ1,C1 Γ1, e2 ⇓ Γ2,C2

Γ, e1 = e2 ⇓ Γ2, false
C1 , C2

Γ, e ⇓ Γ′,C
Γ, e isempty ⇓ Γ′, true

C = {}
Γ, e ⇓ Γ′,C

Γ, e isempty ⇓ Γ′, false
C , {}

Fig. 2. A call-by-value operational semantics of NRC.

languages and has also been used for several variations of NRC in earlier works [19, 20, 25] on

intensional expressive power.

In Figure 2, the notation Γ, e ⇓ Γ′,C means the closed expression e is evaluated in the environment

Γ to produce the object C and the updated environment Γ′. The operational semantics specified in

the figure is free from side effects and thus does not update the environment; i.e. Γ, e ⇓ Γ′,C implies

Γ = Γ′. Hence, the definition of an environment is postponed to a later section, when expression

constructs which update the environment are introduced.

The unique evaluation tree of e in the environment Γ is denoted using the notation Γ, e ⇓. The
“step” complexity step(Γ, e ⇓) of an evaluation is defined as the time complexity of the largest node

in the evaluation tree—viz., step(Γ, e ⇓) = max{time(Γ′, e ′ ⇓ Γ′′,C ′) | the node Γ′, e ′ ⇓ Γ′′,C ′
occurs

in the evaluation tree of Γ, e ⇓}. The time complexity time(Γ′, e ′ ⇓ Γ′′,C ′) of a node is the number of

branches that the node has. E.g., in Figure 2, time(Γ,
⋃
{e1 | x ∈ e2} ⇓ Γn ,C

′
1
⊕ · · · ⊕C ′

n) = n + 1. On
the other hand, the time complexity time(Γ, e ⇓) of an evaluation is the sum of the time complexity

of all the nodes in the tree. When Γ is obvious from the context, it is omitted from the notations

above, viz. e ⇓ C , step(e ⇓), time(e ⇓ C), and time(e ⇓).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 7

The syntax for objectsC is as follows. A constant c of a base type b is an object of type b. A tuple

(C1, ..., Cn) is an object of type s1 × · · · × sn if each Ci is an object of type si . An “enumeration list”,

elist for short, {C1, ..., Cn} is an object of type {s} if each Ci is an object of type s .
An elist {C1, .., Cn} can be thought of as a particular way of enumerating the elements of

the set that it represents, viz. C1 followed by C2, followed by C3, and so on. There are as many

distinct elists that represent the same set as there are distinct ways to enumerate elements of

that set, corresponding to different ordering and multiplicity of appearances of its elements in the

enumeration.

The notations C = C ′
and C == C ′

are used to refer to two notions of equality involving elists.

The notation C = C ′
means C are C ′

are the same objects when all the elists contained in them

(and objects therein) are interpreted as sets: thus, c = c ′ iff c and c ′ are the same constant of a base

type; (C1, ..., Cn) = (C ′
1
, ..., C ′

n) iff Ci = C
′
i for 1 ≤ i ≤ n; and {C1, ..., Cn} = {C ′

1
, ..., C ′

m} iff for each

1 ≤ i ≤ n, there is 1 ≤ j ≤ m such thatCi = C
′
j , and for each 1 ≤ j ≤ m, there is 1 ≤ i ≤ n such that

Ci = C
′
j . The notation C == C

′
means C and C ′

are the same objects when all the elists contained

in them (and objects therein) are interpreted as lists: thus, c == c ′ iff c and c ′ are the same constant

of a base type; (C1, ..., Cn) == (C ′
1
, ..., C ′

n) iff Ci == Ci ′ for 1 ≤ i ≤ n; and {C1, ..., Cn} == {C ′
1
, ...,

C ′
m} iff n =m, and Ci == C

′
i for 1 ≤ i ≤ n.

In Figure 2, a constructor C ⊕ C ′
is used to produce the concatenation of two elists in constant

time; i.e. given C == {C1, ..., Cn} and C
′ == {C ′

1
, ..., C ′

m}, C ⊕ C ′ == {C1, ..., Cn , C
′
1
, ..., C ′

m}. Also,

⊕ is always used in a right-associative manner; e.g., C ⊕ C ′ ⊕ C ′′
means C ⊕ (C ′ ⊕ C ′′). Note that

while it is not a common practice to use a constant-time concatenation constructor to represent

lists, it has been used in e.g. the influential Kleisli Query System [24] which is based on NRC.

Linear orderings < are available on all base types and are lifted to all types, as defined earlier.

With this, the subset of objects in “canonical form” can be defined as follows. A constant c of any
base type b is canonical. A tuple (C1, ...,Cn) is canonical if eachCi is canonical. An elist {C1, ...,Cn}

is canonical if for every 1 ≤ i, j ≤ n, it is the case thatCi is canonical,Cj is canonical, andCi < Cj iff

i < j; a canonical elist is thus duplicate-free and is sorted according to <. The notation canonize(C)
denotes the unique canonical form of the objectC . Clearly, forC == {C1, ...,Cn} representing a flat

relation, canonize(C) can be produced in O(n log(n)) time.

The call-by-value operational semantics in Figure 2 does not perform canonization. This is

because canonization is not needed to guarantee the soundness of an evaluation in NRC(≤).

Proposition 2.4 (Soundness). Suppose e(®x) : s is an expression inNRC, ®C are objects having the
same types as ®x , and e[®C/®x] ⇓ C ′. Then e[®C/®x] = C ′.

The size of an object C can be defined in any reasonable way. One way is to define size(C) as
the number of symbols used to write C out. Another way, when C is an elist, is to defined size(C)
as |C |, the length of the elist. Both notions of size can be generalized to size(®C) =

∑
i size(Ci). The

latter notion of input size is used by default. Then the time complexity of an expression e(®x) can
be defined in the usual way based on input size; i.e. time(e(®x)) = Θ(д(n)) where n denotes input

size and д is a function of n. It is easily shown that all queries in NRC have polynomial time

complexity [4].

Proposition 2.5 (Polynomiality). Let e(®x) : s be an expression in NRC(≤). Then there is a
number k such that time(e(®x)) = Θ(nk) where n denotes input size. In particular, if time(e(®x)) is
sub-quadratic, then it must be either linear or constant time; and if it is sub-linear, then it must be
constant time. Furthermore, this polynomiality property is retained when NRC is augmented by any
additional constructs that have polynomial time complexity.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

8 Limsoon Wong

⋃
{e | x ∈ {}} 7→ {}⋃

{e1 | x ∈ {e2}} 7→ e1[e2/x]⋃
{e | x ∈ (e1 ∪ e2)} 7→

⋃
{e | x ∈ e1} ∪

⋃
{e | x ∈ e2}⋃

{e1 | x ∈
⋃
{e2 | y ∈ e3}} 7→

⋃
{
⋃
{e1 | x ∈ e2} | y ∈ e3}⋃

{e | x ∈ (if e1 then e2 else e3)} 7→ if e1 then
⋃
{e | x ∈ e2} else

⋃
{e | x ∈ e3}

(e1, . . . , e2).πi 7→ ei
(if e1 then e2 else e3).πi 7→ if e1 then e2.πi else e3.πi

if true then e2 else e3 7→ e2
if false then e2 else e3 7→ e3

Fig. 3. A system of rewrite rules for NRC.

2.3 Rewrite rules
Figure 3 shows a system of rewrite rules for simplifying NRC expressions. These rules have been

used in many previous works on NRC [15, 16, 23, 25]. These rules are easily shown to be sound,

and do not increase step complexity, and are strongly normalizing [23].

Although this system of rewrite rules does not increase step complexity, it can increase time com-

plexity. E.g., rewriting

⋃
{
⋃
{{(x , z)} | z ∈ Z } | x ∈ {

⋃
{{y.π1} | y ∈ Y }}} to

⋃
{{(

⋃
{{y.π1} | y ∈

Y }, z)} |z ∈ Z } by the second rule in Figure 3, changes the time complexity from O(|Y | + |Z |) to
O(|Z | ∗ |Y |).

Fortunately, the second rule in Figure 3 is the only rule that misbehaves this way. For convenience

of reference, the system of rewrite rules in Figure 3 is called the unrestricted system. And when the

second rule is excluded, it is called the restricted system.

Proposition 2.6 (Normal form). Let e(®X) : s be an expression in NRC(≤), and ®C be objects
having the same types as ®X .

(1) e[®C/ ®X] == e ′[®C/ ®X] if e 7→ e ′.
(2) step(e[®C/ ®X] ⇓) ≥ step(e ′[®C/ ®X] ⇓) if e 7→ e ′.
(3) time(e[®C/ ®X] ⇓) ≥ time(e ′[®C/ ®X] ⇓) if e 7→ e ′ under the restricted system of rewrite rules.
(4) The (un)restricted system of rewrite rules is strongly normalizing.
(5) The unrestricted system of rewrite rules induces a normal form, wherein every subexpression of

the form
⋃
{e1(y, ®x , ®X) | y ∈ e2(®x , ®X)}, e2(®x , ®X) must be one of the variables in ®X .

(6) The restricted system of rewrite rules induces a normal form, wherein every subexpression of the
form

⋃
{e1(y, ®x , ®X) | y ∈ e2(®x , ®X)}, e2(®x , ®X) must be one of the variables in ®X or e2(®x , ®X) has

the form {e3(®x , ®X)}.

3 A LIMITED-MIXING LEMMA
An analysis of the normal form induced by the restricted system of rewrite rules yields a useful

limited-mixing lemma on NRC1(≤). The lemma is proved below, after some relevant definitions

are given.

A level-0 atom of an object C is a constant c which has at least one occurrence in C that is not

inside any elist inC . A level-1 atom of an objectC is a constant c which has at least one occurrence

inC that is inside an elist which is not nested inside another elist inC . All other constants appearing
in an objectC are higher level atoms. The notations atom0(C), atom1(C), and atom≤1(C) respectively
denote the set of level-0 atoms of C , the set of level-1 atoms of C , and their union. The level-0

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 9

molecules of an object C are the elists in C that are not nested inside other elists. The notation

molecule0(C) denotes the set of level-0 molecules ofC . E.g., supposeC = (c1, c2, {(c3, c4, {(c5, c6)})});
then atom0(C) = {c1, c2}, atom1(C) = {c3, c4}, atom≤1(C) = {c1, c2, c3, c4}, {c5, c6} are higher-level
atoms, and molecule0(C) = {{(c3, c4, {(c5, c6)})}}.

The level-0 Gaifman graph of an object C is defined as an undirected graph gaifman0(C) whose
nodes are the level-0 atoms of C , and edges are all the pairs of level-0 atoms of C . The level-1

Gaifman graph of an object C is defined as an undirected graph gaifman1(C) whose nodes are the
level-1 atoms of C , and the edges are defined as follow: If C == {C1, ..., Cn}, the edges are pairs

(x ,y) such that x and y are in the same atom0(Ci) for some 1 ≤ i ≤ n; ifC == (C1, ...,Cn), the edges

are pairs (x ,y) ∈ gaifman1(Ci) for some 1 ≤ i ≤ n; and there are no other edges. The Gaifman

graph [8] of an object C is defined as gaifman(C) = gaifman0(C) ∪ gaifman1(C).
It is shown below, by induction on the structure of NRC1(≤) expressions, that they manipulate

their inputs in highly restricted local manners. In particular, expressions which have contant time

complexity are unable to mix level-0 and level-1 atoms. And expressions which have linear time

complexity are able to mix level-0 atoms with level-0 and level-1 atoms, but are unable to mix

level-1 atoms with themselves or with higher-level atoms.

Lemma 3.1 (Limited mixing). Let e(®X) : s be an expression in NRC1(≤). Suppose objects ®C have
the same types as ®X , and e[®C/ ®X] ⇓ C ′.

(1) If e(®X) has constant time complexity, then
(i) atom0(C ′) ⊆ atom0(®C),
(ii) atom1(C ′) ⊆ atom≤1(®C),
(iii) gaifman(C ′) ⊆ gaifman(®C),
(iv) for each U ∈ molecule0(C ′), there are V0, V1, ..., Vm such that atom1(V0) ⊆ atom0(®C),
Vj ∈ molecule0(®C) for each 1 ≤ j ≤ m, andU = V0 ∪V1 ∪ · · · ∪Vm .

(2) If e(®X) has linear time complexity, then
(i) atom0(C ′) ⊆ atom0(®C),
(ii) atom1(C ′) ⊆ atom≤1(®C), and
(iii) for each (u,v) ∈ gaifman(C ′), either (u,v) ∈ gaifman(®C), or u ∈ atom0(®C) and v ∈

atom1(®C), or u ∈ atom1(®C) and v ∈ atom0(®C).

Proof. Part 1 of the lemma is straightforward; its proof is omitted. For Part 2, by Proposition 2.6,

e(®X) is be assumed to be in the normal form induced by the restricted system of rewrite rules. The

proof proceeds by structural induction on e(®X).

This first interesting case is when e(®X) has the form
⋃
{e1(x , ®X) | x ∈ X0}, where X0 is one of the

free variables in ®X , and has linear time complexity. Then time(e1(x , ®X)) must have constant time

complexity; otherwise, the whole expression has quadratic time complexity. Let ®C have the types

of ®X and let C0 in
®C correspond to X0. Suppose Cx ∈ C0 and e1[Cx/x , ®C/ ®X] ⇓ C ′

x . As C
′
x has set

type, atom0(C ′
x) = {} ⊆ atom0(®C). This proves Part 2(i). Since Cx ∈ C0 and C0 is in

®C , atom0(Cx) ∈

atom1(®C). Also, as this lemma concernsNRC1,Cx must have type b × · · · ×b; thus, atom1(Cx) = {}.

So, by the induction hypothesis of Part 2, atom1(C ′
x) ⊆ atom≤1(Cx , ®C) = atom≤1(®C). This proves

Part 2(ii). As e1(x , ®X) has constant time complexity, and Cx has type b × · · · × b, by the induction

hypothesis of Part 1, we get gaifman(C ′
x) ⊆ gaifman(Cx , ®C) = gaifman0(Cx , ®C) ∪ gaifman1(®C).

Suppose (u,v) ∈ gaifman(C ′
x). If u ∈ atom0(Cx) and v ∈ atom0(Cx), (u,v) ∈ gaifman1(®C) ⊆

gaifman(®C). If u ∈ atom0(Cx) and v < atom0(Cx), u ∈ atom1(C0) ⊆ atom1(®C) and v ∈ atom0(®C). If

u < atom0(Cx) and v ∈ atom0(Cx), v ∈ atom1(C0) ⊆ atom1(®C) and u ∈ atom0(®C). If u < atom0(Cx)

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

10 Limsoon Wong

andv < atom0(Cx), then bothu andv are in atom0(®C), and thus (u,v) ∈ gaifman0(®C) ⊆ gaifman(®C).
This proves Part 2(iii). This finishes the case when e(®X) has the form

⋃
{e1(x , ®X) | x ∈ X0},

The second interesting case is when e(®X) has the form
⋃
{e1(x , ®X) | x ∈ {e2(®X)}}. Let ®C have

the types of ®X and let e2[®C/ ®X] ⇓ C ′′
. By the induction hypothesis of either Part 1 or 2 (it does not

matter which), we get atom0(C ′′) ⊆ atom0(®C); thus, atom0(C ′′, ®C) = atom0(®C). Since {e2(®X)} has flat

relation type, e2(®X)must have a type of the formb×· · ·×b. This means atom1(C ′′) = {} ⊆ atom1(®C);

thus, atom1(C ′′, ®C) = atom1(®C). Crucially, atom0(C ′′) ⊆ atom0(®C) and atom1(C ′′) = {} implies

gaifman(C ′′, ®C) = gaifman(®C). As C ′′
has no elist, molecule0(C ′′, ®C) = molecule0(®C). Then both

Part 1 and 2 of the lemma follows immediately for this case.

The other cases are straightfoward and are omitted. This completes the proof of this lemma. �

4 INTENSIONAL EXPRESSIVENESS GAP
As mentioned earlier, an intensional expressiveness gap of comprehension syntax relative to

relational database systems appears to manifest in joins of low selectivity. And judging by Exam-

ple 2.1, it also potentially manifests in relational intersection and relational difference, as these

two operations have O(n logn) time complexity in a relational database system whereas their

comprehension-syntax equivalent in Example 2.1 is quadratic. The other relational query oper-

ations (project, select, and union), as well as joins of high selectivity are succinctly expressible

in NRC1(≤) with comparable time complexity when there are no indices available on the input

relations; cf. Example 2.1. The relational division is ignored here because it is not directly supported

by typical relational database systems; i.e., when it is needed in a relational database system, it is

expressed using the other operators, usually at quadratic space and time complexity [12].

This intensional expressiveness gap is illustrated and confirmed here using two example queries

on objects in canonical form. The first query, head(x ,X), produces the first element in an input

canonical elistX , assuming this first element has the form (x ,x ′) andx does not appear in subsequent
elements of X . The second query, zip(X ,Y), produces an elist that pairs the ith elements in two

input canonical elists X and Y of equal length, assuming the ith element of X has the form (oi ,x
′
i)

and that in Y has the form (oi ,y
′
i) and that each oi occurs only once in X and once in Y . These

two queries are chosen because head can be straightforwardly implemented in constant time

in any programming language, while zip is a very low-selectivity join which can be answered

efficiently—i.e. with linear or near-linear time complexity—in relational database systems.

The expression head ′(x ,X) =df {(y,y ′) | (y,y ′) ∈ X ,y = x} in NRC1(≤) defines the same

function as head on any input (x ,X)meeting the requirement of head. However, time(head ′(x ,X)) =

Θ(|X |); i.e., it has linear time complexity.

The expression zip′(X ,Y) =df {(x ,y) | (u,x) ∈ X , (v , y) ∈ Y ,u = v} in NRC1(≤) defines the

same function as zip on any input (X ,Y)meeting the requirement of zip. However, time(zip′(X ,Y)) =
Θ(|X | ∗ |Y |); i.e., it has quadratic time complexity.

In fact, as shown below, every expression in NRC1(≤) that implements head has at least linear

time complexity; and every expression in NRC1(≤) that implements zip has at least quadratic

time complexity. In other words, the intensional expressiveness gap of NRC1(≤), and thus of

comprehension syntax, is real.

Proposition 4.1. Let head(x ,X) : {b1×b2} be an expression inNRC1(≤). Suppose for every object
c of type b1 and non-empty canonical objectC of type {b1×b2} whose first element is (c, c0), and c does
not appear in subsequent elements of C , head[c/x ,C/X] ⇓ {(c, c0)}. Then time(head[c/x ,C/X] ⇓) is
at least |C |. That is, time(head(x ,X)) = Ω(|X |).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 11

Proof. For a contradiction, suppose head(x ,X) has sublinear time complexity. Then Propo-

sition 2.5 implies head(x ,X) has constant time complexity. Let head[c/x , C/X] ⇓ C ′
where

C ′ = {(c, c0)}. As C
′
has type {b1 × b2}, molecule0(C ′) = {C ′}. Similarly, molecule0(c,C) = {C}.

By Part 1 of Lemma 3.1, either C ⊆ C ′
or atom1(C ′) ⊆ atom0(C). However, C * C ′ = {(c, c0)} in

general and atom1(C ′) = {c, c0} * atom0(c,C) = {c}. This contradiction implies that head(x ,X)

has at least linear time complexity. �

Proposition 4.2. Let zip(X ,Y) : {b1 × b2} be an expression in NRC1(≤) where X is a variable of
type {b3 × b1}, Y is a variable of type {b3 × b2}, and b1, b2, and b3 are distinct base types. Suppose for
every canonical objectsU == {(o1,u1), ..., (on ,un)} of type {b3×b1} andV == {(o1,v1), ..., (on ,vn)} of
type {b3×b2}, zip[U /X ,V /Y] ⇓ C ′ whereC ′ == {(u1,v1), ..., (un ,vn)}. Then time(zip[U /X ,V /Y] ⇓)
is at least |U | ∗ |V |. Thus, time(zip(X ,Y)) = Ω(|U | ∗ |Y |).

Proof. Suppose for a contradiction that zip(X ,Y) has subquadratic time complexity. Then

Proposition 2.5 implies zip(X ,Y) has either constant or linear time complexity.

Assume zip(X ,Y) has constant time complexity and zip[U /X ,V /Y] ⇓ C ′
where C ′ == {(u1,v1),

..., (un ,vn)}. Clearly, molecule0(C ′) = {C ′} and molecule0(U ,V) = {U ,V }. Then, by Part 1 of

Lemma 3.1, either U ⊆ C ′
, V ⊆ C ′

, or atom1(C ′) ⊆ atom0(U ,V) = {}. Clearly, all three options are

impossible. Thus zip(X ,Y) cannot have constant time complexity.

Suppose instead zip(X ,Y) has linear time complexity. Then gaifman(C ′) = C ′ = {(u1,v1), ...,
(un ,vn)}. However, for 1 ≤ i ≤ n, (ui ,vi) ∈ gaifman(C ′) < gaifman(U ,V) = U ∪ V . Then, by
Part 2 of Lemma 3.1, either ui ∈ atom0(U ,V) or vi ∈ atom0(U ,V). However, as U and V are both

elists, atom0(U ,V) = {} and thus contains neither ui norvi . Thus zip(X ,Y) cannot have linear time

complexity. Therefore, it has at least quadratic time complexity. �

5 NON-SOLUTIONS
As NRC1(≤) is unable to express some relational queries efficiently, it is pertinent to augment

it with new constructs to enable new algorithms for the sake of practicality. It is also pertinent

to investigate and to precisely characterize its intensional expressiveness gap. For both of these

purposes, it is worth considering functions in typical programming language libraries as candidates.

Four functions which are commonly found in the collection-type libraries of modern programming

languages stand out: takewhile, dropwhile, fold, and zip.
The function takewhile(p)(X) iterates on the listX as long as the predicate p is true on the current

element in X , returning this element and moves on to the next element; the iteration stops as soon

as p becomes false. The function dropwhile(p)(X) iterates on the list X as long as the predicate

p is true on the current element in X , dropping this element and moves on to the next element;

the iteration stops as soon as p becomes false, returning the remaining elements of X . The time

complexity of takewhile and dropwhile thus can be bounded by a constant under the situation

that p is true for a small initial segment of X . This stopping-mid-way feature makes takewhile
and dropwhile potential candidates for addressing the intensional expressiveness gap of NRC1(≤),

as the sole iteration construct

⋃
{e1 | x ∈ e2} of NRC1(≤) must access every elements of e2 and

cannot stop mid way.

The function fold(f ,x0)(X) corresponds to a primitive recursive function on a list. It is called

structural recursion by some in our community [4]. It iterates on the elist X , applying the function

f at each step to the current element and an accumulator (which is initialized to x0), and returns the
final value of the accumulator. This function has high extensional expressive power, as it can express

many queries—e.g., transitive closure [4, 20]—which are inexpressible in NRC(≤). Moreover, it

can express some of these queries efficiently; e.g. NRC(fold) can express transitive closure with

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

12 Limsoon Wong

Additions from popular function libraries

e1 : {s} e2 : B
takewhile(xs ∈ e1, e2) : {s}

e1 : {s} e2 : B
dropwhile(xs ∈ e1, e2) : {s}

e1 : s1 e2 : {s2} e3 : s
fold(xs1 := e1, y

s2 ∈ e2, e3) : s
e : {s}

sort(e) : {s}

Their operational semantics

Γ, e1 ⇓ Γ′, {C1, . . . ,Cj , . . . ,Cn}

Γ′, e2[C1/x] ⇓ Γ1, true
...

Γj−1, e2[Cj/x] ⇓ Γj , true
Γj , e2[Cj+1/x] ⇓ Γj+1, false

Γ, takewhile(x ∈ e1, e2) ⇓ Γj+1, {C1, . . . ,Cj }

Γ, e1 ⇓ Γ′, {C1, . . . ,Cn}

Γ′, e2[C1/x] ⇓ Γ1, true
...

Γn−1, e2[Cn/x] ⇓ Γn , true
Γ, takewhile(x ∈ e1, e2) ⇓ Γn , {C1, . . . ,Cn}

Γ, e1 ⇓ Γ′, {C1, . . . ,Cj , . . . ,Cn}

Γ′, e2[C1/x] ⇓ Γ1, true
...

Γj−1, e2[Cj/x] ⇓ Γj , true
Γj , e2[Cj+1/x] ⇓ Γj+1, false

Γ, dropwhile(x ∈ e1, e2) ⇓ Γj+1, {Cj+1, . . . ,Cn}

Γ, e1 ⇓ Γ′, {C1, . . . ,Cn}

Γ′, e2[C1/x] ⇓ Γ1, true
...

Γn−1, e2[Cn/x] ⇓ Γn , true
Γ, dropwhile(x ∈ e1, e2) ⇓ Γn , {}

Γ, e1 ⇓ Γ′,C ′
0

Γ′, e2 ⇓ Γ0, {C1, . . . ,Cn}

Γ0, e3[C
′
0
/x ,C1/y] ⇓ Γ1,C

′
1

...
Γn , e3[C

′
n−1/x ,Cn/y] ⇓ Γn ,C

′
n

Γ, fold(x := e1, y ∈ e2, e3) ⇓ Γn ,C
′
n

Γ, e ⇓ Γ′,C ′

Γ, sort(e) ⇓ Γ′,C
C == canonize(C ′)

Fig. 4. The syntax and operational semantics of takewhile, dropwhile, and fold.

quadratic time complexity [20], whereasNRC endowed instead with a powerset operator can only

express transitive closure at exponential time complexity [19, 25].

The function zip(X ,Y) iterates on X and Y in lock step, pairing elements in the two collections

strictly based on their positions, viz. the ith element of X with the ith element of Y . It is arguably
the most common, and quite often, the only function in the function libraries of programming

languages that performs synchronized iteration on two collections.

Unfortunately, as shown in subsections below, augmentingNRC1(≤)with any of these functions

does not escape the limited-mixing lemma.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 13

5.1 Adding takewhile and dropwhile
The constructs for takewhile and dropwhile, as well as their operational semantics, are provided

in Figure 4. Briefly, takewhile(x ∈ e1, e2) = {C1, ..., Ci } where p(x) = e2; e1 == {C1, ..., Ci , Ci+1,

..., Cn}; and p(C1), ..., p(Ci) are all true, and p(Ci+1) is false if Ci+1 exists. Whereas, dropwhile(x ∈

e1, e2) = {Ci+1, ..., Cn} where p(x) = e2; e1 == {C1, ..., Ci , Ci+1, ..., Cn}; and p(C1), ..., p(Ci) are

all true, and p(Ci+1) is false if Ci+1 exists. Note that the notation x ∈ e1 in takewhile(x ∈ e1, e2)
and dropwhile(x ∈ e1, e2) introduces a fresh variable x whose scope is the expression e2 in these

constructs; i.e. it is not a set membership test.

The definitions of takewhile and dropwhile require access to the elist representation of e1. Recall
that two distinct elists U == {U1, ..., Un} and V == {V1, ..., Vm} can represent the same set.

When U = V , it is possible that takewhile(x ∈ U , e2) , takewhile(x ∈ V , e2) and dropwhile(x ∈

U , e2) , dropwhile(x ∈ V , e2). E.g., suppose e2(U1) is true and e2(U2) is false, and U == {U1,U2}

and V == {U2,U1}; thenU = V but takewhile(x ∈ U , e2) == {U1} , takewhile(x ∈ V , e2) == {}.

To deal with such a situation, a restriction must be imposed on the use of takewhile and dropwhile
to ensure soundness. Specifically, the subexpression e1 in takewhile(x ∈ e1, e2) and dropwhile(x ∈

e1, e2) must evaluate to an elist in canonical form at runtime. Thus, an additional contruct sort(e)
is provided for explicit conversion of any object e to its canonical form when there is need to do so.

In practice, sort(X) has O(|X | log(|X |)) time complexity on flat relations. But in the operational

semantics, it is made to return the canonical form instantaneously; i.e., it has constant time complex-

ity according to the operational semantics. Making sort instantaneous is a matter of convenience.

The results in this paper are about lower bounds, which can only become worse if sort is not
instantaneous. Indeed, the results below show that NRC1(≤, takewhile, dropwhile, sort) retains
a form of the limited-mixing property, and thus still cannot express zip efficiently despite the

availability of instantaneous sorting.

Lemma 5.1 (Limited mixing). Let e(®X) : s be an expression in NRC1(takewhile, dropwhile, sort).
Suppose objects ®C have the same types as ®X , and e(®C/ ®X) ⇓ C ′.

(1) If e(®X) has constant time complexity, then there is a number k that depends only on e(®X) but
not on ®C , and a set A ⊆ atom≤1(®C) where |A| ≤ k , and
(i) atom0(C ′) ⊆ atom0(®C),
(ii) atom1(C ′) ⊆ atom≤1(®C),
(iii) for each (u,v) ∈ gaifman(®C ′), either (u,v) ∈ gaifman(®C), or u ∈ atom0(®C) and v ∈ A, or
v ∈ atom0(®C) and u ∈ A, or u ∈ A and v ∈ A.

(2) If e(®X) has linear time complexity, then there is a number k that depends only on e(®X) but not
on ®C , and a set A ⊆ atom≤1(®C) where |A| ≤ k , and
(i) atom0(C ′) ⊆ atom0(®C),
(ii) atom1(C ′) ⊆ atom≤1(®C), and
(iii) for each (u,v) ∈ gaifman(C ′), either (u,v) ∈ gaifman(®C), or u ∈ atom0(®C) and v ∈

atom1(®C), or u ∈ atom1(®C) and v ∈ atom0(®C), or u ∈ A and v ∈ atom1(®C), or v ∈ A and
u ∈ atom1(®C).

Proof. Without loss of generality, e(®X) is assumed to be in the normal form induced by the

restricted system of rewrite rules. The proof proceeds by induction based on an ordering ⊑ on the

structural complexity of expressions, defined as the smallest reflexive transitive relation having the

following properties: (i) e ′ ⊑ e if e ′ is a subexpression of e; (ii) e ′ ⊑ e if there is e ′′ ⊑ e and e ′ is
an expression syntactically identical to e ′′ after replacing a subexpression of e ′′ by a fresh variable

Y having the same type as the replaced subexpression.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

14 Limsoon Wong

The first interesting case is when e(®X) has the form takewhile(x ∈ e1(®X), e2(x , ®X)). Let e1[®C/ ®X] ⇓

C ′′
and takewhile(x ∈ e1[®C/ ®X], e2[®C/ ®X](x)) ⇓ C ′

. The induction hypotheses of Part 1 and 2 are

applicable to e1(®X). Thus,C ′′
has the properties of Part 1(i) to (iii) and Part 2(i) to (iii). By definition

of takewhile, C ′ ⊆ C ′′
. Thus, C ′

has the properties of Part 1(i) to (iii) and Part 2(i) to (iii). This

finishes the case when e(®X) has the form takewhile(x ∈ e1(®X), e2(x , ®X)).

The second interesting case is when e(®X) has the form
⋃
{e1(x , ®X) | x ∈ takewhile(y ∈ e2(®X),

e3(y, ®X))}. Let takewhile(y ∈ e2[®C/ ®X], e3[®C/ ®X](y)) ⇓ C ′′
and

⋃
{e1[®C/ ®X](x) | x ∈ Y [C ′′/Y]} ⇓ C ′

.

For Part 1, the induction hypothesis on the takewhile subexpression impliesC ′′
has the properties of

Part 1(i) to (iii): atom0(C ′′) ⊆ atom0(®C); atom1(C ′′) ⊆ atom≤1(®C); and for each (u,v) ∈ gaifman(C ′′),

either (u,v) ∈ gaifman(®C), or u ∈ atom0(®C) and v ∈ A′′
, or v ∈ atom0(®C) and u ∈ A′′

, or u ∈ A′′

and v ∈ A′′
, where A′′ ⊆ atom≤1(®C) and |A′′ | ≤ k . Here, k ′′

is a number that depends only on

takewhile(y ∈ e2(®X), e3(y, ®X))} and not on ®C .

Since

⋃
{e1(x , ®X) | x ∈ Y } ⊑ e(®X), the induction hypothesis is applicable to it. So, C ′

has the

properties of Part 1(i) to (iii): atom0(C ′) ⊆ atom0(C ′′, ®C) = atom0(®C); atom1(C ′) ⊆ atom≤1(C ′′, ®C)

= A′′ ∪ atom≤1(®C) = atom≤1(®C); and for each (u,v) ∈ gaifman(C ′), either (u,v) ∈ gaifman(C ′′, ®C),

or u ∈ atom0(C ′′, ®C) = atom0(®C) and v ∈ A′
, or v ∈ atom0(C ′′, ®C) = atom0(®C) and u ∈ A′

, or u ∈ A′

and v ∈ A′
, where A′ ⊆ atom≤1(C ′′, ®C) and |A′ | ≤ k ′

. Here, k ′
is a number that depends only on⋃

{e1(x , ®X) | x ∈ Y } and not on C ′′
and ®C .

Let A = A′ ∪ A′′
and k = k ′ + k ′′

. Then Part 1(i) to (iii) are trivially satisfied. This completes the

proof of Part 1 for the case when e(®C) has the form
⋃
{e1(x , ®X) | x ∈ takewhile(y ∈ e2(®X), e3(y, ®X))}.

For Part 2, the argument is similar to Part 1 and is omitted.

The two cases for dropwhile are similar to the cases for takewhile. The case for sort is trivial. The
other cases are similar to the proof of Lemma 3.1. All these cases are thus omitted. �

Corollary 5.2. Let zip(X ,Y) : {b1 × b2} be an expression in NRC1(takewhile, dropwhile, sort)
where X is a variable of type {b3 ×b1}, Y is a variable of type {b3 ×b2}, and b1, b2, and b3 are distinct
base types. Suppose for every canonical objects U == {(o1,u1), ..., (on ,un)} of type {b3 × b1} and
V == {(o1,v1), ..., (on ,vn)} of type {b3×b2}, zip[U /X ,V /Y] ⇓ C ′ whereC ′ == {(u1,v1), ..., (un ,vn)}.
Then time(zip[U /X , V /Y] ⇓) is at least |U | ∗ |V |.

Proof. Suppose zip(X ,Y) has constant or linear time complexity and zip[U /X ,V /Y] ⇓ C ′
where

C ′ == {(u1,v1), ..., (un ,vn)}. Since U and V are sets, atom0(U ,V) = {}. By Part 1 of Lemma 5.1,

for each (ui ,vi) ∈ C ′
, it is clear that (ui ,vi) < U . So either ui ∈ atom0(U ,V), or vi ∈ atom0(U ,V),

or ui ∈ A, or vi ∈ A. As atom0(U ,V) = {}, A has to contain every ui or vi . So, |A| = n cannot

be independent of (the size of) U and V . Hence, zip(X ,Y) cannot have constant or linear time

complexity in NRC1(takewhile, dropwhile, sort). Then, by Proposition 2.5, it must have at least

quadratic time complexity. �

Notice that Part 1 of Lemma 5.1 is weaker than Part 1 of Lemma 3.1. The latter says that for any

constant-time function of NRC1(≤), its output either does not contain any part of the input flat

relations or it must contain whole-copy of them. Whereas, a constant-time function of NRC1(≤

, takewhile, dropwhile, sort) can return a subset of an input flat relation. In particular, head(x ,X) =df
takewhile(y ∈ X ,x = y.π1) defines a head function which has constant time complexity on inputs

meeting the requirements for head specified earlier. So, takewhile and dropwhile partially address

the intensional expressiveness gap of comprehension syntax.

It is worth further remarking that, as a function, both takewhile and dropwhile are expressible in
NRC1(≤). I.e., they do not contribute to the extensional expressive power of NRC1(≤); rather,

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 15

they contribute strictly to the intensional expressive power ofNRC1(≤), albeit still falling short of

filling its intensional expressiveness gap.

Proposition 5.3. Every function expressible in NRC1(≤, takewhile, dropwhile, sort) is already
expressible inNRC1(≤). That is, the former is a conservative extension of the latter, even though more
algorithms are expressible using the former.

Proof. Suppose p(xs) : B and R : {s} is canonical. Let sentinels =df {y | y ∈ R, p(y) = false},
and first =df {y | y ∈ sentinels, {z | z ∈ sentinels, z < y} isempty}. Then, takewhile(x ∈ R, p(x)) =
if first isempty then R else {x | y ∈ first, x ∈ R, x < y}. And, dropwhile(x ∈ R,p(x)) = {x | y ∈ first,
x ∈ R, y ≤ x}. Therefore, takewhile and dropwhile are both definable as functions inNRC1(≤). �

A reader from the programming language community might question the lack of head and tail

expression constructs in theNRC variants considered so far. This is because they are quite useless

for the purpose of filling the intensional expressiveness gap of comprehension syntax. Let taken(X)

returns the first n elements of a set X in canonical form in constant time; e.g. take1(X) corresponds

to the “head” of a set. Let dropn(X) drops the first n elements of a setX in canonical form in constant

time; e.g. drop
1
(X) corresponds to the “tail” of a set. It is easy to see that an analog of Lemma 5.1

can be proved for NRC1(≤, taken , dropn , sort) by copying the proof of Lemma 5.1 more or less

word for word.

5.2 Adding fold
The construct for fold and its operational semantics are provided in Figure 4. Briefly, fold(x := e1,
y ∈ e2, e3) = f (. . . (f (f (C0,C1),C2), . . .),Cn), where f (x ,y) = e3, e1 = C0, and e2 == {C1, ..., Cn}.

Note that the notations x := e1 and y ∈ e2 in fold(x := e1, y ∈ e2, e3) introduce fresh variables x
and y, whose scope is the expression e3.

The definition of fold requires access to the elist representation of e2. To ensure soundness, as in

the case for takewhile and dropwhile, a restriction is imposed that e2 must evaluate to an elist in

canonical form. Again, this is facilitated by explicitly using sort to convert objects to their canonical
form when needed.

In contrast to takewhile and dropwhile, which form a conservative extension of NRC1(≤), fold
adds considerable extensional expressive power toNRC1(≤) [20]. Yet, in spite of it high extensional

expressive power, it does not address the intensional expressiveness gap.

Lemma 5.4 (Limited mixing). Let e(®X) : s be an expression inNRC1(≤, fold, sort). Suppose objects
®C have the same types as ®X , and e(®C/ ®X) ⇓ C ′.

(1) If e(®X) has constant time complexity, then
(i) atom0(C ′) ⊆ atom0(®C),
(ii) atom1(C ′) ⊆ atom≤1(®C),
(iii) gaifman(C ′) ⊆ gaifman(®C), and
(iv) for each U ∈ molecule0(C ′), there are V0, V1, ..., Vm such that atom1(V0) ⊆ atom0(®C),
Vj ∈ molecule0(®C) for each 1 ≤ j ≤ m, andU = V0 ∪V1 ∪ · · · ∪Vm .

(2) If e(®X) has linear time complexity, then there is a number k that depends only on e(®X) but not
on ®C , and a set A ⊆ atom≤1(®C) where |A| ≤ k , and
(i) atom0(C ′) ⊆ atom0(®C) ∪ A ,
(ii) atom1(C ′) ⊆ atom≤1(®C), and
(iii) for each (u,v) ∈ gaifman(C ′), either (u,v) ∈ gaifman(®C), or u ∈ atom0(®C) and v ∈

atom1(®C), or u ∈ atom1(®C) and v ∈ atom0(®C), or u ∈ A and v ∈ atom1(®C), or v ∈ A and
u ∈ atom1(®C).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

16 Limsoon Wong

Proof. Without loss of generality, e(®X) is assumed to be in the normal form induced by the

restricted system of rewrite rules. The proof proceeds by induction on the structural complexity of

expressions; i.e. the ordering ⊑ on expressions. As the proof is long, it is divided into subsections

for better readability.

The first case is when e(®X) has the form fold(x := e1(®X), y ∈ e2(®X), e3(x ,y, ®X)). For Part 1,
the entire expression is assumed to have constant time complexity. So, the induction hy-

pothesis of Part 1 is applicable to subexpressions e1(®X), e2(®X), and e3(x ,y, ®X). Suppose e1[®C/ ®X] ⇓ C ′
0
,

e2[®C/ ®X] ⇓ C ′′
whereC ′′ == {C1, ...,Cn} and n < h for some number h which depends only on e2(®X)

but not on ®C . Note that if h depends on ®C , the complexity of the whole fold expression can no longer

be constant time, rendering the case vacuously true. This also implies atom1(C ′′) ⊆ atom0(®C), and

atom0(Cj) ⊆ atom0(®C) for 1 ≤ j ≤ n; otherwise, there is a V ∈ molecule0(®C) such that V ⊆ C ′′
,

which implies n ≥ |V | and thus the whole fold expression cannot be constant time.

Now, let e3[C
′
0
/x ,C1/y, ®C/ ®X] ⇓ C ′

1
, ..., e3[C

′
n−1/x ,Cn/y, ®C/ ®X] ⇓ C ′

n . By the induction hypothesis

of Part 1 on e2[®C/ ®X], we know Part 1 holds on C ′′ == {C1, ..., Cn}. Also, each Cj ∈ C ′′
has type of

the formb×· · ·×b because we only have flat relations. Thus, for eachCj ∈ C ′′
, we have atom0(Cj) ⊆

atom0(®C), atom1(Cj) = {}, and gaifman(Cj) ⊆ gaifman(®C). By the induction hypothesis of Part 1 on

e1(®X), we know atom0(C ′
0
) ⊆ atom0(®C), atom1(C ′

0
) ⊆ atom≤1(®C), and gaifman(C ′

0
) ⊆ gaifman(®C).

This means atom0(C1,C
′
0
, ®C) ⊆ atom0(®C), atom1(C1,C

′
0
, ®C) ⊆ atom≤1(®C), and gaifman(C1,C

′
0
, ®C) ⊆

gaifman(®C). By the induction hypothesis of Part 1 on e3(x ,y, ®X), atom0(C ′
1
) ⊆ atom0(C1,C

′
0
, ®C) ⊆

atom0(®C), atom1(C ′
1
) ⊆ atom≤1(C1,C

′
0
, ®C) ⊆ atom≤1(®C), and gaifman(C ′

1
) ⊆ gaifman(C1,C

′
0
, ®C) ⊆

gaifman(®C). Now, by an induction on 1 ≤ j < n, we get atom0(C ′
j+1) ⊆ atom0(Cj+1, C

′
j ,
®C) ⊆

atom0(®C), atom1(C ′
j+1) ⊆ atom≤1(Cj+1,C

′
j ,

®C) ⊆ atom≤1(®C), and gaifman(C ′
j+1) ⊆ gaifman(Cj+1,

C ′
j ,
®C) ⊆ gaifman(®C). This settles Part 1(i)-(iii) for this case.

By the induction hypothesis of Part 1 on e2(®X), there areV0,0,V0,1, ...,V0,m0
such that atom1(V0,0) ⊆

atom0(®C), V0, j ∈ molecule0(®C) for 1 ≤ j ≤ m0, and C
′
0
= V0,0 ∪V0,1 ∪ · · · ∪V0,m . By the induction

hypothesis of Part 1 on e1(x ,y, ®X), there are V1,0, V1,1, ..., V1,m1
such that atom1(V1,0) ⊆ atom0(C1,

C ′
0
, ®C) ⊆ atom0(®C), V1, j ∈ molecule0(C ′

0
, ®C) for 1 ≤ j ≤ m0, and C

′
1
= V1,0 ∪V1,1 ∪ · · · ∪V1,m1

. Since

C ′
0
= V0,0 ∪V0,1 ∪ · · · ∪V0,m , if any ofV1, j isC

′
0
, we just replaceV1, j above withV0,1 ∪ · · · ∪V0,m and

V1,0 above with V1,0 ∪V0,0, which establishes Part 1(iv) for C ′
1
. Now, by an induction on 1 ≤ j < n,

we get Part 1(iv) on each C ′
j . This proves Part 1(iv) for this case.

For Part 2, the expression fold(x := e1(®X), y ∈ e2(®X), e3(x ,y, ®X)) is assumed to have linear
time complexity. There are two subcases. The first subcase is e2(®X) has linear time com-
plexity; but e2[®C/ ®X] ⇓ C ′′, C ′′ == {C1, ..., Cn} and n < h for some h which depends on e2(®X)

but not on ®C. Then Part 2 of the induction hypothesis is applicable to e1(®X), e2(®X), and e3(x ,y, ®X).

Suppose e1[®C/ ®X] ⇓ C ′
0
, e3[C

′
0
/x ,C1/y, ®C/ ®X] ⇓ C ′

1
, ..., e3[C

′
n−1/x ,Cn/y, ®C/ ®X] ⇓ C ′

n . Let k
′′
and A′′

denote the number k and the set A induced by Part 2 from e2[®C/ ®X]. Let k0 and A0 denote the

number k and the set A induced by Part 2 from e1[®C/ ®X]. Let kj and A
′
j denote the number k and

the set A induced by Part 2 from e3[Cj−1/x ,Cj/y, ®C/ ®X], and Aj = A′
j ∪ atom0(Cj), for 1 ≤ j ≤ n.

Note that an upperbound l on the number of level-0 atoms in Cj is determined by the type of Cj

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 17

(i.e. the type of y). Hence, we can set k = k ′′ + k0 + k1 + · · · + kn + n ∗ l as the k for Part 2 for the

whole expression, and A = A′′ ∪A0 ∪ · · · ∪An as the A for Part 2 for the whole expression.

By the induction hypothesis of Part 2(ii) on e1(®X), we get atom1(C ′
0
) ⊆ atom≤1(®C). And on e2(®X),

we get atom1(C ′′) ⊆ atom≤1(®C); this implies atom≤1(Cj) = atom0(Cj) ⊆ atom≤1(®C), for 1 ≤ j ≤

n. Finally, on e3(x ,y, ®X), we get atom1(C ′
j) ⊆ atom≤1(C ′

j−1,Cj , ®C) = atom≤1(C ′
j−1) ∪ atom≤1(Cj)

∪ atom≤1(®C) ⊆ atom≤1(®C). In particular, atom1(C ′
n) ⊆ atom≤1(®C), proving Part 2(ii) for the whole

expression.

By the induction hypothesis of Part 2(i) on e1(®X), we get atom0(C ′
0
) ⊆ atom0(®C) ∪A′

0
⊆ atom0(®C)

∪A. And on e2(®X), we get atom0(C ′′) = {} ⊆ atom0(®C) ∪A′′ ⊆ atom0(®C) ∪A. Finally, on e3(x ,y, ®X),

we get atom0(C ′
j) ⊆ atom0(C ′

j−1,Cj , ®C) = atom0(C ′
j−1) ∪ atom0(Cj) ∪ atom0(®C) ⊆ atom0(®C) ∪ A, for

1 ≤ j ≤ n. In particular, atom0(C ′
n) ⊆ atom0(®C) ∪ A, proving Part 2(i) for the whole expression.

By the induction hypothesis of Part 2(iii) on e1(®X), we get for each (u,v) ∈ gaifman(C ′
0
), either

(u,v) ∈ gaifman(®C), or u ∈ atom0(®C) and v ∈ atom1(®C), or u ∈ atom1(®C) and v ∈ atom0(®C), or u ∈

A′
0
⊆ A and v ∈ atom1(®C), or u ∈ atom1(®C) and v ∈ A′

0
⊆ A. And on e2(®X), we get for each (u,v) ∈

gaifman(C ′′), either Cj = (u,v) ∈ gaifman(®C), or u ∈ atom0(®C) and v ∈ atom1(®C), or u ∈ atom1(®C)

and v ∈ atom0(®C), or u ∈ A′′ ⊆ A and v ∈ atom1(®C), or u ∈ atom1(®C) and v ∈ A′′ ⊆ A. Finally,

on e3(x ,y, ®X), we get for each (u,v) ∈ gaifman(C ′
j), either (u,v) ∈ gaifman(C ′

j−1,Cj , ®C), or u ∈

atom0(C ′
j−1,Cj , ®C) and v ∈ atom1(C ′

j−1,Cj , ®C), or u ∈ atom1(C ′
j−1,Cj , ®C) and v ∈ atom0(C ′

j−1,Cj , ®C),

or u ∈ A′′ ⊆ A and v ∈ atom1(C ′
j−1,Cj , ®C), or u ∈ atom1(C ′

j−1,Cj , ®C) and v ∈ A′′ ⊆ A.

Note that atom1(C ′
j−1,Cj , ®C) = atom1(C ′

j−1) ∪ atom1(Cj) ∪ atom1(®C) = atom≤1(®C) = atom0(®C) ∪

atom1(®C), while atom0(C ′
j−1,Cj , ®C) = atom0(C ′

j−1) ∪ atom0(Cj) ∪ atom0(®C) ⊆ atom0(®C) ∪ A. Note

also thatu,v ∈ atom0(®C) implies (u,v) ∈ gaifman(®C). Therefore, after removing some redundancies,

we get for each (u,v) ∈ gaifman(C ′
j), either (u,v) ∈ gaifman(C ′

j−1,Cj , ®C), or u ∈ atom0(®C) and v ∈

atom1(®C), orv ∈ atom0(®C) andu ∈ atom1(®C), oru ∈ A andv ∈ atom1(®C), orv ∈ A andu ∈ atom1(®C).

Finally, an induction on j gets us for each (u,v) ∈ gaifman(C ′
j), either (u,v) ∈ gaifman(C ′

j−1,Cj , ®C),

or u ∈ atom0(®C) and v ∈ atom1(®C), or v ∈ atom0(®C) and u ∈ atom1(®C), or u ∈ A and v ∈ atom1(®C),

or v ∈ A and u ∈ atom1(®C). This proves Part 2(iii) for the whole expression, as well as settling the
subcase.

The second subcase, when fold(x := e1(®X), y ∈ e2(®X), e3(x ,y, ®X)) has linear time complex-
ity, is when e2(®X) has linear time complexity, e2[®C/ ®X] ⇓ C ′′, and C ′′ == {C1, ..., Cn} where
n depends on ®C. Then e3(x ,y, ®X) has constant time complexity; otherwise, the whole expression

gets quadratic time complexity.

Let k ′′
and A′′

denote the number k and the set A induced by Part 2 from e2[®C/ ®X] ⇓ C ′′
. Let

k0 and A0 denote the number k and the set A induced by Part 2 from e1[®C/ ®X] ⇓ C ′
0
. Furthermore,

without loss of generality, let the type of e3(x ,y, ®X) be s1 × · · · × sh , where si is either a base type
b or a set type. Let k ′

be the number of si that is a base type. Then we can set k = k ′ + k ′′ + k0
as the k . Let A′

be a set of up to k ′
level-0 or level-1 atoms of ®C to be chosen later. Then we set

A = A′ ∪A′′ ∪A0 as the A for Part 2 of the whole expression.

The number of level-0 atoms inC ′
n is actually upperbounded by the type of e3(x ,y, ®X); specifically,

this upperbound is k ′
. Thus, by setting A′

to the level-0 atoms in C ′
n , we get atom

0(C ′
n) = A′ ⊆ A

⊆ atom0(®C) ∪ A, trivially proving Part 2(i) for the whole expression.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

18 Limsoon Wong

The induction hypothesis of Part 2(ii) on e1(®X) gives atom1(C ′
0
) ⊆ atom≤1(®C). The induc-

tion hypothesis of Part 2(ii) on e2(®X) gives atom1(C ′′) ⊆ atom≤1(®C), implying atom0(Cj) ⊆

atom≤1(®C). Since e3(x ,y, ®X) has constant time complexity, the induction hypothesis of Part 2(ii)

gives atom1(C ′
j) ⊆ atom≤1(C ′

j−1,Cj , ®C) = atom≤1(C ′
j−1) ∪ atom≤Cj ∪ atom≤1(®C) = atom≤1(®C), for

1 ≤ j ≤ n. In particular, atom1(C ′
n) ⊆ atom≤1(®C), proving Part 2(ii) for the whole expression.

Since e3(x ,y, ®X) has constant time complexity, the induction hypothesis of Part 1(iii) and (iv) is

applicable. This gives us gaifman(C ′
j) ⊆ gaifman(C ′

j−1,Cj , ®C), and for eachU ∈ molecule0(C ′
j), there

are Vj,0, Vj,1, ..., Vj,mj such that atom1(V0) ⊆ atom0(C ′
j−1,Cj , ®C), Vj,i ∈ molecule0(C ′

j−1,Cj , ®C) for

1 ≤ i ≤ mj , andU = Vj,0 ∪Vj,1 ∪ · · · ∪Vj,mj . Note thatmolecule0(C ′
j−1,Cj , ®C) = molecule0(C ′

j−1) ∪

molecule0(®C) = molecule0(C ′
0
) ∪ molecule0(®C). Now, suppose U ∈ molecule0(C ′

n), and U = Vn,0,

Vn,1, ..., Vn,mn such that atom1(V0) ⊆ atom0(C ′
n−1,Cn , ®C) = atom0(C ′

n−1) ∪ atom0(Cn) ∪ atom0(®C)

= atom0(C ′
0
) ∪ atom1(C ′′) ∪ atom0(®C) = A0 ∪ A′′ ∪ atom0(®C), Vn,i ∈ molecule0(C ′

n−1,Cn , ®C)

= molecule0(C ′
0
) ∪ molecule0(®C), for 1 ≤ i ≤ mn .

Next, suppose (u,v) ∈ gaifman(C ′
n) = gaifman0(C ′

n) ∪ gaifman1(C ′
n). Since atom0(C ′

n) =

A ∪ atom0(®C), we have (u,v) ∈ gaifman0(C ′
n) implies either (u,v) ∈ gaifman0(®C), or u ∈ A and

v ∈ atom0(®C), or v ∈ A and u ∈ atom0(®C), or u, v ∈ A. Since A = A′ ∪ A′′ ∪ A0 ⊆ atom≤1(®C), we

get (u,v) ∈ gaifman0(C ′
n) implies either (u,v) ∈ gaifman0(®C), or u ∈ atom0(®C) and v ∈ atom1(®C),

or v ∈ atom0(®C) and u ∈ atom1(®C), or u ∈ A and v ∈ atom1(®C), or v ∈ A and u ∈ atom1(®C).
This proves Part 2(iii) when (u,v) ∈ gaifman0(C ′

n). On the other hand, (u,v) ∈ gaifman1(C ′
n)

implies (u,v) ∈ gaifman1(C ′
n−1,Cn−1, ®C) = gaifman1(C ′

n−1) ∪ gaifman1(Cn−1) ∪ gaifman1(®C) ⊆
gaifman1(C ′

0
) ∪ gaifman1(C1) ∪ · · ·∪ gaifman1(Cn−1) ∪ gaifman1(®C)= gaifman1(C ′

0
) ∪ gaifman1(®C).

Now Part 2(iii) for (u,v) ∈ gaifman1(C ′
n) follows immediately by the induction hypothesis of

Part 2(iii) on e1(®X). This completes the proof of Part 2 for the second subcase when the fold
expression has linear time complexity.

The next case is when e(®X) has the form
⋃
{e1(x , ®X) | x ∈ fold(x2 := e2(®X), y ∈ e3(®X),

e4(x ,y, ®X))}. Suppose fold(x2 := e2[®C/ ®X], y ∈ e3[®C/vecX], e4[®C/ ®X](x ,y) ⇓ C ′′
, and

⋃
{e1[®C/ ®X](x)

x ∈ Y [C ′′/Y]} ⇓ C ′
. For Part 1, suppose the expression

⋃
{e1(x , ®X) x ∈ Y } has constant time

complexity. By the induction hypothesis of Part 1 on the fold subexpression, we get atom0(C ′′) ⊆

atom0(®C), atom1(C ′′) ⊆ atom≤1(®C), gaifman(C ′′) ⊆ gaifman(®C), and for each U ∈ molecule0(C ′′),

there are V0, V1, ..., Vm such that atom1(V0) ⊆ atom0(®C), Vj ∈ molecule0(®C) for 1 ≤ j ≤ m, and

U = V0 ∪ V1 ∪ · · · ∪ Vm . Then, by the induction hypothesis of Part 1(i) on

{
e1(x , ®X) | x ∈ Y }, we

get atom0(C ′) ⊆ atom0(C ′′, ®C) = atom0(C ′′) ∪ atom0(®C) = atom0(®C). By the induction hypothesis

of Part 1(ii), we get atom1(C ′) ⊆ atom≤1(C ′′, ®C) = atom≤1(C ′′) ∪ atom≤1(®C) = atom≤1(®C). By the

induction hypothesis of Part 1(iii), we get gaifman(C ′) ⊆ gaifman(C ′′, ®C) ⊆ gaifman(®C). Finally, by
induction hypothesis of Part 1(iv), we get for each U ∈ molecule0(C ′), there are V0, V1, ..., Vm such

that atom1(V0) ⊆ atom0(C ′′, ®C) = atom0(®C),Vj ∈ molecule0(C ′′, ®C) = molecule0(C ′′) ∪molecule0(®C)
for 1 ≤ j ≤ m, andU = V0 ∪ V1 ∪ · · · ∪ Vm . This proves Part 1 for the whole expression.

For Part 2, suppose the expression

⋃
{e1(x , ®X) x ∈ Y } has linear time complexity. Note that if the

fold subexpression has constant time complexity, so that properties Part 1(i)-(iv) hold for it, then

properties Part 2(i)-(iii) hold for it as well. Thus, suffices to apply the induction hypothesis of Part 2

on the fold subexpression. This gives a number k ′′
and a set A′′ ⊆ atom≤ 1(®C) where |A′′ | ≤ k ′′

;

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 19

and atom0(C ′′) ⊆ atom0(®C), atom1(C ′′) ⊆ atom≤1(®C), for each (u,v) ∈ gaifman(C ′′), either (u,v) ∈

gaifman(®C), or u ∈ atom0(®C) and v ∈ atom1(®C), or v ∈ atom0(®C) and u ∈ atom1(®C), or u ∈ A′′

and v ∈ atom1(®C), or v ∈ A′′
and u ∈ atom1(®C). Then, by the induction hypothesis of Part 2(i) on{

e1(x , ®X) | x ∈ Y }, we get atom0(C ′) ⊆ atom0(C ′′, ®C) = atom0(C ′′) ∪ atom0(®C) = atom0(®C). By the

induction hypothesis of Part 2(ii), we get atom1(C ′) ⊆ atom≤1(C ′′, ®C) = atom≤1(C ′′) ∪ atom≤1(®C)

= atom≤1(®C). And by the induction hypothesis of Part 2(iii), we get for each (u,v) ∈ gaifman(C ′),

either (u,v) ∈ gaifman(C ′′, ®C) = gaifman(C ′′) ∪ gaifman(®C), or u ∈ atom0(C ′′, ®C) and v ∈

atom1(C ′′, ®C), or v ∈ atom0(C ′′, ®C) and u ∈ atom1(C ′′, ®C), or u ∈ A′
and v ∈ atom1(C ′′, ®C), or

v ∈ A′
and u ∈ atom1(C ′′, ®C), where A′ ⊆ atom≤1(C ′′, ®C), |A′ | ≤ k ′

as per the induction hypothesis.

Note that atom1(C ′′, ®C) = atom1(C ′′) ∪ atom1(®C); atom1(C ′′) ⊆ atom≤1(®C) = atom0(®C) ∪

atom1(®C); and u, v ∈ atom0(®C) implies (u,v) ∈ gaifman(®C). Substituting these into the above,

we get for each (u,v) ∈ gaifman(C ′), either (u,v) ∈ gaifman(C ′′) ∪ gaifman(®C), or u ∈ atom0(®C)

and v ∈ atom1(®C), or v ∈ atom0(®C) and u ∈ atom1(®C), or u ∈ A′
and v ∈ atom1(®C), or v ∈ A′

and u ∈ atom1(®C). Now, setting k = k ′ + k ′′
and A = A′ ∪ A′′

, and using the fact that for

each (u,v) ∈ gaifman(C ′′), either (u,v) ∈ gaifman(®C), or u ∈ atom0(®C) and v ∈ atom1(®C), or

v ∈ atom0(®C) and u ∈ atom1(®C), or u ∈ A′′
and v ∈ atom1(®C), or v ∈ A′′

and u ∈ atom1(®C),

we conclude that for each (u,v) ∈ gaifman(C ′), either (u,v) ∈ gaifman(®C), or u ∈ atom0(®C) and

v ∈ atom1(®C), or v ∈ atom0(®C) and u ∈ atom1(®C), or u ∈ A and v ∈ atom1(®C), or v ∈ A and

u ∈ atom1(®C). This completes the proof of Part 2 for the case when e(®X) has the form
⋃
{e1(x , ®X) |

x ∈ fold(x2 := e2, y ∈ e3, e4)}.
The remaining cases are similar to the proof of Lemma 3.1 and are omitted. �

Since Part 1 of Lemma 3.1 and 5.4 are identical, the proof that head(x ,X) requires at least linear

time complexity in NRC1(≤) can be copied verbatim to NRC1(≤, fold, sort). This means, even

when instantaneous sorting is available, NRC1(≤, fold, sort) cannot produce the head of a list (i.e.

the first element of a canonical set) in constant time.

Corollary 5.5. Let head(x ,X) : {b1 × b2} be an expression in NRC1(≤, fold, sort). Suppose for
every object c of typeb1, and non-empty canonical objectC of type {b1×b2} whose first element is (c, c0),
and c does not appear in subsequent elements of C . e[c/x ,C/X] ⇓ {(c, c0)}. Then time(head[C/X] ⇓)

is at least |C |.

Moreover, NRC1(≤, fold, sort) cannot realize a linear-time zip(X ,Y) for X and Y in canonical

form, in spite of the availability of instantaneous sorting.

Corollary 5.6. Let zip(X ,Y) : {b1 × b2} be an expression in NRC1(≤, fold, sort) where X is
a variable of type {b3 × b1}, Y is a variable of type {b3 × b2}, and b1, b2, and b3 are distinct base
types. Suppose for every canonical objects U == {(o1,u1), ..., (on ,un)} of type {b3 × b1} and V ==
{(o1,v1), ..., (on ,vn)} of type {b3 ×b2}, zip[U /X ,V /Y] ⇓ C ′ whereC ′ == {(u1,v1), ..., (un ,vn)}. Then
time(zip[U /X , V /Y] ⇓) is at least |U | ∗ |V |.

Proof. Suppose zip(X ,Y) has linear time complexity. Then gaifman(C ′) = C ′ = {(u1,v1), ...,
(un ,vn)}. However, for 1 ≤ i ≤ n, (ui ,vi) ∈ gaifman(C ′) < gaifman(U ,V) = U ∪ V . Then, by
Part 2 of Lemma 5.4, either ui ∈ atom0(U ,V) or vi ∈ atom0(U ,V) or ui ∈ A or vi ∈ A, for
some A ⊆ atom1(U ,V) and |A| is independent of U and V . However, as U and V are both elists,

atom0(U ,V) = {} and thus contains neither ui nor vi . This means A has to contain every ui and vi .
So, |A| cannot be independent ofU and V . This contradiction implies zip(X ,Y) cannot have linear
time complexity.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

20 Limsoon Wong

The argument that zip(X ,Y) cannot have constant time complexity is same as the proof of

Proposition 4.2. As zip(X ,Y) cannot have constant or linear time complexity, by Proposition 2.5, it

has at best quadratic time complexity in NRC1(≤, fold, sort). �

The limited-mixing lemma on NRC1(≤, fold, sort), viz. Lemma 5.4, is worth a further remark. A

reader familiar with Gaifman’s locality property on first-order query languages [8] should notice

the use of a variant of Gaifman graphs in limited-mixing lemmas here. Indeed, these limited-mixing

lemmas can be regarded as intensional counterparts to Gaifman’s locality property. Gaifman’s

locality property is often useful for analyzing the extensional expressive power [11, 13] and

intensional express power [25] of query languages on unordered data types. However, it is quite

useless on ordered data types, as the standard Gaifman graph becomes a complete graph on ordered

data types causing all queries to have a locality index of 1. Also, Gaifman’s locality property is

unlikely to be useful in the presence of a fold-like function, as the standard Gaifman graph of the

output of a query involving a fold-like function can become an arbitrarily long chain, causing the

query’s locality index to become infinite. In contrast, limited-mixing lemmas do not have either of

these limitations. For example, the limited-mixing lemma on NRC1(≤, fold, sort) remains easy to

use as an off-the-self strategy for inexpressibility proofs; cf. Corollary 5.6.

5.3 Adding zip
In the preceding sections, zip was used an example of a low-selectivity join that cannot be realized

efficiently inNRC1(≤),NRC1(≤, takewhile, dropwhile, sort), andNRC1(≤, fold, sort). In the most

common implementation of zip(X ,Y), it has linear time complexity Θ(min(|X |, |Y |)), which we also

assume here. Is adding zip to the query language sufficient to realise efficient low-selectivity joins?

Unfortunately, a limited-mixing lemma also holds on NRC1(≤, zip, sort).

Lemma 5.7 (Limited mixing). Let e(®X) : s be an expression inNRC1(≤, zip, sort). Suppose objects
®C have the same types as ®X , and e(®C/ ®X) ⇓ C ′.

(1) If e(®X) has constant time complexity, then there is some number h that depends only on e(®X)

but not on ®C , and an undirected graph H where the nodes are a subset of atom≤1(®C) and there
are at most h edges in H , such that
(i) atom0(C ′) ⊆ atom0(®C),
(ii) atom1(C ′) ⊆ atom≤1(®C),
(iii) gaifman(C ′) ⊆ gaifman(®C) ∪ H , and
(iv) for each U ∈ molecule0(C ′), there are V0, V1, ..., Vm such that atom1(V0) ⊆ atom0(®C),
Vj ∈ molecule0(®C) or gaifman(Vj) ⊆ H for each 1 ≤ j ≤ m, andU = V0 ∪V1 ∪ · · · ∪Vm .

(2) If e(®X) has linear time complexity, then there is a number k that depends only on e(®X) but not
on ®C , and an undirected graph K where the nodes are a subset of atom≤1(®C) and each nodew of
K has degree at most nk , n is the number of timesw appears in ®C , such that
(i) atom0(C ′) ⊆ atom0(®C),
(ii) atom1(C ′) ⊆ atom≤1(®C), and
(iii) for each (u,v) ∈ gaifman(C ′), either (u,v) ∈ gaifman(®C) ∪ K , or u ∈ atom0(®C) and
v ∈ atom1(®C), or u ∈ atom1(®C) and v ∈ atom0(®C).

Proof. Without loss of generality, e(®X) is assumed to be in the normal form induced by the

restricted system of rewrite rules. The proof proceeds by induction on the structural complexity of

expressions; i.e. the ordering ⊑ on expressions.

For Part 1, only the case when e(®X) has the form zip(e1, e2) is elaborated below, as other forms of

e(®X) have straightforward argument. Now, assume zip(e1, e2) has contant time complexity. Then,

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 21

both e1(®X) and e2(®X) has contant time complexity. Let e1(®C/ ®X) ⇓ C ′
1
. Let h1 and H1 be the number

h and the graph H induced by Part 1 on e1(®X). Let e2(®C/ ®X) ⇓ C ′
2
. Let h2 and H2 be the number

h and the graph H induced by Part 1 on e2(®X). By Part 1(i), atom0(C ′
1
), atom0(C ′

2
) ⊆ atom0(®C).

Also, atom0(zip(C ′
1
,C ′

2
)) = {} ⊆ atom0(®C). By Part 1(ii), atom1(C ′

1
), atom1(C ′

2
) ⊆ atom≤1(®C).

Then atom1(zip(C ′
1
,C ′

2
)) ⊆ atom1(C ′

1
) ∪ atom1(C ′

2
) ⊆ atom≤1(®C). By Part 1(iii), gaifman(C ′

1
)

⊆ gaifman(®C) ∪ H1 and gaifman(C ′
2
) ⊆ gaifman(®C) ∪ H2. Let C

′
1
== V1,0 ∪ V1,1 ∪ · · · ∪ V1,m1

and

C ′
2
== V2,0 ∪V2,1 ∪ · · · ∪V2,m1

, as per Part 1(iv). Since zip(e1, e2) has constant time complexity, it is

safe to assume thatVi, j < molecule0(®C) for i ∈ {1, 2} and 1 ≤ j ≤ m1. Thus, atom1(V1,0) ⊆ atom0(®C)

has an upperbound on its cardinality that can be inferred from the types of ®C; and for 1 ≤ j ≤ m1,

gaifman(V1, j) ⊆ H1 implies an upperbound on V1, j ’s cardinality that can be inferred from h1 and
the type of C ′

1
. The sum of these upperbounds gives an upperbound on the cardinality of C ′

1
. An

upperbound can be derived for the cardinality of C ′
2
in a similar way. The mininum of these two

upperbounds is an upperbound a on the cardinality of zip(C ′
1
,C ′

2
). If the type of C ′

1
is bk1 and that

ofC ′
2
is bk2 , h can be set as a(k1 +k2)! and H can be set to gaifman(zip(C ′

1
,C ′

2
)). Then Part 1(iii) and

(iv) hold for zip(C ′
1
,C ′

2
). This proves Part 1.

For Part 2, first consider the case when e(®X) has the form zip(e1(®X), e2(®X)) and has linear time

complexity. Let zip(e1[®C/ ®X], e2[®C/ ®X]) ⇓ C ′
. Then atom0(C ′) = {} ⊆ atom0(®C), proving Part 2(i) for

the case. Let e1(®C/ ®X) ⇓ C ′
1
and e2(®C/ ®X) ⇓ C ′

2
. By the induction hypothesis of Part 2 on e1 and e2, we

get atom1(C ′
1
), atom1(C ′

2
) ⊆ atom≤1(®C). Thus, atom1(C ′) ⊆ atom1(C ′

1
) ∪ atom1(C ′

2
) ⊆ atom≤1(®C),

proving Part 2(ii) for the case. Now, suppose (u,v) ∈ gaifman(C ′). There are five subcases. The first

subcase is when u ∈ atom0(®C) andv ∈ atom0(®C), and thus (u,v) ∈ gaifman(®C). The second subcase
is whenu ∈ atom0(®C) andv ∈ atom1(®C). The third subcase is whenu ∈ atom1(®C) andv ∈ atom0(®C).

The fourth subcase is when u, v ∈ atom1(®C) and (u,v) ∈ gaifman(®C). These four subcases satisfy
the requirement of Part 2(iii) trivially. The fifth and last subcase is when u, v ∈ atom1(®C) and

(u,v) < gaifman(®C). Let k1 and K1 be the k and K induced by the induction hypothesis of Part 2 on

e1. Let k2 and K2 be the k and K induced by the induction hypothesis of Part 2 on e2. Suppose u

appears nu times and v appears nv times in ®C . Then, the induction hypothesis of Part 2 on e1(®X)

and e2(®C) implies u appears at most nuk1 times in C ′
1
and at most nuk2 times in C ′

2
, and v appears

at most nvk1 times in C ′
1
and at most nvk2 times in C ′

2
. Then, by definition of zip, the number of

times that u can appear in C ′
is upperbounded by nu (k1 + k2), and that of v is upperbounded by

nv (k1 +k2). AssumeC ′
1
has type bh1 andC ′

2
has type bh2 . Thus,C

′
has type bh1+h2 . By the definition

of zip, each occurrence of u in C ′
can add no more than h1 + h2 edges to gaifman(C ′). Similarly,

each occurrence of v in C ′
can add no more than h1 + h2 edges to gaifman(C ′). Hence, setting

k = (k1 + k2)(h1 + h2) and K = gaifman(C ′) − gaifman(®C) is sufficient to ensure Part 2(iii). This

completes the proof of Part 2 when e(®X) has the form zip(e1(®X), e2(®X)).

For Part 2, the next case to consider is when e(®X) has the form

⋃
{e1(x , ®X) | x ∈ zip(e2(®X),

e3(®X)} and has linear time complexity. Suppose e[®C/ ®X] ⇓ C ′
; zip(e2[®C/ ®X], e3[®C/ ®X]) ⇓ C ′′

, where

C ′′ == {C ′′
1
, ..., C ′′

m}; and e1[C
′′
i /x ,

®C/ ®X] ⇓ C ′
i . There are two subcases. This first subcase is when

m depends on zip(e2(®X), e3(®X)) but not on ®C . Note that C ′
i has set type; thus, atom

0(C ′
i) = {}.

By construction, C ′ == C ′
1
∪ · · · ∪ C ′

m . So, atom
0(C ′) = {} ⊆ atom0(®C), proving Part 2(i). Also,

C ′′
i is a tuple of base type. Then, by induction hypothesis of Part 2(ii) on the zip subexpression,

we get atom≤1(C ′′
i) = atom1(C ′′

i) ⊆ atom≤1(®C). By the induction hypothesis of Part 2(ii) on

e1(x , ®X), we get atom1(C ′
i) ⊆ atom≤1(C ′′

i ,
®C) = atom≤1(C ′′

i) ∪ atom≤1(®C) = atom≤1(®C), proving

Part 2(ii). Let k ′
be the k induced by the induction hypothesis of Part 2 on e1(x , ®X). Let Ki be

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

22 Limsoon Wong

the K induced by the induction hypothesis of Part 2 on e1(x , ®X) when e1[C
′′
i /x ,

®C/ ®X] ⇓ C ′
i . Now,

suppose (u,v) ∈ gaifman(C ′
i) ⊆ gaifman(C ′). By the induction hypothesis of Part 2, there are five

possibilities. The first possibility isu,v ∈ atom0(®C); thus (u,v) ∈ gaifman(®C). The second possibility
is u ∈ atom0(®C) and v ∈ atom1(®C). The third possibility is u ∈ atom1(®C) and v ∈ atom0(®C). The

fourth possibility is u, v ∈ atom1(®C) and (u,v) ∈ gaifman(®C). These four possibilities trivially

meet the requirements for Part 2(iii). So, we focus on the fifth and last possibility, which is u,

v ∈ atom1(®C) and (u,v) < gaifman(®C). This implies (u,v) ∈ Ki . So, u has degree at most nuk
′
and

v has degree at most nvk
′
in Ki , where nu and nv are the number of occurrences of u and v in ®C .

To prove Part 2(iii), it is sufficient to set K = K1 ∪ · · · ∪ Km and k =mk ′
.

The second subcase is whenm depends on ®C . This implies e1(x , ®X) has constant time complexity.

Let h′
be the h induced by the induction hypothesis of Part 1 on e1(x , ®X). Let Hi be the H induced

by the induction hypothesis of Part 1 on e1(x , ®X) when e1[C
′′
i /x],

®C/ ®X] ⇓ C ′
i . By the induction

hypothesis of Part 2, there are five possibilities for (u,v) ∈ gaifman(C ′
i) ⊆ gaifman(C ′). The first

possibility is u, v ∈ atom0(®C); thus, (u,v) ∈ gaifman(®C). The second possibility is u ∈ atom0(®C)

and v ∈ atom1(®C). The third possibility is u ∈ atom1(®C) and v ∈ atom0(®C). The fourth possibility is

u, v ∈ atom1(®C), and (u,v) ∈ gaifman(®C). These four possibilities already meet the requirements

for Part 2(iii). So, we focus on the fiftth and last possibility, which is u, v ∈ atom1(®C), and (u,v) <

gaifman(®C). This implies (u,v) ∈ Hi . Let K = H1 ∪ · · · ∪ Hm . Let k
′
be the k induced by the

induction hypothesis of Part 2 on the zip subexpression. Then, u can appear no more than nuk
′

times in C ′′
, where nu is the number of times u appears in ®C . So, u has degree at most nuk

′h′
in K ;

similarly, v has degree at most nvk
′h′

in K . Thus, setting k = k ′h′
and K = H1 ∪ · · · ∪ Hm suffices

to prove Part 2(iii) for this subcase. Part 2(i) and Part 2(ii) have similar argument as in the previous

subcase. This completes the proof of Part 2 for this subcase.

The remaining cases for Part 2 are straightforward, except for the case when e(®X) has the form⋃
{e1(x , ®X) | x ∈ e2(®X)}. However, the argument for this case can be copied almost verbatim from

the subcase above. This finishes the proof of the lemma. �

Consider the following query, contrived(X ,Y) =df {(x ,y1,y2) | x ∈ X , (y1,y2) ∈ Y , y1 < x < y2},
where X and Y are in canonical form. Suppose Y == {(y1,1,y1,2), (y2,1,y2,2), ..., (yn,1,yn,2)} is such
that yi, j are all positive numbers, yi,1 < yi+1,1, and no number is allowed to appear more than once

in Y . Under these constraints, a number can appear at most once in X and once in Y . A further

low-selectivity constraint—let us call this the k-selectivity constraint—is imposed such that no

element in X is contained by more than k intervals in Y , and no interval in Y can contain more than

k elements in X , for some fixed k . It is obvious that contrived(X ,Y), even when the k-selectivity
contraint is imposed on (X ,Y), cannot be implemented in linear time in NRC1(≤, zip, sort).

Proposition 5.8. Let f (X ,Y) be an expression in NRC1(≤, zip, sort). Then there is a number k0
such that either f (X ,Y) does not have linear time complexity or f (X ,Y) , contrived(X ,Y) under the
k-selectivity constraint for all k > k0.

Later, in Example 6.6, an efficient solution for a variant of contrived under such a low-selectivity

constraint will be presented.

6 SYNCHRONY ITERATORS
6.1 Capturing the gap
Although neither takewhile and dropwhile nor fold is able to fill the intensional expressiveness gap

between NRC1(≤) and relational database systems, using all three of them simultaneously can do

the job. To see this, consider the construct below:

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 23

X : {s1} Y : {s2} b f : B cs : B f : {s}

syncmap(xs1 ∈ X ,ys2 ∈ ys {s2 } ⊆ Y ,b f , cs, f) : {s}

where the notations x ∈ X and y ∈ ys ⊆ Y introduce fresh variables x , y, and ys ; the scopes of these
variables are as indicated in the following: b f (y,x), cs(y,x), and f (x ,ys). Note that X , Y , b f (y,x),
cs(y,x), and f (x ,ys) are expressions; these are used here (instead of the more generic e) for clarity
purpose. Also, for simplifying proofs later, x and y are the only free variables allowed for b f and

cs . This syncmap construct is defined in terms of takewhile, dropwhile, and fold as syncmap(x ∈ X ,

y ∈ ys ⊆ Y ,b f , cs , f) =df fold(a := (Y , {}), x ∈ X , ({u | u ∈ takewhile(y ∈ a.π1,b f (y,x) or cs(y,x)),
cs(u,x)} ∪ dropwhile(y ∈ a.π1, b f (y,x) or cs(y, x)),a.π2∪ f (x , {u | u ∈ takewhile(y ∈ a.π1, b f (y,x)
or cs(y,x)), cs(u, x)}))).π2. As syncmap relies on takewhile, dropwhile, and fold, to ensure soundness,
its X and Y inputs are required to be in canonical form. Again, sort is available for explicitly putting
the inputs to syncmap into canonical form when needed.

According to the definition above, syncmap(x ∈ X , y ∈ ys ⊆ Y , b f , cs , f) can be seen as an

iteration on Y in synchrony with an iteration on X . For each xi ∈ X , it iterates on Y from the

current yj ∈ Y , as long as b f (yj ,xi) or cs(yj ,xi) holds. Let ysi be an elist consisting of those yj seen
for this xi such that cs(yj ,xi) holds. The resultCi == f (xi ,ysi) is computed. All the yj seen for this

xi , except those in ysi , are dropped from Y . The iteration on X is moved on to the next element in

X , while the iteration on Y is resumed from the start of the modified Y . It can be seen from the

takewhile and dropwhile subexpressions that for any xi , the iteration on Y does not move beyond

the first yj in Y such that both b f (yj ,xi) and cs(yj ,xi) are false. And for any xi , the iteration on Y
starts directly at the first yj in Y such that cs(yj ,x j−1) is true. This means that, when the yj ∈ Y
for which cs(yj ,xi) holds are clustered near each other in Y for every xi ∈ X , the iteration on Y
effectively jumps directly to the cluster of each xi . In this sense, the iteration onX and Y can be said

to be synchronized. At the end of this synchronized iteration,

⋃
i Ci is produced as the result. It is

worth noting that ∪ is realized using ⊕, the concatenation operation on elists, which has constant

time complexity.

It turns out that synchronized iteration is the missing ingredient from NRC1(≤) that results

in the intensional expressiveness gap between NRC1(≤) and relational database systems. This is

proved as Theorem 6.3 after some relevant definitions are given below.

Definition 6.1 (Monotonicity). For xi and x j in an elist L == {x1, ..., xn}, let (xi ≪ x j | L)means xi
is before x j in L; i.e. (xi ≪ x j | L) iff i < j . A predicate b f (y,x) is said to be monotonic with respect

to elists X and Y if it satisfies these conditions: (i) If (x ≪ x ′ | X), then for each y in Y , b f (y,x)
implies b f (y,x ′). (ii) If (y ′ ≪ y | Y), then for each x in X , b f (y,x) implies b f (y ′,x).

Definition 6.2 (Antimonotonicity). Suppose b f (y,x) is a monotonic predicate with respect to elists

X and Y . A predicate cs(y,x) is said to be antimonotonic with respect to b f (y,x) if it satisfies these
conditions: (i) If (x ≪ x ′ | X), then for each y in Y , b f (y,x) and not cs(y,x) implies not cs(y,x ′).

(ii) If (y ≪ y ′ | Y), then for each x in X , not b f (y,x) and not cs(y,x) implies not cs(y ′,x).

Theorem 6.3 (Intensional expressiveness). Let b f (y,x) be monotonic with respect to X and Y ,
X and Y are in canonical form, and cs(y,x) antimonotonic with respect to b f (y,x).

(1) syncmap(x ∈ X , y ∈ ys ⊆ Y ,b f , cs, f) =
{u | x ∈ X , u ∈ f (x , {y | y ∈ Y , cs(y,x)})}.

(2) time(syncmap(x ∈ X ,y ∈ ys ⊆ Y ,b f , cs, f)) = O(|X |+ 3(k + 1)|Y |+д(k |Y |/|X |)|X |), provided
there is some k such that for each y in Y , |{x | x ∈ X , cs(y,x)}| ≤ k ; |{y | y ∈ Y , cs(y,xi)}| ≈
|{y | y ∈ Y , cs(y,x j)}| for any xi , x j ∈ X ; time(f (x ,ys)) = O(д(|ys |)); and b f (y,x) and cs(y,x)
have constant time complexity.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

24 Limsoon Wong

Proof. Let syncmap(x ∈ X ,y ∈ ys ⊆ Y ,b f , cs, f) ⇓ C . Let X == {x1, ..., xn}. Let C0 == {} and

E0 == Y . For 1 ≤ j ≤ n, let
Aj == takewhile(y ∈ Ej−1,b f (y,x j) or cs(y,x j));
Bj == {u | u ∈ Aj , cs(y,x j)};
Cj == f (x j ,Bj);
D j == dropwhile(y ∈ Ej−1,b f (y,x j) or cs(y,x j));
Ej == Bj ⊕ D j ; and

aj == (Ej ,Cj).

Then it is easy to see that C == C1 ⊕ · · · ⊕ Cn .

Part 1 of the theorem can be proved by induction on j > 0 that

(i) {y | y ∈ Y , cs(y,x j)} ⊆ Ej−1;
(ii) {y | y ∈ Y , cs(y,x j)} ⊆ Aj ;

(iii) Bj == {y | y ∈ Y , cs(y,x j)};
(iv) Cj == f (x j , {y | y ∈ Y , cs(y,x j)});
(v) {y | y ∈ D j , cs(y,x j)} = {}; and

(vi) {y | y ∈ Ek − Ej , cs(y,x j)} = {} for k < j.
By the definition of D j , if it is not empty, its first element must be a y such that both b f (y,x j)

and cs(y,x j) are false. By construction, (y ≪ y ′ | Y) for all subsequent elements y ′
in D j . Then, by

the antimonotonicity of cs(y,x), both b f (y,x j) and cs(y,x j) are false for each y in D j . This proves

Part (v) of the induction above.

By Part (i), {y | y ∈ Y , cs(y,x j)} ⊆ Ej−1; By construction, Ej−1 == Aj ⊕ D j . So, {y | y ∈ Y ,
cs(y,x j)} ⊆ Aj , proving Part (ii). Then Bj == {y | y ∈ Y , cs(y,x j)} follows from the definition of Bj ,
proving Part (iii). ThenCj == f (x j , {y | y ∈ Y , cs(y,x j)}) follows from the definition ofCj , proving

Part (iv).

By definition, Ej == Bj ⊕D j . But Bj == {y | y ∈ Y , cs(y,x j)}, as shown above for Part (iii). Thus,

Ek − Ej cannot contain any element y such that cs(y,x j), proving Part (vi).

{y | y ∈ Y , cs(y,x1)} ⊆ E0 because E0 == Y , proving the base case (i.e. j = 1) for Part (i). Now, by

the induction hypothesis on Part (vi), there is no y in Ek − Ej−1, k < j − 1, such that cs(y,x j−1). By
construction, (x j−1 ≪ x j | X). Thus, by the antimonotonocity of cs(y,x), for every k < j − 1, there

is no y in Ek − Ej−1 such that cs(y,x j). Then {y | y ∈ Y , cs(y,x j)} ⊆ Ej−1 follows from the fact that

Y = Ej−1 ∪
⋃

k<j−1 Ek . This settles Part (i) of the induction, and thus Part 1 of the theorem.

For Part 2 of the theorem, the time complexity of syncmap(x ∈ X , y ∈ ys ⊆ Y , b f , cs , f) is the
sum of the time complexity of computing each Aj , Bj , Cj , D j , Ej , and aj , plus the time taken for

accessing each x j ∈ X . As b f (y,x) and cs(y,x) are assumed to be constant time, the time complexity

for computing Aj , Bj , and D j isO(|A|). The time complexity for computing Ej is constant time as ⊕

is assumed to have constant time complexity. The time complexity for computing aj is constant
time as tuple construction is, given that the components have already been constructed. The

time complexity for Cj depends on |Bj |, as f ’s time complexity is assumed to depend on this. By

assumption of the theorem, for each y in Y , |{x | x ∈ X , cs(y,x)}| ≤ k . This means each y can

appear in at most k different Bj . So, the total length of the Bj ’s is at most k |Y |; and the average

length of the Bj ’s is at most k |Y |/|X |, as |{y | y ∈ Y , cs(y,xi)}| ≈ |{y | y ∈ Y , cs(y,x j)}| for xi , x j in
X . The total length of the Aj ’s is |E0 | +

∑
j |Bj | = |Y | + k |Y | = (k + 1)|Y |. So, including the time for

accessing each x j ∈ X , the total time complexity is |X | + 3(k + 1)|Y | + д(k |Y |/|X |)|X |. �

Part 1 of Theorem 6.3 states that, for b f (y,x) and cs(y,x) monotonic and antimonotonic,

syncmap—as a function—is already expressible using NRC1(≤) in a simple way as {u | x ∈ X ,
u ∈ f (x , {y | y ∈ Y , cs(y,x)})}. This equivalent version in comprehension syntax has Ω(|X | ∗ |Y |)
time complexity. In contrast, Part 2 of the theorem says that the algorithm corresponding to syncmap

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 25

has time complexity O(|X | + 3(k + 1)|Y | + д(k |Y |/|X |)|X |). If f has constant time complexity with

respect to its first parameter and linear time complexity with respect to its second parameter, this

simplifies to O(|X | + k |Y |), where k is the selectivity of cs(y,x) which corresponds to the join

condition.

To better appreciate this, let X ◃▹ Y =df syncmap(x ∈ X , y ∈ ys ⊆ Y , y.π1 < x .π1, y.π1 = x .π1,
{(x .π2,y.π2) | y ∈ ys}). By Part 1 of Theorem 6.3, X ◃▹ Y = {u | x ∈ X , u ∈ {(x .π2, y.π2) | y ∈

{y | y ∈ Y , y.π1 = x .π1}}} = {(x .π2, y.π2) | x ∈ X , y ∈ Y , y.π1 = x .π1}, which is of course

a relational join of X and Y . By Part 2 of Theorem 6.3, time(X ◃▹ Y) = O(|X | + k |Y |), when
|{x | x ∈ X ,y.π1 = x .π1}| < k for each y ∈ Y ; i.e. k is the selectivity of the join. Therefore, for

low-selectivity joins, i.e. k is a small number, the algorithm corresponding to syncmap has linear

time complexity O(|X | + |Y |). For high-selectivity joins, i.e. k ≈ |X |, the algorithm has the usual

quadratic time complexity O(|X | ∗ |Y |) of high-selectivity joins.

It was pointed out earlier that an intensional gap might also exist on relational intersection

and relational difference. This becomes a non-issue as both relational intersection and relational

difference can be realised with linear time complexity using syncmap. To wit, for canonical X
and Y , let X ∩ Y =df syncmap(x ∈ X , y ∈ ys ⊆ Y , y < x , y = x , {x | not ys isempty}). By Part 1

of Theorem 6.3, X ∩ Y = {u | x ∈ X , u ∈ {x | not {y | y ∈ Y , y = x} isempty}} = {x | x ∈ X ,
not {y | y ∈ Y , y = x}isempty}, which is of course the relational intersection of X and Y . By
Part 2 of Theorem 6.3, time(X ∩ Y) = O(|X | + |Y |), as f (x ,ys) = {x | not ys isempty} has constant
time complexity; i.e., a linear-time complexity relational intersection is realized using syncmap.
Similarly, for canonical X and Y , a linear-time complexity relational difference can be realized as

X − Y =df syncmap(x ∈ X , y ∈ ys ⊆ Y , y < x , y = x , {x | ys isempty}).
It was also pointed out earlier that relational division X ÷ Y is not directly supported by typical

relational database systems. Instead, it is defined in terms of other operators supported by these

systems. Leinders and Van den Bussche [12] showed that, if X ÷ Y is expressed using strictly other

operators from the relational algebra, then the space complexity is Ω(|X | ∗ |Y |). This quadratic-space
lower bound can be avoided using syncmap, though the time complexity remains quadratic. To see

this, consider defining X ÷ Y =df syncmap(xb ∈ {x .π1 | x ∈ X }, x ∈ xs ⊆ X , x .π1 < xb, x .π1 = xb,
{xb | Y ⊆ {x .π2 | x ∈ xs}}). If X : b × a and Y : a are canonical, the time complexity of X ÷ Y
as defined above is O(|A| + |X | + |A| ∗ (average(|xs |) + |Y |)) where A =df {x .π1 | x ∈ X }, since

time(Y ⊆ {x .π2 | x ∈ xs}) = O(|Y | + |xs |). When |A| is at most circa |X |/|Y |, the average size of
|xs | is at most circa |Y |; in this case, the time complexity of X ÷Y becomes linear. However, |A| can
be |X | in the worst case; then the time complexity of X ÷ Y is quadratic, as in typical relational

database systems. Space complexity has not been defined explicitly in the operational semantics of

NRC so far. However, since space can be reused, the space complexity of evaluating e(®C) ⇓ can be

taken as the space needed by the largest node in the evaluation tree e(®C) ⇓. Generally, the space

needed by a node e(®C) ⇓ C ′
is size(C ′) plus the sum of the space needed by the branches at this node.

An exception to this definition of space needed is when the node is fold(x := e1,y ∈ e2, e3) ⇓ C ′
n . For

this node, according to Figure 4, the branches are e1 ⇓ C ′
0
, e2 ⇓ {C1, ..., Cn}, e3[C

′
0
/x ,C1/y] ⇓ C ′

1
, ...,

e3[C
′
n−1/x ,Cn/y] ⇓ C ′

n . The space of C
′
j−1 can be reused once Cj is computed. So the space needed

for evaluating the node fold(x := e1, y ∈ e2, e3) ⇓ C ′
n is size(C ′

0
)+

∑
j size(Cj)+maxj size(C ′

j). Under

this definition of space usage, it can be shown that the space required for evaluating X ÷Y is linear.

Thus, while X ÷ Y as defined above cannot escape the quadratic time-complexity lower bound, it

can do better than the quadratic space-complexity lower bound required when relational division

is compelled to be defined strictly using other relational operators [12].

So, syncmap(x ∈ X ,y ∈ ys ⊆ Y ,b f , cs, f), constrained to b f (y,x) being monotonic and cs(y,x)
being antimonotonic with respect to X and Y , bridges the intensional expressiveness gap of

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

26 Limsoon Wong

comprehension syntax while being a conservative extension toNRC1(≤). In short, syncmap under

the monotonicity and antimonotonicity contraints is an exact characterization of this gap.

It is straightforward to generalize syncmap to synchronize iterations on h different elists to an

iteration on a common reference elist. For example, to synchronize the iterations on two elists Y1
and Y2 to an iteration on an elist X , define the syncmap

2
construct as follows: syncmap

2
(x ∈ X ,

y1 ∈ ys1 ⊆ Y1, b f1, cs1, y2 ∈ ys2 ⊆ Y2, b f2, cs2, f) =df fold(a := (Y1,Y2, {}), x ∈ X , (Y ′
1
(x ,a.π1), Y

′
2
(x ,

a.π2),a.π3 ∪ f (x ,ys1(x ,a.π1), ys2(x , a.π2)))).π3, where ysi (x ,Y) =df {u | u ∈ takewhile(y ∈ Y ,
b fi (y,x) or csi (y,x)), csi (u,x)}, and Y ′

i (x ,Y) =df ysi (x ,Y) ∪ dropwhile(y ∈ Y , b fi (y,x) or csi (y,
x)). Note that syncmap

2
, syncmap

3
, etc. are actually definable solely in terms of syncmap, albeit

tediously. So, for convenience,NRC1(≤, syncmap, sort) is defined here asNRC1(≤, sort) endowed
with synchronized iteration constructs for multiple elists, viz. syncmap, syncmap

2
, syncmap

3
, etc.

with the monotonicity and antimonotonicity constraints on their use.

Returning to the head query from Proposition 4.1; it is expressible as head(x ,X) =df syncmap(u ∈

{x}, v ∈ vs ⊆ X , v .π1 < u, v .π1 = u, vs). To see that this definition of head has constant time

complexity, substitute syncmap by its definition, this becomes head(x ,X) =df fold(a := (X , {}),
u ∈ {x}, ({v | v ∈ takewhile(y ∈ a.π1, y.π1 < u or y.π1 = u), v .π1 = u} ∪ dropwhile(v ∈ a.π1,
v .π1 < u or v .π1 = u), a.π2 ∪ {v | v ∈ takewhile(y ∈ a.π1, y.π1 < u or y.π1 = u), v .π1 = u})).π2.
Substitute fold by its definition, this becomes head(x ,X) =df {v | v ∈ takewhile(y ∈ X , y.π1 <
x or y.π1 = x), v .π1 = x}. Then, by the requirement of head in Proposition 4.1, and the operational

semantics of takewhile, this definition of head has constant time complexity, as desired.

Similarly, the zip query from Proposition 4.2 is expressible as zip(X ,Y) =df syncmap(u ∈ X ,
v ∈ vs ⊆ Y , v .π1 < u .π1, v .π1 = u .π1, {(u,w) | w ∈ vs}). By Part 2 of Theorem 6.3, the time

complexity of this definition of zip is O(|X | + |Y |), i.e., linear, as desired.

6.2 Dovetailing into comprehension syntax
As shown earlier, syncmap characterizes the intensional expressiveness gap between NRC1(≤)

and typical relational database systems. However, efficient joins in NRC1(≤, syncmap, sort) are no
longer in comprehension syntax. This problem is addressed in this subsection.

Suppose there is an environment Γ, which is an updatable mapping from pointers to elists; i.e. Γ
is a global store for elists. Let ι be a pointer into the global store. Let Γ(ι) means retrieving the elist

C that ι points to in Γ. Let Γ ⊕ [ι 7→ C] denote the updated global store Γ′ such that Γ′(ι) = C and

Γ′(ι′) = Γ(ι′) for ι , ι′. Let Γ ⊖ ι denote the updated global store Γ′ such that Γ′(ι) is undefined and

Γ′(ι′) = Γ(ι′) for ι , ι′.
A pair of constructs—eiterator and syncedwith—are given in Figure 5 to make use of the global

updatable store. The construct let ι := eiterator e1 in e2 introduces a pointer ι whose scope is in the

expression e2(ι). Operationally, beginning with a global store Γ, the expression e1 is evaluated to an
object C1 while the global store is updated to Γ1 = Γ ⊕ [ι 7→ C1]. Then e2 is evaluated with Γ1, to
produce an object C2 while the global store is updated to Γ2. Finally, C2 is returned as the result,

and the global store is updated to Γ2 ⊖ ι by removing ι.
The construct let ys := syncedwith(x := e1, y ∈ ι, b f , cs) in e2 introduces the variables x and

y whose scope is the expressions b f (y,x) and cs(y,x), and the variable ys whose scope is the

expression e2(ys). Operationally, beginning with a global store Γ, the elist Γ(ι) == {u1, ..., um} is

retrieved. The expression e1 is evaluated with Γ to an object C while the global store is updated

to Γ1. Then beginning with i = 1 and Γ1, the expressions b f (ui ,C) is evaluated in Γi to produce

an object vi while updating Γi to Γ′i ; and the expression cs(ui ,C) is evaluated in Γ′i to produce an

object v ′
i while updating Γ′i to Γi+1. This process is repeated until the first i such that vi = false and

v ′
i = false, if such an i exists. At this point, let C ′ == {uj | 1 ≤ j < i , v ′

j = true}. And ys takes on as

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 27

Expression constructs for Synchrony iterators

e1 : {s1} e2 : s2
let ιs1 := eiterator e1 in e2 : s2

e1 : s1 b f : B cs : B e2 : s2
let ys {s1 } := syncedwith(xs1 := e1, y

s2 ∈ ιs2 , b f , cs) in e2 : s2

Operational semantics for Synchrony iterators

Γ, e1 ⇓ Γ1,C1 Γ1 ⊕ [ι 7→ C1], e2 ⇓ Γ2,C2

Γ, let ι := eiterator e1 in e2 ⇓ Γ2 ⊖ ι,C2

Γ, e1 ⇓ Γ1,C
Γ1,b f [u1/y,C/x] ⇓ Γ′

1
,v1 Γ′

1
, cs[u1/y,C/x] ⇓ Γ2,v

′
1

· · ·

Γi ,b f [ui/y,C/x] ⇓ Γ′i ,vi Γ′i , cs[ui/y,C/x] ⇓ Γi+1,v
′
i

Γi+1 ⊕ [ι 7→ C ′ ⊕ {ui , ..., um}], e2[C
′/ys] ⇓ Γ′′,C ′′

Γ, let ys := syncedwith(x := e1, y ∈ ι, b f , cs) in e2 ⇓ Γ′′,C ′′

where Γ(ι) == {u1, ..., um};

vj = true or v ′
j = true for 1 ≤ j < i;

vi = false and v ′
i = false; and

C ′ == {uj | 1 ≤ j < i , v ′
j = true}.

Γ, e1 ⇓ Γ1,C
Γ1,b f [u1/y,C/x] ⇓ Γ′

1
,v1 Γ′

1
, cs[u1/y,C/x] ⇓ Γ2,v

′
2

· · ·

Γm ,b f [um/y,C/x] ⇓ Γ′m ,vm Γ′m , cs[um/y,C/x] ⇓ Γm+1,v
′
m

Γm+1 ⊕ [ι 7→ C ′], e2[C
′/ys] ⇓ Γ′′,C ′′

Γ, let ys := syncedwith(x := e1, y ∈ ι, b f , cs) in e2 ⇓ Γ′′,C ′′

where Γ(ι) == {u1, ..., um};

vj = true or v ′
j = true for 1 ≤ j ≤ m; and

C ′ == {uj | 1 ≤ j ≤ m, v ′
j = true}.

Fig. 5. The syntax and operational semantics of Synchrony iterators.

its value C ′
, while the global store is updated to Γi ⊕ [ι 7→ C ′ ⊕ {ui , ..., um}]. On the other hand,

when there is no i such that vi = false and v ′
i = false, the process is repeated until the last element

um is processed. At this point, let C ′ == {uj | 1 ≤ j ≤ m, v ′
j = true}. And ys takes on as its value

C ′
, while the global store is updated to Γm+1 ⊕ [ι 7→ C ′]. Finally, e2(ys) is evaluated in this global

store to produce the result C ′′
, while updating the global store to Γ′′.

For the purpose of this paper, viz. to simplify proofs and to reduce programming error, several

“safe-use” constraints are imposed.

Definition 6.4 (Safe-use constraints). Expressions are required to satisfy the constraints below.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

28 Limsoon Wong

(1) The pointer ι introduced in let ι := eiterator e1 in e2 is permitted to occur exactly once in the

expression e2.
(2) The variables x and y are the only free variables of b f and cs in let ys := syncedwith(x := e1,

y ∈ ι, b f , cs) in e2.
(3) The expression e1 in let ys := syncedwith(x := e1, y ∈ ι, b f , cs) in e2 is restricted to be a

variable.

(4) The eiterator and syncedwith constructs must appear in the form: let ι1 := eiterator e1 in ...

let ιh := eiterator eh in
⋃
{ let ys1 := syncedwith(u1 := x , y1 ∈ ι1, b f1, cs1) in ... let ysh :=

syncedwith(uh := x , yh ∈ ιh , b fh , csh) in f (x , ys1, ..., ysh) | x ∈ e}.
(5) Furthermore, in the above, b fi (y,x) is monotonic with respect to ei and e , csi (y,x) is anti-

monotonic with respect to b fi (y,x), for 1 ≤ i ≤ h.

The eiterator and syncedwith constructs have side effects that change the global store. These

safe-use constraints are designed in part to isolate these side effects, so that analysis can be

simplified. Constraint 1 and 4 together ensure that side effects due to ι1, ..., ιh have no impact on

the subexpression f (x , ys1, ..., ysh) mentioned in Constraint 4. Notice that, by Constraint 1, ι1, ..., ιh
do not appear inside f ; similarly, Constraint 2, implies none of ι1, ..., ιh appear in b f and cs . Hence,
even though ι1, ..., ιh are in the global store for f , b f , and cs to access when they are evaluated,

they actually do not access any of these pointers; so, they cannot make changes to or be by affected

by changes made to what these pointers are pointing to. In other words, Constraint 1, 2, and 4

collectively make it possible for b f , cs , and f to be analyzed as if there is no side effect. Constraint 3

is just a syntactic restriction to make it easier to state Constraint 4. Finally, Constraint 5 reflects the

key assumptions required for syncmap to work properly, cf. Theorem 6.3; as will be seen shortly in

Theorem 6.5, these assumptions are also needed for syncedwith to work properly.

The syntactic sugar let ys := syncedwith(x ,y ∈ ι,b f , cs) in e is used as a shortand for let ys :=
syncedwith(u := x , y ∈ ι, b f [u/x], cs[u/x]) in e . And the syntactic sugar syncedwith(x , y ∈ ι, b f ,
cs) is used as a shorthand for let ys := syncedwith(x , y ∈ ι, b f , cs) in ys .

The translation for comprehension syntax {e | δ1, ..., δn} is also extended so that δi is permitted

to take the additional forms ι := eiterator e ′ and ys := syncedwith(x := e1, y ∈ ι, b f , cs). The
required extra translation rules are {e | ι := eiterator e ′,∆} =df let ι := eiterator e ′ in {e | ∆},
and {e | ys := syncedwith(x := e1, y ∈ ι, b f , cs), ∆} =df let ys := syncedwith(x := e1, y ∈ ι, b f ,
cs) in {e | ∆}.

The following desirable relationship between syncmap and eiterator and syncedwith is not difficult

to see.

Theorem 6.5 (Synchrony iterator). Let X and Y be elists in canonical form. Let b f (y,x) be
monotonic with respect to X and Y . Let cs(y,x) be antimonotonic with respect to b f (y,x).

(1) syncmap(x ∈ X ,y ∈ ys ⊆ Y ,b f , cs , f)=df {z | ι := eiterator Y , x ∈ X ,ys := syncedwith(x ,y ∈

ι,b f , cs), z ∈ f (x ,ys)}.
(2) time(syncmap(x ∈ X , y ∈ ys ⊆ Y , b f , cs , f)) = time({z | ι := eiterator Y , x ∈ X , ys :=

syncedwith(x ,y ∈ ι,b f , cs), z ∈ f (x ,ys)}).
(3) {z | ι := eiterator Y , x ∈ X , ys := syncedwith(x , y ∈ ι,b f , cs), z ∈ f (x ,ys)} = {z | x ∈ X ,

z ∈ f (x , {y | y ∈ Y , cs(y,x)})}.
(4) NRC1(≤, syncmap, sort) and NRC1(≤, eiterator, syncedwith, sort) have equal extensional

and intensional expressive power. I.e., for any expression e(®x) in NRC1(≤, syncmap, sort),
there is an expresion e ′(®x) in NRC1(≤, eiterator, syncedwith, sort) such that e(®x) = e ′(®x) and
time(e(®x)) = time(e ′(®x)); and vice versa.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 29

Proof. Let syncmap(x ∈ X , y ∈ ys ⊆ Y , b f , cs , f) ⇓ C . Let X == {x1, ..., xn}. Let C0 == {} and

E0 == Y . For 1 ≤ l ≤ n, let Al == takewhile(y ∈ El−1, b f (y,xl) or cs(y,xl)); Bl == {u |u ∈ Al ,

cs(y,xl)}; Cl == f (xl ,Bl); Dl == dropwhile(y ∈ El−1, b f (y,xl) or cs(y,xl)); El == Bl ⊕ Dl ; and

al == (El ,Cl). Then it is easy to see that C = C1 ⊕ · · · ⊕ Cn .

Let {z | ι := eiterator Y , x ∈ X , ys := syncedwith(x , y ∈ ι,b f , cs), z ∈ f (x ,ys)} ⇓ C ′
. Let

Γ0 = [ι 7→ Y]. For 1 ≤ l ≤ n, let Γl−1, syncedwith(x := xl , y ∈ ι, b f (y,x), cs(y,x)) ⇓ Γl ,C
′′
l ;

Γl (ι) == {ul,1, ..., ul,ml }; b f (ul−1, j ,xl) ⇓ vl, j ; cs(ul−1, j ,xl) ⇓ v ′
l, j ; B

′
l == {ul−1, j | 1 ≤ j < i ,

v ′
l, j = true}, D ′

l == {ul−1,i , ..., ul−1,ml−1 }, and Γl (ι) == B′
l ⊕ D ′

l , if vl, j = true or v ′
l, j = true for

1 ≤ j < i and vl,i = false and v ′
l,i = false; B′

l == {ul−1, j | 1 ≤ j < ml−1, v
′
l, j = true}, D ′

l == {}, and

Γl (ι) == B′
l ⊕ D ′

l == B′
l , if vl, j = true or v ′

l, j = true for 1 ≤ j ≤ ml−1; and f (xl ,B
′
l) ⇓ C ′

l . Since b f ,

cs , and f do not update the global store, it is easy to see that C ′ == C ′
1
⊕ · · · ⊕ C ′

n .

Having set the above up, the proof for Part 1 and 2 of the theorem now follows straightforwardly

by induction on l that B′
l == Bl , D

′
l == Dl , C

′
l == Cl , and Γl (ι) == El . For Part 3 of theorem, this

follows from Part 1 of this theorem and Part 1 of Theorem 6.3.

Part 1 to 3 of this theorem are readily generalized to syncmap
2
, syncmap

3
, etc. For example,

syncmap
2
(x ∈ X , y1 ∈ ys1 ⊆ Y1, b f1, cs1, y2 ∈ ys2 ⊆ Y2, b f2, cs2, f) =df {z | ι1 := eiterator Y1,

ι2 := eiterator Y2, x ∈ X , ys1 := syncedwith(x , y1 ∈ ι1, b f1, cs1), ys2 := syncedwith(x , y2 ∈ ι2, b f2,
cs2), z ∈ f (x ,ys1,ys2)}. Thus, all functions which are expressible in NRC1(≤, syncmap, sort) are
expressible in NRC1(≤, eiterator , syncedwith, sort) at the same time complexity. This settles one

direction of Part 4.

For the other direction of Part 4, according to the safe-use constrains, the proof can proceed by

regarding b f , cs , and f as pure expressions. By safe-use Constraint 4, the eiterator and syncedwith
constructs always occur in a form like this: let ι1 := eiterator Y1 in ... let ιh := eiterator Yh in

⋃
{ let

ys1 := syncedwith(u1 := x , y1 ∈ ι1, b f1, cs1) in ... let ysh := syncedwith(uh := x , yh ∈ ιh , b fh , csh)
in f (x , ys1, ..., ysh) | x ∈ X }. This can be translated to syncmaph(x ∈ X , y1 ∈ ys1 ⊆ Y1, b f1, cs1, ...,
yh ∈ ysh ⊆ Yh , b fh , csh , f (x , ys1, ..., ysh)). Thus, all functions which are expressible in NRC1(≤,

eiterator , syncedwith, sort) are also expressible in NRC1(≤, syncmap, sort). This settles the other
direction of Part 4, and also the theorem. �

Having proved Theorem 6.5, a confession is now in order: The safe-use constraints are actu-

ally overly strict. They were imposed earlier to simplify the proof of this theorem. In particular,

Constraint 4 can be and should be relaxed to permit expressions of the form

let ι1 := eiterator e1 in ... let ιh := eiterator eh in
⋃
{ if e ′(x) then let ys1 := syncedwith(u1 := x ,

y1 ∈ ι1, b f1, cs1) in ... let ysh := syncedwith(uh := x , yh ∈ ιh , b fh , csh) in f (x , ys1, ..., ysh) else
{} | x ∈ e}

In this relaxed form, instead of synchronizing ι1, ..., ιh to every x ∈ e , they are synchronized to

just those x ∈ e satisfying e ′(x). This more relaxed version of Contraint 4 can be derived from the

original version via the filter-promotion rule:

let ys := syncedwith(u := x , y ∈ ι, b f , cs) in if e1 then e2 else {} 7→
if e1 then let ys := syncedwith(u := x , y ∈ ι, b f , cs) in e2 else {}
provided ys is not a free variable of e1

This filter-promotion rule is sound and does not increase time complexity. In fact, it often reduces

time complexity.

As shown above, eiterator and syncedwith work together to define a synchronized iteration on

multiple elists. This pair of constructs is hereby called a Synchrony iterator construct: a Synchrony

iterator, which one can think of as ι, is introduced by eiterator and is used in syncedwith. Also, for
this reason, eiterator actually stands for “enchanced iterator” and is pronounced as “iterator.”

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

30 Limsoon Wong

6.3 Efficient interval joins
A remarkable byproduct of endowing comprehension syntax with Synchrony iterator is that

efficient interval joins with overlap predicates are also straightforward to express as well. This type

of joins does not involve any equality test; rather, the join predicates involve testing whether two

“intervals” overlap each other. These joins are commonly encountered when processing temporal

data (e.g., finding events which overlap in time), genomic data (e.g. finding pairs of transcription

factors which have binding sites that are near each other in some gene promoters), and so on.

Relational database systems typically require quadratic time complexity on this type of joins. The

reason is that typical relational database systems could only choose merge-join as the execution

plan when at least one of the join predicates is an equality test; however, as mentioned, this type of

joins has no equality test. For the same reason, relational database systems also could not use an

index-based join execution plan even when indices are available, because database indices facilitate

fast look-up based on equality test. So, relational database systems are typically left with only

nested loops as their execution strategy for this type of joins.

There are specialized algorithms developed in the database community for this kind of joins.

For example, Piatov et. al. [18] recently presented an algorithm for interval joins with overlap

predicates; the algorithm requires a combination of a new data structure, lazy evaluation technique,

and even exploitation of certain features of modern CPU architectures.

So, it is noteworthy that efficient interval joins with overlap predicates come naturally when

comprehension syntax is augmented with Synchrony iterator. Below is an example.

Example 6.6. Suppose there are two relations, X : start × end × id and Y : start × end × id.
Elements in the two relations can be regarded as intervals on a number line. Suppose also that X
and Y are canonical; i.e., they have been sorted in ascending order of the start and end points of

the intervals. Let us also write x .start, x .end, and x .id in place of x .π1, x .π2, and x .π3 for better
readability. Let y overlap x =df (x .start < y.end ≤ x .end) or (x .start ≤ y.start < x .end) or
(y.start < x .end ≤ y.end) or (y.start ≤ x .start < y.end), meaning two intervals x and y overlap.

As X and Y are canonical, the ordering < on start × end × id is trivially monotonic with respective

to them. It is also a quick exercise to see that y overlap x is antimonotonic with respect to <.
Consider the following queries:

• join
4
(X ,Y) =df {(x .id,y.id) | x ∈ X , y ∈ Y , y overlap x , y.end − y.start < x .end − x .start}.

• join′
4
(X ,Y) =df {(x .id,y.id) | ι := eiterator Y , x ∈ X , ys := syncedwith(x ,y ∈ ι,y <

x ,y overlap x), y ∈ ys , y.end − y.start < x .end − x .start}.

Suppose no interval overlaps more than k other intervals. Then, join
4
(X ,Y) = join′

4
(X ,Y) and

time(join
4
(X ,Y)) = Θ(|X | ∗ |Y |), but time(join′

4
(X ,Y)) = O(|X | + |Y |).

As explained earlier, typical relational database systems would also have time complexity Θ(|X | ∗

|Y |) on join
4
. So, it is gratifying that Synchrony iterator enables comprehension syntax to beat

typical relational database systems by achieving linear time complexity O(|X | + |Y |) for join′
4
.

A sharp-eyed reader might realise that the above example implies Synchrony iterator has more

intensional expressive power than a typical relational database system, since the latter seems

to have difficulty realizing efficient interval joins. There is actually some truth in this. Given

a join query f (X ,Y) =df {д(®x , ®y) | ®x ∈ X , ®y ∈ Y , p(®x , ®y)}. The query optimizer of a typical

relational database system tries to decompose this to f1(X ,Y) =df {(®x , ®y) | ®x ∈ X , ®y ∈ Y , cs(®y1, ®x2)}
and f2(X ,Y) =df {д(®x , ®y) | (®x , ®y) ∈ f1(X ,Y), p

′(®x , ®y)}, where p(®x , ®y) iff cs(®y1, ®x1) and p ′(®x , ®y);
cs(®x1, ®y2) is comprised entirely of equality tests; and X is sorted on ®x1 and Y is sorted on ®y1. Then
f1(X ,Y) is executed as a merge join. The merge join [2] is essentially an algorithm equivalent

to mergejoin(cs,X ,Y) =df fold(a := (Y , {}), ®x ∈ X , (dropwhile(®y ∈ a.π1, ®y1 < ®x1), a.π2 ∪ {(®x , ®u) |

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 31

®u ∈ takewhile(®y ∈ dropwhile(®y ∈ a.π1, ®y1 < ®x1), cs(®y1, ®x1))})).π2; where cs(®y1, ®x1) is a join predicate

consisting entirely of equality test. It is not difficult to see thatmergejoin(cs,X ,Y) = syncmap(®x ∈ X ,

®y ∈ ys ⊆ Y , ®y1 < ®x1, cs(®y1, ®x1), {(®x , ®y) | ®y ∈ ys}). In other words, by restricting the cs(®y1, ®x1) predicate
to equality tests, instead of the more general constraint of antimonotonicity, an exact match in

intensional expressiveness between Synchrony iterator and a typical relational database system is

achieved.

Conversely, if the relational database query optimizer is able to decompose a join predicate

p(®x , ®y) into an antimonotonic cs(®y1, ®x1) and a residual p ′(®x , ®y), and replace mergejoin by syncmap,
an exact match in intensional expressiveness can also be achieved. The replacement ofmergejoin by

syncmap requires only an extremely simple change in one step of the usual merge join algorithm in

a relational database system. The merge join [2], in pseudo codes, essentially repeats the following

six steps until all of X and Y have been processed. Step 1: Scan a y from Y and an x from X . Step 2:

Keep scanning and dropping x until cs(®y1, ®x1) or ®y1 < ®x1. Step 3: Keep scanning and dropping y
until cs(®y1, ®x1) or ®y1 > ®x1. Step 4: Put this and subsequent y into a work table whenever cs(®y1, ®x1) is
true, and as long as cs(®y1, ®x1) remains true. Step 5: Output (®x , ®y) for each y in the work table and

each x where cs(®y1, ®x1), until cs(®y1, ®x1) becomes false. Step 6: Empty the work table. To modify this

into syncmap, it is sufficient to change Step 4 into Step 4’: Put this and subsequent y into a work

table whenever cs(®y1, ®x1) is true, as long as either ®y1 < ®x1 or cs(®y1, ®x) is true.

7 CLOSING REMARKS
The impedance mismatch problem between databases and programming languages has been

highlighted three decades ago [7]. It refers to the difficulties of integrating database query-like

feature and capability into a programming language. Some has regarded the use of comprehension

syntax [3] as a breakthrough for this problem [6]. Indeed, comprehension syntax provides an

iteration construct that is simple enough for programming with collection data types that data

objects of a database have been mapped to, and explicit enough to admit a direct translation to the

query language of the database, thereby permitting queries to the database to be embedded simply

and naturally into a programming language.

However, comprehension syntax is also widely adopted in modern programming languages—

e.g., Python [10] and Scala [17]— as an easy-to-use means for manipulating collection types in

general. For this purpose, the collection objects are created within a program or do not come from

a database system, and queries written in comprehension syntax for manipulating these objects are

not translated to the query language of an underlying database system for execution. In such a

setting, programs written in comprehension syntax typically correspond to nested loops.

This gives rise to an intriguing disparity. Many queries when translated to their database equiva-

lent can be executed by the underlying database system very efficiently. Yet when they are executed

directly as comprehension syntax, they are not efficient at all. Consider this query as an example,

{(x .dept ,x .stf) | x ∈ DeptStaff , y ∈ Staff , x .stf = y.stf , y.age > 65} which retrieves depart-

ments and their staff who are above 65 years old. Suppose a staff typically belongs to only one

department. This query would then be a low-selectivity join. It typically would be executed by

a database system, via e.g. a merge join [2], with time complexity Θ(n +m) assuming the inputs

DeptStaff and Staff have size n andm and are both sorted by their stf field; or with time complexity

Θ(n log(n) +m log(m)) if sorting is required. In contrast, the same query would typically has time

complexity Θ(n ∗m) natively in the programming language. Even if a filter promotion is applied

(and ignoring the change in the appearance of the output) to optimize the query to {(x .dept ,x .stf) |
y ∈ Staff , y.age > 65, x ∈ DeptStaff , x .stf = y.stf }, this optimized query still has quadratic time

complexity Θ(д ∗ n ∗m), for some 0 ≤ д ≤ 1, natively in the programming language.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

32 Limsoon Wong

This linear-vs-quadratic time complexity difference of low-selectivity joins can be called an

intensional expressiveness gap between comprehension syntax and database systems. That is, it

is a gap between the algorithms that can be expressed using comprehension syntax and database

systems. As far as relational database system is concerned, the low-selectivity join, the relational

intersection, and the relational difference appear to be the only intensional expressiveness gap as all

other relational query operators, as well as high-selectivity joins, in the absence of database indices

on the input relations, have similar time complexity whether executed by a relational database

system or in the programming language directly as queries in comprehension syntax.

It has been open whether this intensional expressiveness gap is a real gap; i.e., there might

exist some clever way to implement low-selectivity joins efficiently using comprehension syntax.

As the first main result of this paper, this intensional expressiveness gap is proved by showing

that all subquadratic algorithms expressible using pure comprehension syntax cannot compute

low-selectivity joins. In fact, as shown in the second main result of this paper, even allowing some

functions—viz. takewhile and dropwhile, fold, or zip—commonly available in the collection-type

function libraries of programming languages, to be used with comprehension syntax, all expressible

subquadratic algorithms still cannot compute low-selectivity joins in general.

It is a natural follow-up question on what exactly is missing from comprehension syntax that

prevents efficient algorithms for low-selectivity joins to be expressed. As the third main result of

this paper, this intensional expressiveness gap is charaterized in a precise way by identifying a

new programming construct to be used with comprehension syntax. This is the Synchrony iterator

construct for expressing synchronized iterations on multiple collection objects. A construct for

generalized iteration on multiple collection objects in synchrony appears to be a conceptually novel

choice, because practically all functions commonly provided in the function libraries of program-

ming languages involve iteration on a single collection object. This Synchrony iterator construct is

shown to fill the gap exactly. In particular, adding this construct does not change the functions

that are expressible using pure comprehension syntax, and yet enables the realization of efficient

low-selectivity joins. Moreover, the Synchrony iterator construct dovetails rather appealingly with

comprehension syntax, so that efficient queries written with the help of Synchrony iterators often

do not look too different from their inefficient pure comprehension-syntax equivalents.

The proof of the intensional expressiveness gap uses a novel limited-mixing lemma. The lemma

shows that all subquadratic-time queries in comprehension syntax are only able to mix atomic

objects in their input in very limited ways. This lemma is further extended in the presence of

takewhile and dropwhile, and zip, as well as in the presence of fold. These limited-mixing lemmas are

of independent interest, and constitute the fourth main contribution of this paper. Most past works

on intensional expressive power are query specific. Just to cite a couple of examples, Abiteboul and

Vianu [1] showed that there is no “generic machine” for computing the parity query in PTIME; and

Suciu and Paredaens [19] showed that the transitive closure of a long chain can only be computed

in the complex object algebra of Abiteboul and Beeri using exponential space. A notable non-query-

specific intensional expressiveness result is that of Wong [25], who showed that all queries on a

general class of structures, which includes deep trees and long chains, in a nested relational calculus

augmented with a powerset operator are either already expressible in the calculus without using

the powerset operator, or must use an exponential amount of space. Furthermore, most previous

results on intensional expressive power, such as those mentioned above, are for query languages

without ordered data types. The limited-mixing lemmas in this paper stand out in comparison

to these results in two aspects. Firstly, the limited-mixing lemmas are non-query specific; they

apply to all queries of subquaratic time complexity in the respective query languages. Secondly, the

limited-mixing lemmas are valid in the presence of ordered data types. The limited-mixing lemmas

thus greatly enrich the repertoire of techniques for studying intensional expressive power. The

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 33

limited-mixing lemmas are also useful intensional counterparts to Gaifman’s locality property [8].

Gaifman’s locality property is useful for analyzing the extensional and intensional expressive

power [11, 13, 25] of query languages on unordered data types. However, it is effectively useless on

ordered data types and on query languages with a fold-like function. Limited-mixing lemmas do

not have these limitations.

The Synchrony iterator construct syncedwith(x := e,y ∈ ι,b f , cs) seems to clarify two concepts

required for specifying general algorithms formerging two collections or for synchronized iterations

on two collections. The predicate b f (y,x), with its associated monotonicity conditions, intuitively

corresponds to the concept of “y is before x .” That is, for y and x coming from two collections to be

merged, b f (y,x) means y should come before x in the merge result. Hence, b f (y,x) serves as a
general bridge for establishing the relative positions of objects in two collections of potentially

different types. The predicate cs(y,x), with its associated antimonotonicity conditions, intuitively

corresponds to the concept of “y can see x .” That is, for y and x coming from two collections

to be synchronized, cs(y,x) means a synchronization point has been found and the pair (x ,y)
should be acted upon. The two antimonotonicity conditions associated with cs(y,x) is worth
further highlighting. Given two collections X and Y , where b f (y,x) is monotonic and cs(y,x) is
antimonotonic on them; and x ∈ X and y ∈ Y . The first antimonotonicity condition states that

b f (y,x) and not cs(y,x) implies not cs(y,x ′) for all x ′
that appear after x in X . This means y can be

safely discarded, as every item that it can potentially be synchronized with has already been seen.

The second antimonotonicity condition states that not b f (y,x) and not cs(y,x) implies not cs(y ′,x)
for all y ′

that appear after y in Y . This means x can be safely discarded, as every item that it can

potentially be synchronized with has already been seen. Therefore, they can be thought of as a pair

of rules for shifting and discarding elements in X and Y as these two collections are being iterated

on in synchrony. Such a pair of rules seems intrinsic to merge-like algorithms, and can perhaps

serve as a general characterization of what merge-like algorithms are. Indeed, efficient interval

joins with overlap predicates, which are not supported well in database systems, are obtained for

free using Synchrony iterator as shown earlier.

Finally, here is a small advertisement: Synchrony iterator has been implemented in Python and

Scala. These implementations are available at https://www.comp.nus.edu.sg/~wongls/projects/

synchrony.

ACKNOWLEDGMENTS
The concept of Synchrony iterators (and Synchrony fold, which is not discussed here) is evolved

from a talk that Stefano Ceri invited me to give at the GeCO Workhop on Challenges in Data-

Driven Genomic Computing, held in Como, Italy in March 2019. The concept was subsequently

refined through discussions with Val Tannen and Stefano Perna. Jeremy Gibbons and several others

suggested combinations of takewhile, dropwhile, and fold as possible alternatives to Synchrony

iterators. The work on this paper is partially motivated by a desire to clarify the virtues of Synchrony

iterators over such alternatives. Incidentally, it was Peter Buneman who conjectured that zip, which
is a prototypical low-selectivity join, could only be defined using comprehension syntax at quadratic

time complexity; this was communicated to me two and half decades ago by Stijn Vansummeren,

and apparently have remained open till it is settled here in Proposition 4.2. I am grateful to all

of them for their role in the genesis of this work. I am indebted to Jan Van den Bussche, who

carefully read a draft of this paper and provided many constructive comments; this paper is much

more complete and rigorous due to his effort. I thank also Kian Lee Tan and Chee Yong Chan for

highlighting the practical connection for using Synchorny iterator to realize efficient interval joins;

Synchrony iterator is made more appealing because of their insight.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

https://www.comp.nus.edu.sg/~wongls/projects/synchrony
https://www.comp.nus.edu.sg/~wongls/projects/synchrony

34 Limsoon Wong

This work was supported by National Research Foundation, Singapore, under its Synthetic

Biology Research and Development Programme (Award No: SBP-P3); by Ministry of Education,

Singapore, Academic Research Fund Tier-1 (Award No: MOE T1 251RES1725); and by a Kwan

Im Thong Hood Cho Temple Chair Professorship. Any opinions, findings, and conclusions or

recommendations expressed in this material are mine, and do not reflect the views of these grantors.

REFERENCES
[1] Serge Abiteboul and Victor Vianu. 1991. Generic Computation and its Complexity. In Proceedings of 23rd ACM

Symposium on the Theory of Computing. 209–219.
[2] M. Blasgen and K. Eswaran. 1977. Storage and Access in Relational Databases. IBM Systems Journal 16, 4 (1977),

363–377.

[3] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong. 1994. Comprehension Syntax. SIGMOD
Record 23, 1 (March 1994), 87–96.

[4] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. 1995. Principles of Programming with Complex

Objects and Collection Types. Theoretical Computer Science 149, 1 (September 1995), 3–48.

[5] E. F. Codd. 1972. Relational completeness of data base sublanguages. In Data Base Systems, R. Rustin (Ed.). Prentice-Hall,

65–98.

[6] Ezra Cooper. 2009. The script-writer dream: How to write great SQL in your own language, and be sure it will succeed.

In Proceedings of 12th International Symposium on Database Query Languages. Lyon, France, 36–51.
[7] George Copeland and David Maier. 1984. Making Smalltalk A Database System. In Proceedings of ACM-SIGMOD 84.

Boston, MA, 316–325.

[8] Haim Gaifman. 1982. On Local and Non-local Properties. In Proceedings of the Herbrand Symposium, Logic Colloquium
’81. North Holland, 105–135.

[9] Martin Grohe and Thomas Schwentick. 2000. Locality of order-invariant first-order formulas. ACM Transactions on
Computational Logic 1, 1 (July 2000), 112–130.

[10] John V. Guttag. 2016. Introduction to Computation and Programming Using Python: With Application to Understanding
Data. MIT Press.

[11] Lauri Hella, Leonid Libkin, and Juha Nurmonen. 1999. Notions of Locality and their Logical Characterizations over

Finite Models. Journal of Symbolic Logic 64, 4 (1999), 1751–1773.
[12] Dirk Leinders and Jan Van den Bussche. 2007. On the complexity of division and set joins in the relational algebra. J.

Comput. System Sci. 73, 4 (June 2007), 538–549.
[13] Leonid Libkin. 1997. On the Forms of Locality Over Finite Models. In Proceedings of 12th IEEE Symposium on Logic in

Computer Science. 204–215.
[14] Leonid Libkin and Limsoon Wong. 1994. Aggregate Functions, Conservative Extension, and Linear Orders. In

Proceedings of 4th International Workshop on Database Programming Languages, New York, August 1993, Catriel Beeri,
Atsushi Ohori, and Dennis E. Shasha (Eds.). Springer-Verlag, 282–294. See also UPenn Technical Report MS-CIS-93-36.

[15] Leonid Libkin and Limsoon Wong. 1994. Conservativity of Nested Relational Calculi with Internal Generic Functions.

Inform. Process. Lett. 49, 6 (March 1994), 273–280.

[16] Leonid Libkin and Limsoon Wong. 1997. Query Languages for Bags and Aggregate Functions. J. Comput. System Sci.
55, 2 (October 1997), 241–272.

[17] Martin Odersky, Lex Spoon, and Bill Venners. 2019. Programming in Scala: A Comprehensive Step-by-Step Guide. Artima

Inc.

[18] Danila Piatov, Sven Helmer, and Anton Dignos. 2016. An interval join optimized for modern hardware. In Proceedings
of 32nd IEEE International Conference on Data Engineering. 1098–1109.

[19] Dan Suciu and Jan Paredaens. 1997. The complexity of the evaluation of complex algebra expressions. Journal of
Computer and Systems Sciences 55, 2 (October 1997), 322–343.

[20] Dan Suciu and LimsoonWong. 1995. On Two Forms of Structural Recursion. In LNCS 893: Proceedings of 5th International
Conference on Database Theory. Springer-Verlag, Prague, 111–124.

[21] S. J. Thomas and P. C. Fischer. 1986. Nested Relational Structures. JAI Press, London, England, 269–307.
[22] W. Wechler. 1992. Universal Algebra for Computer Scientists. EATCS Monograph on Theoretical Computer Science,

Vol. 25. Springer-Verlag, Berlin.

[23] Limsoon Wong. 1996. Normal Forms and Conservative Extension Properties for Query Languages over Collection

Types. J. Comput. System Sci. 52, 3 (June 1996), 495–505.
[24] Limsoon Wong. 2000. Kleisli, a Functional Query System. Journal of Functional Programming 10, 1 (2000), 19–56.

[25] Limsoon Wong. 2013. A dichotomy in the intensional expressive power of nested relational calculi augmented with

aggregate functions and a powerset operator. In Proceedings of 32nd ACM Symposium on Principles of Database Systems.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

Addressing an intensional expressiveness gap of comprehension syntax 35

New York, 285–295.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

	Abstract
	1 Overview
	2 Nested Relational Calculus
	2.1 Types and expressions
	2.2 Operational semantics
	2.3 Rewrite rules

	3 A limited-mixing lemma
	4 Intensional expressiveness gap
	5 Non-solutions
	5.1 Adding takewhile and dropwhile
	5.2 Adding fold
	5.3 Adding zip

	6 Synchrony iterators
	6.1 Capturing the gap
	6.2 Dovetailing into comprehension syntax
	6.3 Efficient interval joins

	7 Closing remarks
	Acknowledgments
	References

