
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, ?? pages, 2020. c© Cambridge University Press 2020 1
doi:10.1017/xxxxx

Iterating on multiple collections in synchrony

STEFANO PERNA
Department of Computer Science,
National University of Singapore

(e-mail: dcsstef@nus.edu.sg)

VAL TANNEN
Department of Computer and Information Science,

University of Pennsylvania
(e-mail: val@cis.upenn.edu)

LIMSOON WONG
Department of Computer Science,
National University of Singapore

(e-mail: wongls@comp.nus.edu.sg)

Abstract

Modern programming languages typically provide some form of comprehension syntax which
renders programs manipulating collection types more readable and understandable. However, com-
prehension syntax corresponds to nested loops in general. There is no simple way of using it to
express efficient general synchronized iterations on multiple ordered collections, such as linear-time
algorithms for low-selectivity database joins. Synchrony fold is proposed here as a novel characteri-
zation of synchronized iteration. Central to this characterization is a monotonic isBefore predicate
for relating the orderings on the two collections being iterated on, and an antimonotonic canSee

predicate for identifying matching pairs in the two collections to synchronize and act on.
A restriction is then placed on Synchrony fold, cutting its extensional expressive power to match

that of comprehension syntax, giving us Synchrony generator. Synchrony generator retains sufficient
intensional expressive power for expressing efficient synchronized iteration on ordered collections. In
particular, it is proved to be a natural generalization of the database merge join algorithm, extending
the latter to more general database joins. Finally, Synchrony iterator is derived from Synchrony gen-
erator as a novel form of iterator. While Synchrony iterator has the same extensional and intensional
expressive power as Synchrony generator, the former is better dovetailed with comprehension syn-
tax. Thereby, algorithms requiring synchronized iterations on multiple ordered collections, including
those for efficient general database joins become expressible naturally in comprehension syntax.

1 Introduction

Comprehension syntax, together with simple appeals to library functions, usually provides
clear, understandable and short programs. Such a programming style for collection manip-
ulation avoids loops and recursion as these are regarded as harder to understand and more
error-prone. However, current collection-type function libraries appear lacking direct sup-
port that takes effective advantage of a linear ordering on collections for programming

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2 Stefano Perna, Val Tannen, and Limsoon Wong

in the comprehension style, even when such an ordering can often be made available by
sorting the collections at a linearithmic overhead. We do not argue that these libraries lack
expressive power extensionally, as the functions that interest us on ordered collections are
easily expressible in the comprehension style. However, they are expressed inefficiently
in such a style. We give a practical example in Section 2. We sketch in Section 3 proofs
that, under a suitable formal definition of the restriction that gives the comprehension style,
efficient algorithms for low-selectivity database joins, for example, cannot be expressed.
Moreover, in this setting, these algorithms remain inexpressible even when access is given
to any single library function such as foldLeft, takeWhile, dropWhile, and zip.

We proceed to fill this gap through several results on the design of a suitable collection-
type function. We notice that most functions in these libraries are defined on one collection.
There is no notion of any form of general synchronized traversal of two or more collections
other than zip-like mechanical lock-step traversal. This seems like a design gap: synchro-
nized traversals are often needed in real-life applications and, for an average programmer,
efficient synchronized traversals can be hard to implement correctly.

Intuitively, a “synchronized traversal” of two collections is an iteration on two collec-
tions where the “moves” on the two collections are coordinated, so that the current position
in one collection is not too far from the current position in the other collection; i.e., from
the current position in one collection, one “can see” the current position in the other collec-
tion. However, defining the idea of “position” based on physical position, as in zip, seems
restrictive. So, a more flexible notion of position is desirable. A natural and logical choice
is that of a linear ordering relating items in the two collections; i.e. a linear ordering on the
union of the two ordered collections. Also, given two collections which are sorted accord-
ing to the linear orderings on their respective items, a reasonable new linear ordering on
the union should respect the two linear orderings on the two original collections; i.e. given
two items in an original collection where the first “is before” the second in the original
collection, then the first should be before the second in the linear ordering defined on the
union of the two collections.

Combining the two motivations above, our main approach to reducing the complexity
of the expressed algorithms is to traverse two or more sorted collections in a synchronized
manner, taking advantage of relationships between the linear orders on these collections.
The following summarizes our results.

An addition to the design of collection-type function libraries is proposed in Section 4.
It is called Synchrony fold. Some theoretical conditions, viz. monotonicity and antimono-
tonicity, that characterize efficient synchronized iteration on a pair of ordered collections
are presented. These conditions ensure the correct use of Synchrony fold. Synchrony fold
is then shown to address the intensional expressive power gap articulated above.

Synchrony fold has the same extensional expressive power as foldLeft; it thus captures
functions expressible by comprehension syntax augmented with typical collection-type
function libraries. Because of this, Synchrony fold is not sufficiently precisely filling the
intensional expressive power gap for comprehension syntax sans library function. A restric-
tion to Synchrony fold is proposed in Section 5. This restricted form is called Synchrony
generator. It has exactly the same extensional expressive power as comprehension syntax
without any library function, but it has the intensional expressive power to express efficient

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Iterating on multiple collections in synchrony 3

algorithms for low-selectivity database joins. Synchrony generator is further shown to cor-
respond to a rather natural generalization of the database merge join algorithm (Blasgen
& Eswaran, 1977; Mishra & Eich, 1992). The merge join was proposed half a century
ago, and has remained as a backbone algorithm in modern database systems for processing
equijoin and some limited form of non-equijoin (Silberschatz et al., 2016), especially when
the result has to be outputted in a specified order. Synchrony generator generalizes it to the
class of non-equijoin whose join predicate satisfies certain antimonotonicity conditions.

Previous works have proposed alternative ways for compiling comprehension syntax,
to enrich the repertoire of algorithms expressible in the comprehension style. For exam-
ple, Wadler & Peyton Jones (2007) and Gibbons (2016), have enabled many relational
database queries to be expressed efficiently under these refinements to comprehension
syntax. However, these refinements only took equijoin into consideration; non-equijoin
remains inefficient in comprehension syntax. In view of this and other issues, an itera-
tor form—called Synchrony iterator—is derived from Synchrony generator in Section 6.
While Synchrony iterator has the same extensional and intensional expressive power as
Synchrony generator, it is more suitable for use in synergy with comprehension syntax.
Specifically, Synchrony iterator makes efficient algorithms for simultaneous synchronized
iteration on multiple ordered collections expressible in comprehension syntax.

Last but not least, Synchrony fold, Synchrony generator, and Synchrony iterator have an
additional merit compared to other codes for synchronized traversal of multiple sorted col-
lections. Specifically, they decompose such synchronized iterations into three orthogonal
aspects, viz. relating the ordering on the two collections, identifying matching pairs, and
acting on matching pairs. This orthogonality arguably makes for a more concise and pre-
cise understanding and specification of programs, hence improved reliability, as articulated
by Schmidt (1986), Sebesta (2010) and Hunt & Thomas (2000).

2 Motivating example

Let us first define events as a data type.1 An event has a start and an end point, where start

< end, and typically has some additional attributes (e.g., an id) which do not concern us
for now; cf. Figure 1. Events are ordered lexicographically by their start and end point: If
an event y starts before an event x, then the event y is ordered before the event x; and when
both events start together, the event which ends earlier is ordered before the event which
ends later. Some predicates can be defined on events; e.g., in Figure 1, isBefore(y, x) says
event y is ordered before event x, and overlap(y, x) says events y and x overlap each other.

Consider two collections of events, xs: Vec[Event] and ys: Vec[Event], where Vec[·]
denotes a generic collection type, e.g., a vector.2 The function ov1(xs, ys), defined in

1 Scala (Odersky et al., 2019) is used in this paper as the ambient language for a concrete discussion.
2 In this paper, for convenience, Vec[·] is taken as the Scala Vector[·]. This allows us to assume postpends
:+ and :++ are constant/linear time in their right argument, and preprends +: and ++: are constant/linear time
in their left argument. It is fine to take Vec[·] as List[·]; in this case, the postpends should be swapped
by prepends, and some reverse has to be inserted into some of the codes. These list-specific details are not
germane to understanding the key ideas of this paper. Hence, we adopt vectors as our generic collection type
in general. Nonetheless, when we reach the final description of our last result, Synchrony iterator, at the end of
Section 6.1, we will use concrete collection types, including an instance of list.

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 Stefano Perna, Val Tannen, and Limsoon Wong

case class Event(start: Int , end: Int , id: String)
// Constraint : start < end

val isBefore = (y: Event , x: Event) => {
(y.start < x.start) ||
(y.start == x.start && y.end < x.end)

}

val overlap = (y: Event , x: Event) => {
(x.start < y.end && y.start < x.end)

}

def ov1(xs: Vec[Event], ys: Vec[Event]) = {
for (x <- xs; y <- ys; if overlap(y, x)) yield (x, y)

}

def ov2(xs: Vec[Event], ys: Vec[Event]) = {
// Requires: xs and ys sorted lexicographically by (start , end).
def aux(

xs: Vec[Event], ys: Vec[Event],
zs: Vec[Event], acc: Vec[(Event , Event)])

: Vec[(Event , Event)] =
// Key Invariant : aux(xs , ys , Vec(), acc) = acc ++ ov1(xs , ys)
if (xs.isEmpty) acc
else if (ys.isEmpty && zs.isEmpty) acc
else if (ys.isEmpty) aux(xs.tail , zs, Vec(), acc)
else {

val (x, y) = (xs.head , ys.head)
(isBefore(y, x), overlap(y, x)) match {

case (true , false) => aux(xs, ys.tail , zs, acc)
case (false , false) => aux(xs.tail , zs ++: ys, Vec(), acc)
case (_, true) => aux(xs, ys.tail , zs :+ y, acc :+ (x, y))
}

}
aux(xs , ys, Vec(), Vec ())

}

Fig. 1. A motivating example. The funtions ov1(xs, ys) and ov2(xs, ys) are equal on inputs xs

and ys which are sorted lexicographically by their start and end point. While ov1(xs, ys) has
quadratic time complexity O(|xs| · |ys|), ov2(xs, ys) has time complexity O(|xs|+ k|ys|) when
each event in ys overlaps fewer than k events in xs.

Figure 1, retrieves the events in xs and ys that overlap each other. Although this com-
prehension syntax-based definition has the important virtue of being clear and succinct, it
has quadratic time complexity O(|xs| · |ys|). An alternative implementation ov2(xs, ys) is
given in Figure 1 as well. On xs and ys which are sorted lexicographically by (start, end),
ov1(xs, ys) = ov2(xs, ys). Notably, the time complexity of ov2(xs, ys) is O(|xs|+ k|ys|),
provided each event in ys overlaps fewer than k events in xs. The proofs for these claims
will become obvious later, from Theorem 4.4.

The function ov1(xs, ys) exemplifies a database join, and the join predicate is
overlap(y, x). Joins are ubiquitous in database queries. Sometimes, a join predicate is
a conjunction of equality tests; this is called an equijoin. However, when a join predicate
comprises entirely of inequality tests, it is called a non-equijoin; overlap(y, x) is a spe-
cial form of non-equijoin which is sometimes called an interval join. Non-equijoin is quite
common in practical applications. For example, given a database of taxpayers, a query

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

Iterating on multiple collections in synchrony 5

retrieving all pairs of taxpayers where the first earns more but pays less tax than the second
is an interval join. As another example, given a database of mobile phones and their prices,
a query retrieving all pairs of competing phone models (i.e. the two phone models in a pair
are priced close to each other) is another special form of non-equijoin called a band join.

Returning to ov1(xs, ys) and ov2(xs, ys), the upper bound k on the number of events in
xs that an event in ys can overlap with is called the selectivity of the join.3 When restricted
to xs and ys which are sorted by their start and end point, ov1(xs, ys) and ov2(xs, ys)

define the same function. However, their time complexity is completely different. The
time complexity of ov1(xs, ys) is quadratic. On the other hand, the time complexity of
ov2(xs, ys) is a continuum from linear to quadratic, depending on the selectivity k. In a
real-life database query, k is often a very small number, relative to the number of entries
being processed. So, in practice, ov2(xs, ys) is linear.

The definition ov1(xs, ys) has the advantage of being obviously correct, due to its being
expressed using easy-to-understand comprehension syntax. Whereas, ov2(xs, ys) is likely
to take even a skilled programmer much more effort to get right. This example is one
of many functions having the following two characteristics. Firstly, these functions are
easily expressible in a modern programming language using only comprehension syntax.
However, this usually results in a quadratic or higher time complexity. Secondly, there are
linear-time algorithms for these functions. Yet, there is no straightforward way to provide
linear-time implementation for these functions using comprehension syntax without using
more sophisticated features of the programming language and its collection-type libraries.

The proof for this intensional expressiveness gap in a simplified theoretical setting is
outlined in the next section and is shown in full in a companion paper (Wong, 2021). It is
the main objective of this paper to fill this gap as simply as possible.

3 Intensional expressiveness gap

As alluded to earlier, what we call extensional expressive power in this paper refers to the
class of mappings from input to output that can be expressed, as in Fortune et al. (1983)
and Felleisen (1991). In particular, so long as two programs in a language L produce the
same output given the same input, even when these two programs differ greatly in terms of
time complexity, they are regarded as expressing (implementing) the same function f , and
are thus equivalent and mutually substitutable.

However, we focus here on improving the ability to express algorithms, that is, on inten-
sional expressive power. Specifically, as in many past works (Abiteboul & Vianu, 1991;
Biskup et al., 2004; Van den Bussche, 2001; Colson, 1991; Suciu & Paredaens, 1997; Suciu
& Wong, 1995; Wong, 2013), we approach this in a coarse-grained manner by considering
the time complexity of programs. In particular, an algorithm which implements a function
f in L is considered inexpressible in a specific setting if every program implementing f
in L under that setting has a time complexity higher than this algorithm.

Since Scala and other general programming languages are Turing complete, in order
to capture the class of programs that we want to study with greater clarity, a restriction

3 The results in this work remain valid when k is defined instead as the average number (rounded up to a whole
number) of events in xs that an event in ys overlaps with.

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6 Stefano Perna, Val Tannen, and Limsoon Wong

needs to be imposed. Informally, user-programmers4 are allowed to use comprehension
syntax, collections, and tuples; but they are not allowed to use while-loops, recursion, and
nested collections; and they are not allowed to define new data types and new higher-
order functions (a higher-order function is a function whose result is another function or
is a nested collection.) They are also not allowed to call functions in the collection-type
function libraries of these programming languages, unless specifically permitted.

This is called the “first-order restriction.” Under this restriction, following Suciu &
Wong (1995), when a user-programmer is allowed to use a higher-order function from a
collection-type library, e.g., foldLeft(e)(f), the function f which is user-defined can only
be a first-order function. A way to think about this restriction is to treat higher-order library
functions as a part of the syntax of the language, rather than as higher-order functions.

Under such a restriction, some functions may become inexpressible; and even when
a function is expressible, its expression may correspond to a drastically inefficient algo-
rithm (Biskup et al., 2004; Suciu & Paredaens, 1997; Wong, 2013). In terms of extensional
expressive power, the first-order restriction of our ambient language, Scala, is easily seen to
be complete with respect to flat relational queries (Buneman et al., 1995; Libkin & Wong,
1997), which are queries that a relational database system supports (such as joins). The
situation is less clear from the perspective of intensional expressive power.

This section outlines results suggesting that Scala under the first-order restriction cannot
express efficient algorithms for low-selectivity joins, and that this remains so even when
a programmer is permitted to access some functions in Scala’s collection-type libraries.
Formal proofs are provided in a companion paper (Wong, 2021).

To capture the first-order restriction on Scala, consider the nested relational calculus
N RC of Wong (1996). N RC is a simply-typed lambda calculus with Boolean and
tuple types and their usual associated operations; set types, and primitives for empty set,
forming singleton sets, union of sets, and flatMap for iterating on sets;5 and base types with
equality tests and comparison tests. Replace its set type with linearly ordered set types, and
assume that ordered sets, for computational complexity purposes, are traversed in order in
linear time; this way, ordered sets can be thought of as lists. The replacement of set types by
linearly ordered set types does not change the nature of N RC in any drastic way, because
N RC can express a linear ordering on any arbitrarily deeply nested combinations of tuple
and set types given any linear orderings on base types; cf. Libkin & Wong (1994). Next,
restrict the language to its flat fragment; i.e., nested sets are not allowed. This restriction
has no impact on the extensional expressive power of N RC with respect to functions on
non-nested sets, as shown by Wong (1996). Denote this language as N RC 1(≤), where
the permitted extra primitives are listed explicitly between the brackets.

4 In this paper, we separate an implementer-programmer who implements programming constructs and library
functions from a user-programmer who uses these. The former has access to all features of the programming
language. The latter, in the context of this paper, is restricted to Scala under the first-order constraint plus specif-
ically permitted library functions which the former provides. When we say a programmer, we refer to either
programmer. So, in this paper, the implementer-programmer is the one implementing the proposed Synchrony
fold, Synchrony generator, and Synchrony iterator. And the user-programmer is the one implementing the
examples ovi, ovCount, mtgi, etc.

5 FlatMap is Scala’s terminology. It is also known as bind in the Haskell parlance.

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Iterating on multiple collections in synchrony 7

Some terminologies are needed for stating the results. To begin, by an object, we
mean the value of any combination of base types, tuples, and sets that is constructible
in N RC 1(≤).

A level-0 atom of an object C is a constant c which has at least one occurrence
in C that is not inside any set in C. A level-1 atom of an object C is a constant c
which has at least one occurrence in C that is inside a set. The notations atom0(C),
atom1(C), and atom≤1(C) respectively denote the set of level-0 atoms of C, the set of
level-1 atoms of C, and their union. The level-0 molecules of an object C are the sets in
C. The notation molecule0(C) denotes the set of level-0 molecules of C. E.g., suppose
C = (c1, c2, {(c3, c4), (c5, c6)}); then atom0(C) = {c1, c2}, atom1(C) = {c3, c4, c5, c6},
atom≤1(C) = {c1, c2, c3, c4, c5, c6}, and molecule0(C) = {{(c3, c4), (c5, c6)}}.

The level-0 Gaifman graph of an object C is defined as an undirected graph gaifman0(C)

whose nodes are the level-0 atoms of C, and edges are all the pairs of level-0 atoms of C.
The level-1 Gaifman graph of an object C is defined as an undirected graph gaifman1(C)

whose nodes are the level-1 atoms of C, and the edges are defined as follow: If C = {C1,
..., Cn}, the edges are pairs (x, y) such that x and y are in the same atom0(Ci) for some
1≤ i≤ n; if C = (C1, ..., Cn), the edges are pairs (x, y)∈ gaifman1(Ci) for some 1≤ i≤ n;
and there are no other edges. The Gaifman graph of an object C is defined as gaifman(C) =

gaifman0(C)∪ gaifman1(C); cf. Gaifman (1982).
Let e(~X) be an expression e whose free variables are ~X . Let e[~C/~X] denote the closed

expression obtained by replacing the free variables ~X by the corresponding objects ~C. Let
e[~C/~X] ⇓C′ mean the closed expression e[~C/~X] evaluates to the object C′; the evaluation
is performed according to a typical call-by-value operational semantics (Wong, 2021).

It is shown by Wong (2021) that N RC 1(≤) expressions can only manipulate their
input in highly restricted local manners. In particular, expressions which have at most
linear time complexity are able to mix level-0 atoms with level-0 and level-1 atoms, but
are unable to mix level-1 atoms with themselves.

Lemma 3.1 (Wong (2021), Lemma 3.1). Let e(~X) be an expression in N RC 1(≤). Let
objects ~C have the same types as ~X, and e[~C/~X] ⇓C′. Suppose e(~X) has at most linear time
complexity with respect to the size of ~X.6 Then for each (u, v)∈ gaifman(C′), either (u, v)∈
gaifman(~C), or u∈ atom0(~C) and v∈ atom1(~C), or u∈ atom1(~C) and v∈ atom0(~C).

Here is a grossly simplified informal argument to provide some insight on this “limited-
mixing” lemma. Consider an expression X flatMap f , where X is the variable representing
the input collection and f is a function to be performed on each element of X in the usual
manner of flatMap. Then, the time complexity of this expression is O(n · f̂), where n is
the number of items in X and O(f̂) is the time complexity of f . Clearly, O(n · f̂) can be
linear only when O(f̂) = O(1). Intuitively, this means f cannot have a subexpression of
the form X flatMap g. Since flatMap is the sole construct in N RC 1(≤) for accessing and
manipulating the elements of a collection, when f is passed an element of X , there is no
way for it to access a different element of X if f does not have a subexpression of the form
X flatMap g. So, it is not possible for f to mix the components from two different elements

6 In this work, all mentions of time complexity are with respect to input size.

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8 Stefano Perna, Val Tannen, and Limsoon Wong

of X . Unavoidably, many details are swept under the carpet in this informal argument, but
are taken care of by Wong (2021).

This limited-mixing handicap remains when the language is further augmented with
typical functions—such as dropWhile, takeWhile, and foldLeft—in collection-type libraries
of modern programming languages. Even the presence of a fictitious operator, sort, for
instantaneous sorting, cannot rescue the language from this handicap.

Lemma 3.2 (Wong (2021), Lemma 5.1). Let e(~X) be an expression in N RC 1(≤,
takeWhile, dropWhile, sort). Let objects ~C have the same types as ~X, and e(~C/~X) ⇓C′.
Suppose e(~X) has at most linear time complexity. Then there is a number k that depends
only on e(~X) but not on ~C, and a set A⊆ atom≤1(~C) where |A| ≤ k, and for each
(u, v)∈ gaifman(C′), either (u, v)∈ gaifman(~C), or u∈ atom0(~C) and v∈ atom1(~C), or
u∈ atom1(~C) and v∈ atom0(~C), or u∈ A and v∈ atom1(~C), u∈ atom1(~C) and v∈ A.

Lemma 3.3 (Wong (2021), Lemma 5.4). Let e(~X) be an expression in N RC 1(≤,
foldLeft, sort). Let objects ~C have the same types as ~X, and e(~C/~X) ⇓C′. Suppose e(~X)

has at most linear time complexity. Then there is a number k that depends only on e(~X) but
not on ~C, and a set A⊆ atom≤1(~C) where |A| ≤ k, such that for each (u, v)∈ gaifman(C′),
either (u, v)∈ gaifman(~C), or u∈ atom0(~C) and v∈ atom1(~C), or u∈ atom1(~C) and v∈
atom0(~C), or u∈ A and v∈ atom1(~C), or v∈ A and u∈ atom1(~C).

The inexpressibility of efficient algorithms for low-selectivity joins in N RC 1(≤),
N RC 1(≤, takeWhile, dropWhile, sort), and N RC 1(≤, foldLeft, sort) can be deduced
from Lemmas 3.1, 3.2, and 3.3. The argument for N RC 1(≤, foldLeft, sort) is provided
here as an illustration. Let zip(xs, ys) be the query that pairs the ith element in xs with
the ith element in ys, assuming that the two input collections xs and ys are sorted and have
the same length. Without loss of generality, suppose the ith element in xs has the form
(oi, xi) and that in ys has the form (oi, yi); suppose also that each oi occurs only once
in xs and once in ys, each xi does not appear in ys, and each yi does not appear in xs.
Clearly, zip(xs, ys) is a low-selectivity join; in fact, its selectivity is precisely one. Let
xs= {(o1, u1), ..., (on, un)} and ys= {(o1, v1), ..., (on, vn)}. Let C′ = {(u1, o1, o1, v1), ...,
(un, on, on, vn)}. Then zip(xs, ys) =C′. Then gaifman(C′) = {(u1, v1), ..., (un, vn)} ∪ ∆,
where ∆ are the edges involving the o j’s in gaifman(C′). Clearly, for 1≤ i≤ n, (ui, vi)∈
gaifman(C′) but (ui, vi) 6∈ gaifman(xs, ys) = xs∪ ys. Now, for a contradiction, suppose
N RC 1(≤, foldLeft, sort) has a linear-time implementation for zip. Then, by Lemma 3.3,
either ui ∈ atom0(xs, ys), or vi ∈ atom0(xs, ys), or ui ∈ A, or vi ∈ A for some A whose size
is independent of xs and ys. However, xs and ys are both sets; thus, atomo(xs, ys) = {}.
This means A has to contain every ui or vi. So, |A| ≥ n = |xs|= |ys| cannot be independent
of xs and ys. This contradiction implies there is no linear-time implementation of zip in
N RC 1(≤, foldLeft, sort).

A careful reader may realise that N RC 1(≤) does not have the head and tail primitives
commonly provided for collection types in programming languages. However, the absence
of head and tail in N RC 1(≤) is irrelevant in the context of this paper. To see this, con-
sider these two functions: taken(xs) which returns in O(n) time the first n elements of xs,
and dropn(xs) which drops in O(n) time the first n elements of xs, when xs is ordered.

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

Iterating on multiple collections in synchrony 9

So, head(xs) = take1(xs) and tail(xs) = drop1(xs). The proof given by Wong (2021) for
Lemma 3.2 can be copied almost verbatim to obtain an analogous limited-mixing result
for N RC 1(≤, taken, dropn, sort).

Since zip is a manifestation of the intensional expressive power gap of N RC 1(≤) and
its extensions above, one might try to augment the language with zip as a primitive. This
makes it trivial to supply an efficient implementation of zip. Unfortunately, this does not
escape the limited-mixing handicap either.

Lemma 3.4 (Wong (2021), Lemma 5.7). Let e(~X) be an expression in N RC 1(≤, zip,
sort). Let objects ~C have the same types as ~X, and e(~C/~X) ⇓C′. Suppose e(~X) has at most
linear time complexity. Then there is a number k that depends only on e(~X) but not on ~C,
and an undirected graph K where the nodes are a subset of atom≤1(~C) and each node w
of K has degree at most nk, n is the number of times w appears in ~C, such that for each
(u, v)∈ gaifman(C′), either (u, v)∈ gaifman(~C)∪ K, or u∈ atom0(~C) and v∈ atom1(~C),
or u∈ atom1(~C) and v∈ atom0(~C).

It follows from Lemma 3.4 that there is no linear-time implementation of ov1(xs, ys)

in N RC 1(≤, zip, sort). To see this, suppose for a contradiction that there is an expres-
sion f (xs, ys) in N RC 1(≤, zip, sort) that implements ov1(xs, ys) with time complexity
O(|xs|+ h|ys|) when each event in ys overlaps fewer than h events in xs. Let k0 be the k
induced by Lemma 3.4 on f . Suppose without loss of generality that no start and end points
in xs appears in ys, and vice versa. Then setting h > k0 produces the desired contradiction.

N RC 1(≤) is designed to express the same functions and algorithms that first-order
restricted Scala is able to express. A bare-bone fragment of Scala that corresponds to
N RC 1(≤) can be described as follows. In terms of data types: Base types such as Boolean,
Int, and String are included. The operators on base types are restricted to = and ≤ tests.
Other operators on base types (e.g., functions from base types to base types) can generally
be included without affecting the limited-mixing lemmas. Tuple types over base types (i.e.,
all tuple components are base types) are included. The operators on tuple types are the tuple
constructor and the tuple projection. A collection type is included, and the Scala Vector[·]
is a convenient choice as a generic collection type; however, only vectors of base types and
vectors of tuples of base types are included. The operators on vectors are the vector con-
structor, the flatMap on vectors, the vector append ++, and the vector emptiness test; when
restricted to these operators, vectors essentially behave as sets. It is also possible to use
other Scala collection types—e.g., List[·]—instead of Vector[·], so long as the operators
are restricted to a constructor, append ++, and emptiness test. Some other common oper-
ators on collection types, e.g., head and tail, can also be included, though adding these
would make the language correspond to N RC 1(≤, take1, drop1) instead of N RC 1(≤)
and, as explained earlier, this does not impact the limited-mixing lemmas. In terms of gen-
eral programming constructs: Defining functions whose return types are any of the data
types above (i.e. return types are not allowed to be function types), making function calls,
and using comprehension syntax and if-then-else are all permitted. Although pared to such
a bare bone, this highly restricted form of Scala retains sufficient expressive power; e.g.,
all flat relational queries can be easily expressed using it.

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10 Stefano Perna, Val Tannen, and Limsoon Wong

Thus, Lemma 3.1 implies there is no efficient implementation of low-selectivity joins,
including ov1(xs, ys), in first-order restricted Scala. Lemma 3.2 implies there is no effi-
cient implementation of low-selectivity joins in first-order restricted Scala even when the
programmer is given access to takeWhile and dropWhile. Lemma 3.3 implies there is no
efficient implementation of low-selectivity joins in first-order restricted Scala even when
the programmer is given access to foldLeft. Lemma 3.4 implies there is no efficient imple-
mentation of low-selectivity joins in first-order restricted Scala even when the programmer
is given access to zip. Moreover, these limitations remain even when the programmer is
further given the magical ability to do sorting infinitely fast.

4 Synchrony fold

Comprehension syntax is typically translated into nested flatMap’s, each flatMap iterating
independently on a single collection. Consequently, like any function defined using com-
prehension syntax, the function ov1(xs, ys) in Figure 1 is forced to use nested loops to
process its input. While it is able to return correct results even for an unsorted input, it
overkills and overpays a price in its quadratic time complexity when its input is already
appropriately sorted. In fact, ov1(xs, ys) is still overpaying the quadratic-time complexity
price when its input is unsorted, because sorting can always be performed when needed for
a relatively affordable linearithmic overhead.

In contrast, the function ov2(xs, ys) in Figure 1 is linear in time complexity when selec-
tivity is low, which is much more efficient than ov1(xs, ys). There is one fundamental
explanation for this efficiency: The input xs and ys are sorted and ov2(xs, ys) directly
exploits this sortedness to iterate on xs and ys in “synchrony,” i.e. in a coordinated manner,
akin to the merge step in a merge sort (Knuth, 1973) or a merge join (Blasgen & Eswaran,
1977; Mishra & Eich, 1992). However, its codes are harder to understand and to get right.

It is desirable to have an easy-to-understand-and-check linear-time implementation that
is as efficient as ov2(xs, ys) but using only comprehension syntax, without the acrobatics
of recursive functions, while-loops, etc. This leads us to the concepts of Synchrony fold,
Synchrony generator, and Synchrony iterator. Synchrony fold is presented in this section.
Synchrony generator and iterator are presented later in Sections 5 and 6 respectively.

4.1 Theory of Synchrony fold

The function ov2(xs, ys) exploits the sortedness and the relationship between the orderings
of xs and ys. In Scala’s collection-type function libraries, functions such as foldLeft are
also able to exploit the sortedness of their input. Yet there is no way of individually using
foldLeft and other collection-type library functions mentioned earlier—as suggested by
Lemma 3.2, Lemma 3.3, and Lemma 3.4—to obtain linear-time implementation of low-
selectivity joins, without defining recursive functions, while-loops, etc. The main reason is
that these library functions are mostly defined on a single input collection. Hence, it is hard
for them to exploit the relationship between the orderings on two collections. And there is
no obvious way to process two collections using any one of these library functions alone,
other than in a nested-loop manner, unless the ambient programming language has more

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

Iterating on multiple collections in synchrony 11

Fig. 2. Visualization of monotonicity and antimonotonicity. Two collections xs and ys are sorted
according to some orderings, as denoted by the two arrows. The isBefore predicate is represented
by the relative horizontal positions of items xi and y j; i.e., if y j has a horizontal position to the left
of xi, then y j is before xi. The canSee predicate is represented by the shaded green areas. a. If y1 is
before x1 and cannot see x1, then y1 is also before and cannot see any x2 which comes after x1. So,
every xi that matches y1 has been seen; it is safe to move forward to y2. b. If y1 is not before x1 and
cannot see x1, then any y2 which comes after y1 is also not before and cannot see x1. So, every y j
that matches x1 has been seen; it is safe to move forward to x2.

sophisticated ways to compile comprehensions (Marlow et al., 2016; Wadler & Peyton
Jones, 2007), or unless multiple library functions are used together.

Scala’s collection-type libraries do provide the function zip which pairs up elements of
two collections according to their physical position in the two collections, viz. first with
first, second with second, and so on. However, by Lemma 3.4, this mechanical pairing by
zip cannot be used to implement efficient low-selectivity joins, which require more general
notions of pairing where pairs can form from different positions in the two collections.

So, we propose syncFold, a generalization of foldLeft that iterates on two collections
in a more flexible and synchronized manner. For this, we need to relate positions in two
collections by introducing two logical predicates isBefore(y, x) and canSee(y, x), which
are supplied to syncFold as two of its arguments. Informally, isBefore(y, x) means that,
when we are iterating on two collections xs and ys, in a synchronized manner, we should
encounter the item y in ys before we encounter the item x in xs. And canSee(y, x) means
that the item y in ys corresponds to or matches the item x in xs; in other words, x and y

form a pair which is of interest. Note that an item y “corresponds to or matches” an item x

does not necessarily mean the two items are the same. For example, when items are events
as defined in Section 2, in the context of ov1 and ov2, an event y corresponds to or matches
an event x means the two events overlap each other. Obviously, an item does not need to
be an atomic object; it can be a tuple or an object having a more complex type.

The isBefore(y, z) and canSee(y, x) predicates are characterized respectively by the
monotonicity and antimonotonicity conditions defined below and depicted in Figure 2. To
provide formal definitions, let the notation (x� y | zs) mean “an occurrence of x appears
physically before an occurrence of y in the collection zs.” That is, (x� y | zs) if and only
if there are i < j such that x= zi and y= z j, where z1, z2, ..., zn are the items in zs listed in
their order of appearance in zs. Note that (x� x | zs) if and only if x occurs at least twice
in zs.

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12 Stefano Perna, Val Tannen, and Limsoon Wong

Also, a sorting key of a collection zs is a function φ(·) with an associated linear ordering
<φ on its codomain such that, for every pair of items x and y in zs where φ(x) 6= φ(y), it
is the case that (x� y | zs) if and only if φ(x)<φ φ(y). Note that a collection may have
zero, one, or more sorting keys. Two sorting keys φ(·) and ψ(·) are said to have comparable
codomains if their associated linear orderings are identical; i.e. for every z and z′, z<φ z′

if and only if z<ψ z′. For convenience, in this situation, we write < to refer to <φ and <ψ .

Definition 4.1 (Monotonicity of isBefore). An isBefore predicate is monotonic with
respect to two collections (xs, ys), which are not necessarily of the same type, if it satisfies
the conditions below.

1. If (x� x′ | xs), then for all y in ys: isBefore(y, x) implies isBefore(y, x′).
2. If (y′� y | ys), then for all x in xs: isBefore(y, x) implies isBefore(y′, x).

Definition 4.2 (Antimonotonicity of canSee). Let isBefore be monotonic with respect to
(xs, ys). A canSee predicate is antimonotonic with respect to isBefore if it satisfies the
conditions below.

1. If (x� x′ | xs), then for all y in ys: isBefore(y, x) and not canSee(y, x) implies not
canSee(y, x′).

2. If (y� y′ | ys), then for all x in xs: not isBefore(y, x) and not canSee(y, x) implies
not canSee(y′, x).

To appreciate the monotonicity conditions, imagine two collections xs and ys are being
merged without duplicate elimination into a combined list zs, in a manner that is consistent
with the isBefore predicate and the physical order of appearance in xs and ys. To do this,
let xs comprises x1, x2, ..., xm as its elements and (x1� x2� · · ·� xm|xs); let ys comprises
y1, y2, ..., yn as its elements and (y1� y2� · · ·� yn|ys); and let zi denote the ith element
of zs. As there is no duplicate elimination, each zi is necessarily a choice between some
element x j in xs and yk in ys, and i = j + k− 1, unless all elements of xs or ys have already
been chosen earlier. Let α(i) be the index of the element x j, i.e. j; and β (i) be the index
of the element yk, i.e. k. Obviously, α(1) = β (1) = 1. And zs is necessarily constructed
as follows: If α(i)> m or isBefore(yβ (i), xα(i)), then zi = yβ (i), α(i + 1) = α(i), and β (i +
1) = β (i) + 1; otherwise, zi = xα(i), α(i + 1) = α(i) + 1, and β (i + 1) = β (i).

Notice that in constructing zs above, only the isBefore predicate is used. The existence
of a monotonic predicate isBefore with respect to (xs, ys) does not require xs and ys to be
ordered by any sorting keys. For example, an “always true” isBefore predicate simply puts
all elements of ys before all elements of xs when merging them into zs as described above.
However, such trivial isBefore predicates have limited use.

When xs and ys are ordered by some sorting keys, more useful monotonic isBefore

predicates are definable. For example, as an easy corollary of the construction of zs above,
if xs and ys are ordered according to some sorting keys φ(·) and ψ(·) with comparable
codomains (i.e., <φ and <ψ are identical and thus can be denoted simply as <), then a
predicate defined as isBefore(y, x)= ψ(y)< φ(x) is guaranteed monotonic with respect to
(xs, ys). To see this, without loss of generality, suppose for a contradiction that (xi� x j|xs),
φ(xi) 6= φ(x j), and isBefore(y, xi), but not isBefore(y, x j). This means φ(xi)< φ(x j),

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

Iterating on multiple collections in synchrony 13

ψ(y)< φ(xi), but ψ(y) 6< φ(x j). This gives the desired contradiction that φ(x j)< φ(x j).
This isBefore(y, x)= ψ(y)< φ(x) is a natural bridge between the two sorted collec-
tions. Specifically, define ω(i) = φ(zi) if zi is from xs and ω(i) = ψ(zi) if zi is from ys;
and let ω(zs) denote the collection comprising ω(1), ..., ω(n + m) in this order. Then,
(ω(i)�ω(j) | ω(zs)) implies ω(i)≤ω(j). That is, ω(zs) is linearly ordered by <, the
associated linear ordering shared by the two sorting keys φ(·) and ψ(·) of xs and ys.

Next, to appreciate the antimonotonicity conditions, one may eliminate the double nega-
tives and read these antimonotonicity conditions as: (1) If isBefore(y, x) and (x� x′ | xs),
then canSee(y, x′) implies canSee(y, x); and (2) If not isBefore(y, x) and (y� y′ | ys),
then canSee(y′, x) implies canSee(y, x). Imagine that the x’s and y’s are placed on the same
straight line, from left to right, in a manner consistent with isBefore (e.g., as explained
above). Then, if canSee is antimonotonic to isBefore, its antimonotonicity implies a “right-
sided” convexity. That is, if y can see an item x of xs to its right, then it can see all xs items
between itself and this x. Similarly, if x can be seen by an item y of ys to its right, then it
can be seen by all ys items between itself and this y. No “left-sided” convexity is required
or implied however.

It follows that any canSee predicate which is reflexive and convex always satisfies the
antimonotonicity conditions when isBefore satisfies the monotonicity conditions. So, we
can try checking convexity and reflexivity of canSee first, which is a more intuitive task.
Moreover, though this will not be discussed here, certain optimizations—which are use-
ful in a parallel distributed setting—are enabled when canSee is reflexive and convex.
Nonetheless, we must stress that the converse is not true. That is, an antimonotonic canSee

predicate needs not be reflexive or convex; e.g., the overlap(y, x) predicate from Figure 1
is an example of a nonconvex antimonotonic predicate, and the inequality m < n of two
integers is an example of a nonreflexive convex antimonotonic predicate.

Proposition 4.3 (Reflexivity and convexity imply antimonotonicity). Let xs and ys be two
collections, which are not necessarily of the same type. Let zs be a collection of some
arbitrary type. Let φ : xs→ zs be a sorting key of xs and ψ : ys→ zs be a sorting key of
ys. Then isBefore is monotonic with respect to (xs, ys), and canSee is antimonotonic with
respect to isBefore, if there are predicates <zs and Czs such that all the conditions below
are satisfied.

1. φ preserves order: (x� x′ | xs) implies (φ(x)� φ(x′) | zs)
2. ψ preserves order: (y� y′ | ys) implies (ψ(y)�ψ(y′) | zs)
3. <zs preserves isBefore: isBefore(y, x) if and only if ψ(y)<zs φ(x)

4. <zs is monotonic with respect to (zs, zs)

5. Czs preserves canSee: canSee(y, x) if and only if ψ(y)Czs φ(x)

6. Czs is reflexive: for all z in zs, zCzs z′

7. Czs is convex: for all z0 in zs and (z� z′� z′′ | zs), zCzs z0 and z′′ Czs z0 implies
z′ Czs z0; and z0 Czs z and z0 Czs z′′ implies z0 Czs z′

In particular, when xs= ys= zs, and isBefore is monotonic with respect to (xs, ys) and
thus (zs, zs), conditions 1 to 5 above are trivially satisfied by setting the identity function
as φ and ψ , isBefore as <zs, and canSee as Czs. Thus, a reflexive and convex canSee is
also antimonotonic.

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14 Stefano Perna, Val Tannen, and Limsoon Wong

The antimonotonicity conditions provide us with two rules for moving on to the next x
or the next y; cf. Figure 2. Specifically, according to Antimonotonicity Condition 1, when
the current y in ys is before the current x in xs, and this y cannot “see” (i.e. does not match)
this x, then this y cannot see any of the following items in xs either. Therefore, it is not
necessary to try matching the current y to the rest of the items in xs, and we can move
on to the next item in ys. On the other hand, according to Antimonotonicity Condition
2, when the current y in ys is not before the current x in xs, and this y cannot see this x,
then all subsequent items in ys cannot see this x either. Therefore, it is not necessary to try
matching the current x to the rest of the items in ys, and we can safely move on to the next
item in xs.

When neither rule is triggered, regardless of whether the current y in ys is or is not
before the current x in xs, this y can see this x. That is, we have a matching pair of x and
y to perform some specified actions on. After the actions are performed, we can choose to
move on to the next item in xs or in ys. In this work, we decide to keep the collection xs

as the reference and to move on to the next item in the collection ys. Since the next item
in xs may be an item that the current y can see, before moving on to the next item in ys,
we should also “save” the current y; when we eventually move on to the next item in xs,
we must remember to “rewind” our position in ys back to all these y’s saved during the
processing of the current x.

Together, these conditions lead to what we call a Synchrony fold—the syncFold function
defined in Figure 3—which iterates on two collections in synchrony.

What does syncFold(f, e, bf, cs)(xs, ys) do? To answer this question, consider the
function slowFold(f, e, cs)(xs, ys) which is also defined in Figure 3. The function
slowFold(f, e, cs)(xs, ys) first initializes an internal variable acc to e; then iterates
through every pair of x in xs and y in ys, and updates acc to f(x, y, acc) whenever cs(y,x);
at the end of the iteration, it outputs the value of acc.

Remarkably, when bf is monotonic with respect to (xs, ys) and cs is antimono-
tonic with respect to bf, syncFold(f, e, bf, cs)(xs, ys) computes the same result as
slowFold(f, e, cs)(xs, ys). Furthermore, syncFold has a potentially linear complexity
O(|xs|+ k|ys|) in terms of number of calls to the function f , when cs has degree < k
in the sense that |{x∈ xs such that cs(y, x)}|< k for each y in ys. Whereas, slowFold has
quadratic complexity O(|xs| · |ys|).

Theorem 4.4 (Synchrony fold). Suppose isBefore is monotonic with respect to (xs, ys)

and canSee is antimonotonic with respect to isBefore.

1. syncFold(f, e, isBefore, canSee)(xs, ys) =

slowFold(f, e, canSee)(xs, ys).
2. slowFold(f, e, canSee)(xs, ys) calls the function f a total of |xs| · |ys| number of

times.
3. syncFold(f, e, isBefore, canSee)(xs, ys) calls the function f at most |xs|+ k|y|

number of times, if canSee has degree < k with respect to (xs, ys).

Proof For Part 1, consider the function aux(xs, ys, zs, acc) in syncFold. Suppose
isBefore is monotonic with respect to (xs, zs ++: ys), and canSee is antimonotonic with

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

Iterating on multiple collections in synchrony 15

def syncFold[A,B,C]
(f: (A,B,C) => C, e: C, bf: (B,A) => Boolean , cs: (B,A) => Boolean)
(xs: Vec[A], ys: Vec[B])

: C = {
// Requires: bf monotonic wrt (xs ,ys); cs antimonotonic wrt bf.
// Assumes: isEmpty , head , tail are constant time;
// prepend (++:) is linear in its left argument;
// single -item postpend (:+) is constant time.

def aux(xs: Vec[A], ys: Vec[B], zs: Vec[B], acc: C): C =
if (xs.isEmpty) acc
else if (ys.isEmpty && zs.isEmpty) acc
else if (ys.isEmpty) aux(xs.tail , zs, Vec(), acc)
else {

val (x, y) = (xs.head , ys.head)
(bf(y, x), cs(y, x)) match {

case (true , false) =>
// Antimonotonicity Condition 1:
// bf(y,x) & !cs(y,x) => all x’ after x: !cs(y,x’)
// So , y can be discarded safely; move on to next y.
aux(xs , ys.tail , zs, acc)

case (false , false) =>
// Antimonotonicity Condition 2:
// !bf(y,x) & !cs(y,x) => all y’ after y: !cs(y’,x)
// So x can be discarded safely. But the next x may
// still be able to see some y saved earlier in zs.
aux(xs.tail , zs ++: ys, Vec(), acc)

case (_, true) =>
// At this point , cs(y,x); so process (x,y) using f.
// Save this y as it may see next x; move on to next y.
aux(xs , ys.tail , zs :+ y, f(x, y, acc))

}
}

aux(xs , ys, Vec(), e)
}

def slowFold[A,B,C]
(f: (A,B,C) => C, e: C, cs: (B,A) => Boolean)
(xs: Vec[A], ys: Vec[B])

: C = {
var acc: C = e
for (x <- xs; y <- ys; if cs(y, x)) { acc = f(x, y, acc) }
return acc

}

Fig. 3. Definitions of syncFold and slowFold. These two programs compute the same results when
bf is monotonic with respect to (xs, ys) and cs is antimonotonic with respect to bf. However,
syncFold is more efficient than slowFold.

respect to isBefore. If xs is non-empty, let x be xs.head, and z1, ..., zn be the items in zs

such that canSee(z1, x), ..., canSee(zn, x), and acc = f(x, zn, ... f(x, z1, e) ...). If xs is
empty, let acc = e. Then, an induction on (|xs|, |ys|) shows that

aux(xs, ys, zs, acc)

= slowFold(f, e, canSee)(xs, zs ++: ys)

So,

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16 Stefano Perna, Val Tannen, and Limsoon Wong

syncFold(f, e, isBefore, canSee)(xs, ys)

= aux(xs, ys, Vec(), e)

= slowFold(f, e, canSee)(xs, ys)

For Part 2, it is obvious that slowFold(f, e, canSee)(xs, ys) calls the function f a total
of |xs| · |ys| number of times.

For Part 3, on each call to aux in syncFold, either xs or ys is shortened by 1 item. This
gives |xs|+ |ys| calls to aux. In some calls, ys is prepended with zs. Recall the assumption
that canSee has degree < k. Thus, each item in ys can see fewer than k items in xs. So,
the total size of zs summed over all the calls to aux is at most (k− 1)|ys|; these are the
maximum number of additional calls to aux. Therefore, the total number of calls to aux,
and thus to f, is at most |xs|+ k|ys|. �

4.2 Second Synchrony fold

SyncFold(f, e, bf, cs)(xs, ys) discards items in xs that no item in ys sees. This may not
be desired in some situations, e.g., when someone actually wants to retrieve those items
in xs that no item in ys sees. Also, syncFold pairs up each x in xs with each y in ys that
sees it, and applies the function f on these pairs one by one. This may not be convenient
in some situations; e.g., when someone wants to count the number of y’s that see an x.
Hence, it might be useful to also provide a second Synchrony fold function syncFoldGrp

which processes, as a group, those y’s that see an x.
An astute reader might have realised that, in the definition provided in Figure 3, syncFold

keeps the y’s that can see the current x in the collection zs. So, as defined in Figure 4,
syncFoldGrp(f, e, bf, cs)(xs, ys) is just syncFold with f applied to (x, zs, acc) instead
of (x, y, acc). The function syncFoldGrp(f, e, bf, cs)(xs, ys) computes the same result
as slowFoldGrp(f, e, cs)(xs, ys), which is also defined in Figure 4 and is much easier
to understand. However, while the former can be linear in time complexity, the latter is
quadratic.

Theorem 4.5 (Second Synchrony fold). Suppose isBefore is monotonic with respect
to (xs, ys) and canSee is antimonotonic with respect to isBefore. Then,

1. syncFoldGrp(f, e, isBefore, canSee)(xs, ys) =

slowFoldGrp(f, e, canSee)(xs, ys).

Suppose further that canSee has degree < k with respect to (xs, ys), and f has linear time
complexity in its second argument, and other arguments have neglible influence on f’s time
complexity. Then,

2. slowFoldGrp(f, e, canSee)(xs, ys) has time complexity O((|xs|+ k)|ys|).
3. syncFoldGrp(f, e, isBefore, canSee)(xs, ys) has time complexity O(|xs|+

2k|ys|).

Proof For Part 1, consider the function aux(xs, ys, zs, acc) in syncFoldGrp. Suppose
isBefore is monotonic with respect to (xs, zs ++: ys), and canSee is antimonotonic with

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

Iterating on multiple collections in synchrony 17

def syncFoldGrp[A,B,C]
(f: (A,Vec[B],C)=>C, e: C, bf: (B,A)=>Boolean , cs: (B,A)=>Boolean)
(xs: Vec[A], ys: Vec[B])

: C = {
// Requires: bf monotonic wrt (xs ,ys) & cs antimonotonic wrt bf.

def aux(xs: Vec[A], ys: Vec[B], zs: Vec[B], acc: C): C =
if (xs.isEmpty) acc
else if (ys.isEmpty && zs.isEmpty) acc
else if (ys.isEmpty) aux(xs.tail , zs, Vec(), f(xs.head , zs , acc))
else {

val (x,y) = (xs.head , ys.head)
(bf(y, x), cs(y, x)) match {

case (true , false) =>
// Antimonotonicity Condition 1:
// bf(y,x) & !cs(y,x) => all x’ after x: !cs(y,x’)
// So , y can be discarded safely; move on to next y.
aux(xs , ys.tail , zs, acc)

case (false , false) =>
// Antimonotonicity Condition 2:
// !bf(y,x) & !cs(y,x) => all y’ after y: !cs(y’,x)
// So , x can be discarded. And the y accumulated in zs
// should now be processed by f in one go. Note: the
// next x may be able to see some y accumulated in zs.
aux(xs.tail , zs ++: ys, Vec(), f(x, zs, acc))

case (_, true) =>
// At this point , cs(y,x).
// Accumulate this y in zs; move on to next y.
aux(xs , ys.tail , zs :+ y, acc)

}
}

aux(xs , ys, Vec(), e)
}

def slowFoldGrp[A,B,C]
(f: (A,Vec[B],C) => C, e: C, cs: (B,A) => Boolean)
(xs: Vec[A], ys: Vec[B])

: C = {
var acc: C = e
for (x <- xs; zs = for (y <- ys; if cs(y, x)) yield y) {

acc = f(x, zs, acc)
}
return acc

}

Fig. 4. Definitions of syncFoldGrp and slowFoldGrp. They compute the same results when bf is
monotonic with respect to (xs, ys) and cs is antimonotonic with respect to bf. However, syncFoldGrp
is more efficient than slowFoldGrp.

respect to isBefore. Suppose also that canSee(z, x) for each z in zs, when xs is non-empty
and x is xs.head. Then, an induction on (|xs|, |ys|) shows that

aux(xs, ys, zs, acc)

= slowFoldGrp(f, acc, canSee)(xs, zs ++: ys)

So,

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18 Stefano Perna, Val Tannen, and Limsoon Wong

syncFoldGrp(f, e, isBefore, canSee)(xs, ys)

= aux(xs, ys, Vec(), e)

= slowFoldGrp(f, e, canSee)(xs, ys)

For Part 2, the theorem assumes that canSee has degree < k, and f has time complexity
linear in its second argument and independent of its other arguments. The first assumption
implies that the total size of zs over all the calls to f is at most k|ys|. The second assumption
implies that the total time complexity due to calls to f is O(k|ys|). The nested loops of
slowFoldGrp, excluding calls to f, has O(|xs| · |ys|) time complexity. Thus, summing these
two components gives a quadratic time complexity, O((|xs|+ k)|ys|).

For Part 3, again recall the two assumptions of the theorem, viz. canSee has degree <

k, and f has time complexity linear in its second argument and independent of its other
arguments. The first assumption implies that the total size of zs over all the calls to f is
at most k|ys|. The second assumption implies that the total time complexity due to calls
to f is O(k|ys|). In addition, as in syncFold, there are at most |xs|+ k|ys| calls to aux in
syncFoldGrp. Summing these gives a linear time complexity, O(|xs|+ 2k|ys|). �

Now, let snoc(x, zs, a) = a :+ (x, zs) add (x, zs) to the end of a collection a. Then,

slowFoldGrp(snoc, Vec(), cs)(Vec(x), ys)
= Vec((x, for (y <- ys; if cs(y, x)) yield y))

slowFoldGrp(snoc, Vec(), cs)(xs, ys)

= for (x <- xs; (x′, zs) <- slowFoldGrp(snoc, Vec(), cs)(Vec(x), ys)) yield (x′, zs)

The corollary below now follows from Theorem 4.5. This corollary is helpful for a deeper
understanding of syncFoldGrp, leading later to the design of Synchrony iterator in Section 6.

Corollary 4.6. Let isBefore be monotonic with respect to (xs, ys), and canSee be
antimonotonic with respect to isBefore. Let snoc(x, zs, a) = a :+ (x, zs). Then,

syncFoldGrp(snoc, Vec(), isBefore, canSee)(xs, ys)

= for (x <- xs; (x′, zs) <- syncFoldGrp(snoc, Vec(), isBefore, canSee)(Vec(x), ys)

yield (x′, zs)

4.3 Synchrony fold vs foldLeft

As mentioned earlier, syncFold and syncFoldGrp are generalizations of foldLeft. In particu-
lar, as shown below, foldLeft is definable via either of them.

xs.foldLeft(e)(g)

= syncFold((x, ,a)=>g(a,x), e, (,)=>true, (,)=>true)(xs, Vec(()))

= syncFoldGrp((x, ,a)=>g(a,x), e, (,)=>true, (,)=>true)(xs,Vec(()))

Furthermore, both definitions are as efficient as the implementation of foldLeft in
collection-type libraries; e.g., if the function g above has O(1) time complexity, then both
implementations of foldLeft above have O(|xs|) time complexity, same as any typical
implementation of foldLeft in collection-type libraries of modern programming languages.

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

Iterating on multiple collections in synchrony 19

At the same time, functions expressible by syncFold and syncFoldGrp are also expressible
in first-order restricted Scala when foldLeft is available. Let isBefore be monotonic with
respect to (xs, ys), and canSee be antimonotonic with respect to isBefore. Then,

syncFold(f, e, isBefore, canSee)(xs, ys)

= xs.foldLeft(e)((a, x) =>

ys.foldLeft(a)((a′, y) => if (canSee(y, x)) f(x, y, a′) else a′))

syncFoldGrp(f′, e, isBefore, canSee)(xs, ys)

= xs.foldLeft(e)((a, x) =>

f′(x, for (y <- ys; if canSee(y, x)) yield y, a))

These implementations of syncFold and syncFoldGrp in terms of foldLeft are quadratic
in time complexity. They are also somewhat more convoluted than the implementations
of foldLeft in terms of syncFold and syncFoldGrp. Perhaps more ingenious programmers
can find some simpler ways of implementing syncFold and syncFoldGrp solely in terms of
foldLeft. Unfortunately, due to Lemma 3.3, there is no way they can find an efficient linear-
time implementation of either one using foldLeft alone under the first-order restriction.

Proposition 4.7 (SyncFold and syncFoldGrp are conservative extensions of foldLeft). The
extensional expressive power of Scala under the first-order restriction, when foldLeft is
available, is the same with or without syncFold and syncFoldGrp. However, more efficient
algorithms for some functions (e.g., a linear-time algorithm for low-selectivity join) can be
defined using syncFold and syncFoldGrp than using foldLeft in Scala under the first-order
restriction.

It is worth noting that syncFold(f, e, isBefore, canSee)(xs, ys) and the expression
syncFoldGrp((x, zs, a) => zs.foldLeft(a)((a′, z) => f(z, a′)), e, isBefore, canSee)(xs,
ys) compute the same function at comparable time complexity. So, syncFold can be defined
efficiently using syncFoldGrp. Similarly, SyncFoldGrp can also be implemented at compara-
ble time complexity using syncFold. To wit, as presented later in Section 5.1, efficient
takeWhile and dropWhile are definable by syncFold; in turn, efficient syncFoldGrp needs
only a straightforward modification to the implementation—using foldLeft, takeWhile, and
dropWhile—of the function groups2 shown in Figure 13 of Section 8.1.

4.4 Synchrony fold in action

Linear time complexity for the example from Section 2, ov1(xs, ys), can be achieved using
syncFold. The codes for ov3(xs, ys) below shows that a user-programmer only has to pro-
vide straightforward definitions for the isBefore and canSee predicates; for this example,
these are the isBefore and overlap predicates defined earlier in Figure 1. There is no worry
about getting the “synchronized” iteration of xs and ys right, as syncFold takes care of this
already. The linear time complexity is easily appreciated using Theorem 4.4 when overlap

has a low degree with respect to (xs, ys), i.e. each event in ys overlaps few events in xs.

def ov3(xs: Vec[Event], ys: Vec[Event]) = {
// Requires: xs and ys are sorted lexicographically by (start , end).
// Note: isBefore and overlap are as defined in Figure 1.

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

20 Stefano Perna, Val Tannen, and Limsoon Wong

def f(x: Event , y: Event , acc: Vec[(Event , Event)]) = acc :+ (x, y)
syncFold(f, Vec(), isBefore , overlap)(xs, ys)

}

There is a loose end to be tied up in the example above, viz. verifying that isBefore is
monotonic with respect to (xs, ys) and overlap is antimonotonic with respect to isBefore.
This is omitted here, as it is straightforward under the assumption that (xs, ys) are
lexicographically ordered by the start and end point of their events.

As an example of syncFoldGrp, it is used below to count in potentially linear time the
number of events in ys that each event in xs overlaps with. The linear time complexity
follows from Theorem 4.5.

def ovCount(xs: Vec[Event], ys: Vec[Event]): Vec[(Event ,Int)] = {
// Requires: xs and ys are sorted lexicographically by (start , end).
// Note: isBefore and overlap are as defined in Figure 1.
def f(x: Event , zs: Vec[Event], acc: Vec[(Event ,Int)]) = {

acc :+ (x, zs.length)
}
syncFoldGrp(f, Vec(), isBefore , overlap)(xs, ys)

}

Comparing ov3(xs, ys) above and ov2(xs, ys) from Figure 1, the design of Synchrony
fold makes clear three orthogonal aspects of the event-overlap example: connecting the
orderings on the two collections, identifying matching pairs, and acting on matching
pairs. With regard to connecting the orderings on the two collections, the “navigation”
is captured by the isBefore predicate. With regard to identification of matching pairs,
it is captured by the canSee predicate (i.e. overlap). Finally, with regard to action on
matching pairs, this is captured by the function f. Making these three orthogonal aspects
explicit brings about a more concise and precise understanding (Schmidt, 1986; Hunt
& Thomas, 2000; Sebesta, 2010). For example, assuming isBefore is monotonic with
respect to (xs, ys) and canSee is antimonotonic with respect to isBefore, one can read
syncFold(f, e, isBefore, canSee)(xs, ys) simply as “for each pair in (xs, ys) satisfying
canSee, do f on it.” Hopefully, this clarity makes it easier to see mistakes, and thus easier
to write programs correctly.

This simple way to read Synchrony fold programs was in fact formalized earlier via
Theorem 4.4 and 4.5. These two theorems reveal the extensional equivalence of syncFold

and slowFold, and of syncFoldGrp and slowFoldGrp. While slowFold and slowFoldGrp are
intuitive, they use some local side effects. Now, comparing ov3(xs, ys) and ov1(xs, ys),
a straightforward relationship between a restricted form of syncFold and syncFoldGrp and
comprehension syntax can be further discerned below; this time without side effects. This
relationship also shows that any join whose predicate p(y, x) can be decomposed into an
antimonotonic predicate canSee(y, x) and a residual predicate h(y, x), can be implemented
using syncFold and syncFoldGrp efficiently.

Proposition 4.8 (Comprehending syncFold and syncFoldGrp). Suppose xs and ys are two
collections, isBefore is monotonic with respect to (xs, ys), and canSee is antimonotonic
with respect to isBefore. Then, these three Scala programs express the same function:

1. for (x <- xs; y <- ys; if canSee(y, x) && h(y, x)) yield g(x, y)

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

Iterating on multiple collections in synchrony 21

2. syncFold(f, Vec(), isBefore, canSee)(xs, ys), where
f(x, y, acc) = if (h(y,x)) { acc :+ g(x, y) } else acc

3. syncFoldGrp(f′, Vec(), isBefore, canSee)(xs, ys), where
f′(x, zs, acc) = acc :++ for (z <- zs; if h(z, x)) yield g(x, z)

However, when canSee has a low degree and g and h have O(1) time complexity, the
first program is quadratic while the second and third programs are linear in their time
complexity with respect to |xs| and |ys|.

5 Synchrony generator

Lemma 3.1 indicates that an intensional expressiveness gap already exists in first-order
restricted Scala sans library functions. And Lemma 3.3 further indicates that this same
gap exists practically unmitigated when first-order restricted Scala is augmented with
foldLeft. On the one hand, Proposition 4.7 shows that the two Synchrony folds are
conservative extensions of first-order restricted Scala augmented with foldLeft, and sig-
nificantly increases the algorithmic richness of this fragment of Scala. On the other hand,
Proposition 4.7 also means that Synchrony fold is an overkill as a solution for this gap
which originated at the level of first-order restricted Scala without library functions, since
Synchrony fold adds much extra extensional expressive power to this fragment of Scala
while fixing its intensional expressive power gap.

This section identifies a restriction on Synchrony fold to fix this gap at its root, i.e. at the
level of unaugmented first-order restricted Scala. The significance of this restricted form,
viz. Synchrony generator, in the context of database joins is also discussed.

5.1 Deriving Synchrony generator

As mentioned, we wish to identify some restriction on Synchrony fold to cut its exten-
sional expressive power to that of first-order restricted Scala sans library functions.
Proposition 4.8 suggests the two solutions syncMap and syncFlatMap, shown in Figure 5.

Ignoring efficiency issues, the functions expressible by syncMap and syncFlatMap are
already expressible just using comprehension syntax, when isBefore is monotonic with
respect to (xs, ys) and canSee is antimonotonic with respect to isBefore. Specifically,

syncMap(f, isBefore, canSee)(xs, ys)

= for (x <- xs; y <- ys; if canSee(y, x)) yield f(x, y)

syncFlatMap(f, isBefore, canSee)(xs, ys)

= for (x <- xs; z <- f(x, for (y <- ys; if canSee(y, x)) yield y))

yield z

Thus, syncMap and syncFlatMap do not add extensional expressive power to first-order
restricted Scala sans library functions, but add to it sufficient algorithmic power to
implement efficient low-selectivity joins.

In fact, an even more stringent restriction, the Synchrony generators, syncGen and
syncGenGrp, also depicted in Figure 5, can provide the same extra intensional expressive
power as syncMap and syncFlatMap. This is because

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

22 Stefano Perna, Val Tannen, and Limsoon Wong

def syncMap[A,B,C]
(f: (A,B)=>C, bf: (B,A)=>Boolean , cs: (B,A)=>Boolean)
(xs: Vec[A], ys: Vec[B])

: Vec[C] = {
// Requires: bf monotonic wrt (xs , ys); cs antimonotonic wrt bf.
val step = (x: A, y: B, acc: Vec[C]) => acc :+ f(x,y)
syncFold(step , Vec(), bf, cs)(xs, ys)

}

def syncFlatMap[A,B,C]
(f: (A,Vec[B])=>Vec[C], bf: (B,A)=>Boolean , cs: (B,A)=>Boolean)
(xs: Vec[A], ys: Vec[B])

: Vec[C] = {
// Requires: bf monotonic wrt (xs , ys); cs antimonotonic wrt bf.
val step = (x: A, zs: Vec[B], acc: Vec[C]) => acc :++ f(x,zs)
syncFoldGrp(step , Vec(), bf, cs)(xs, ys)

}

def syncGen[A,B]
(isBefore: (B,A) => Boolean , canSee: (B,A) => Boolean)
(xs: Vec[A], ys: Vec[B])

: Vec[(A,B)] = {
// Requires: bf monotonic wrt (xs , ys); cs antimonotonic wrt bf.
val step = (x: A, y: B, acc: Vec[(A,B)]) => acc :+ (x, y)
val e: Vec[(A,B)] = Vec()
syncFold(step , e, isBefore , canSee)(xs , ys)

}

def syncGenGrp[A,B]
(bf: (B,A) => Boolean , cs: (B,A) => Boolean)
(xs: Vec[A], ys: Vec[B])

: Vec[(A,Vec[B])] = {
// Requires: bf monotonic wrt (xs , ys); cs antimonotonic wrt bf.
val step = (x: A, zs: Vec[B], acc: Vec[(A,Vec[B])]) => acc :+ (x,zs)
val e: Vec[(A,Vec[B])] = Vec()
syncFoldGrp(step , e, bf, cs)(xs, ys)

}

Fig. 5. Definitions of syncMap, syncFlatMap, syncGen and SyncGenGrp.

syncFlatMap(f, isBefore, canSee)(xs, ys)

= for ((x, zs) <- syncGenGrp(isBefore, canSee)(xs, ys); z <- f(x, zs)) yield z

syncMap(f, isBefore, canSee)(xs, ys)

= for ((x, y) <- syncGen(isBefore, canSee)(xs, ys)) yield f(x, y)

Strictly speaking, syncGenGrp is not first-order restricted as it returns a nested
collection. However, let us constrain it to be used strictly as a generator
(x, zs) <- syncGenGrp(bf, cs)(xs, ys) in a comprehension construct, with the under-
standing that for ((x, zs) <- syncGenGrp(bf, cs)(xs, ys); ...) yield e is desugared
to syncFlatMap((x, zs) => for (...) yield e, bf, cs)(xs, ys). With this constraint,
syncGenGrp can justifiably be viewed as a first-order construct, as it becomes mere syntactic
sugar which gets desugared into a first-order construct.

As shown earlier, syncMap and syncFlatMap are expressible as functions in comprehension
syntax. And syncGen and syncGenGrp are desugared into syncMap and syncFlatMap. So, the
theorem below follows.

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

Iterating on multiple collections in synchrony 23

Theorem 5.1. The extensional expressive power of Scala under the first-order restric-
tion, is the same with or without any of syncMap, syncFlatMap, syncGen, and syncGenGrp.
However, more efficient algorithms for some functions (e.g., a linear-time algorithm
for low-selectivity join) can be defined when any of syncMap, syncFlatMap, syncGen, and
syncGenGrp is made available in this fragment of Scala.

For illustration, the function ov1(xs, ys) from Figure 1 is expressed below using syncGen.
This version, ov4(xs, ys), as with ov3(xs, ys) in Section 4.4, has linear time complexity
when selectivity is low.

def ov4(xs: Vec[Event], ys: Vec[Event]): Vec[(Event , Event)] = {
// Requires: xs and ys sorted lexicographically by (start , end).
// Note: isBefore and overlap are as defined in Figure 1.
syncGen(isBefore , overlap)(xs , ys)

}

Recall also Lemma 3.2 that N RC 1(≤, takeWhile, dropWhile, sort) cannot realise effi-
cient low-selectivity joins. Therefore, first-order restricted Scala augmented with takeWhile

and dropWhile, by themselves, cannot implement syncGen and syncGenGrp efficiently. On the
other hand, both takeWhile and dropWhile can be realised quite efficiently and succinctly
using either Synchrony generator. For example,

for (x <- xs.takeWhile(p)) yield f(x)

= for ((, x) <- syncGen((,)=>false, (x,)=>p(x))(Vec(()), xs)) yield f(x)

for (x <- xs.dropWhile(p)) yield f(x)

= for ((x,) <- syncGen((y,x)=>!y && !p(x), (y,)=>y)(xs, Vec(false,true))) yield f(x)

5.2 Synchrony generator vs database merge join

As mentioned in Section 2, a database join having a join predicate comprising entirely
of equality tests is an equijoin, and those comprising entirely of inequality tests is a non-
equijoin. A relational database system executes joins using a variety of strategies (Blasgen
& Eswaran, 1977; Mishra & Eich, 1992; Silberschatz et al., 2016). Where possible, a rela-
tional database system decomposes a join predicate into an equijoin part and a residual part;
it then executes the equijoin part using either an index join (if suitable indices are avail-
able), or a merge join (if indices are not available but the relations are already appropriately
sorted), or a sort-merge join or a hash join (if indices are not available and the relations
are not already sorted); finally, it executes the residual part as a selection predicate on the
result of the equijoin. So, the time complexity is always linear or at worst linearithmic
for a join which has an equijoin part that has low selectivity. For a non-equijoin, most
relational database systems execute it using nested loops, which have quadratic time com-
plexity. However, some relational database systems can execute some restricted forms of
non-equijoin, such as a band join x.a ≤ y.b ≤ x.c, more efficiently (e.g., in linear time,
when the band join predicate x.a ≤ y.b ≤ x.c has low selectivity.)

The Synchrony generator syncGen(isBefore, canSee) is closely related to, and is an ele-
gant generalization of, the merge join used in relational database systems. In relational
database systems, the merge join is always applied on a pair of relational tables xs and ys

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

24 Stefano Perna, Val Tannen, and Limsoon Wong

which are sorted according to some sorting keys φ(·) and ψ(·) with comparable codomains.
This induces a linear ordering isBefore(y, x) = ψ(y)< φ(x) on items in the two tables.
So, by construction, this isBefore predicate is monotonic with respect to (xs, ys).

For the standard merge join (Silberschatz et al., 2016), the join predicate canSee must
comprise entirely of equality tests (i.e. an equijoin). So, canSee is reflexive and con-
vex; thus, by Proposition 4.3, it is antimonotonic with respect to isBefore. All relational
database systems also support a variant of the merge join where the join predicate is a
single inequality like canSee(y, x) = x.a < y.b or canSee(y, x) = x.a ≤ y.b. The for-
mer is antimonotonic and convex but not reflexive, the latter is convex and reflexive and
thus also antimonotonic. Some database systems support a range join predicate of the
form canSee(y, x) = x.a - ε ≤ y.b ≤ x.a + ε; cf. DeWitt et al. (1991). This is a reflex-
ive and convex predicate. Thus, by Proposition 4.3, it is antimonotonic with respect to
isBefore. Newer database systems support a band join predicate of the form canSee(y, x)=

x.a ≤ y.b ≤ x.c. This predicate is antimonotonic but not convex. Some database systems
support an interval join predicate of the form canSee(y, x) = x.a ≤ y.b && y.c ≤ x.d on
some special data types, such as those associated with time periods, where the constraints
x.a ≤ x.d and y.c ≤ y.b are known or enforced by these database systems; cf. Piatov et al.
(2016) and Dignoes et al. (2021). This predicate, taking into account the two associated
constraints, is antimonotonic but not convex.

As all these canSee predicates are antimonotonic, they can be used legitimately in
syncGen(isBefore, canSee)(xs, ys). And this computes the corresponding equijoin, single-
inequality merge join, range join, band join, and interval join. Clearly, the monotonicity of
the isBefore predicate and the antimonotonicity of the canSee predicate constitute a more
general and more elegant condition for correctness than the adhoc syntactic forms required
by current formulations of equijoin, single-inequality merge join, range join, band join,
and interval join.

There have been many works introducing join algorithms in the database community
to handle non-equijoin, from early studies by DeWitt et al. (1991) to recent studies by
Piatov et al. (2016) and Dignoes et al. (2021). These works generally require a combina-
tion of new data structures, new evaluation techniques, and even exploitation of hardware
features of modern CPU architectures. These are tools which are not part of the repertoire
of an average programmer. Moreover, these works consider only some syntactic forms. In
contrast, Synchrony generator efficiently and uniformly implements a more general class
of non-equijoin without requiring any of these. This makes Synchrony generator rather
appealing as an addition to collection-type function libraries of programming languages.

Moreover, by Theorem 4.4, the time complexity of syncGen(isBefore, canSee)(xs, ys)

is O(|xs|+ k|ys|) where k is the degree of the canSee predicate. It is worth noting that
the size of the result of syncGen(isBefore, canSee)(xs, ys) is also O(|xs|+ k|ys|), which
obviously constitutes a lowerbound on the efficiency of any algorithm for computing the
same join. So, despite Synchrony generator being much simpler and more general than ear-
lier algorithms for various more restricted forms of non-equijoin, the time complexity of
syncGen(isBefore, canSee)(xs, ys) is already asymptotically optimal. Even more impres-
sive, it does this while staying strictly within the extensional expressive power of first-order
restricted Scala unaugmented with any library function.

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

Iterating on multiple collections in synchrony 25

case class Event(start: Int , end: Int , id: String)
// Constraint : start < end

val isBeforeWithId = (y: Event , x: Event) => {
(y.id < x.id) ||
(y.id == x.id && y.start < x.start) ||
(y.id == x.id && y.start == x.start && y.end < x.end)

}

val overlapWithId(y: Event , x: Event) => {
(y.id == x.id) &&
(x.start < y.end && y.start < x.end)

}

def ovWithId(xs: Vec[Event], ys: Vec[Event]) = {
// Requires: xs and ys are sorted by (id , start , end)
syncGen(isBeforeWithId , overlapWithId)(xs, ys)

}

// Query1: ovWithId directly translated into SQL
SELECT x.*, y.*
FROM xs AS x, ys AS y
WHERE y.id = x.id AND x.start < y.end AND y.start < x.end

// Query2: ovWithId implemented as "Union of band joins" in SQL
SELECT x.*, y.*
FROM xs AS x JOIN ys AS y ON y.start < x.start AND x.start < y.end
WHERE y.id = x.id
UNION ALL
SELECT x.*, y.*
FROM xs AS x JOIN ys AS y ON x.start <= y.start AND y.start < x.end
WHERE y.id = x.id

Fig. 6. A variation of the event-overlap example. ovWithId(xs, ys) computes the same function as
the two SQL queries on inputs xs and ys which are sorted lexicographically by (id, start, end).

Therefore, the formulation of Synchrony generator and the monotonicity and anti-
monotonicity conditions on the associated isBefore and canSee predicates add conceptual
elegance and algorithmic clarity in characterizing and generalizing the merge join.

For a further appreciation of what this brings, consider a slight variation of the event-
overlap example. As shown in Figure 6, this time, events are categorized by their id

attribute (where there can be many events of each category), and are ordered lexico-
graphically by their id, start, and end attributes. An event y is now considered before
another event x either when y has a smaller category id than x, or they have the same cat-
egory id and y starts before x, or they have the same category id and start together but
y ends earlier than x, as defined by the function isBeforeWithId in the figure. Similarly,
two events now are considered overlapping only when they have the same category id and
they overlap in time, as defined by the function overlapWithId in the figure. The function
ovWithId(xs, ys) returns the overlapping same-category events in xs and ys. It has time
complexity O(|xs|+ k|ys|) if each event in ys overlaps fewer than k same-category events
in xs, as per the time complexity of Synchrony generator.

The direct translation of ovWithId(xs, ys) into SQL is given as Query1 in Figure 6. Notice
that it does not meet the syntactic requirement of a band join. So, a relational database
system has to execute it using nested loops, resulting in O(|xs| · |ys|) time complexity. If

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

26 Stefano Perna, Val Tannen, and Limsoon Wong

the relational database system supports a “single inequality” variant of the merge join, it
can cut the time complexity by half; but this is still quadratic.

As start < end holds for any event, it is can be shown that overlapWithId(y, x) if and
only if y.id = x.id and either y.start < x.start < y.end or x.start ≤ y.start < x.end.
So, an alternative SQL query can use the “union of two band joins” idea of Dignoes et al.
(2021) to implement the same-category event-overlap function. This is Query2 in Figure 6.

While there are different implementations of band join, their time complexity is lower
bounded by output size. Thus, optimistically, the time complexity of each of the two band
join is O(|xs|+ k|ys|) if each event in ys overlaps fewer than k events in xs. As there are
two band joins and one union, the time complexity is O(2|xs|+ 2k|ys|), assuming the result
of the second band join is directly concatenated to the first. Some implementations of band
join do not support equality predicate; e.g., Dignoes et al. (2021) had to modify Postgres to
make its band join support an equality predicate. In this case, xs and ys have to be re-sorted
using only their start and end attributes and the selectivity k′ must now include overlaps
of events in different categories (so, k′ > k.) Then the time complexity becomes worse.

It is worth remarking that, as demonstrated by Dignoes et al. (2021), the “union of
two band joins” idea is the current state of art in implementing interval join in relational
database systems research. The Synchrony generator implementation ovWithId(xs, ys) has
time complexity O(|xs|+ k|ys|) when the selectivity is k, which compares favourably
to O(2|xs|+ 2k|ys|). Importantly, it works directly on the overlapWithId(y, x) predicate
(and any other antimonotonic predicates); whereas, for a relational database system,
a user-programmer has to be skilled enough to recast an interval join to the more
optimizer-friendly “union of two band joins.” Another useful virtue is that the result of
syncGen(xs, ys) is in the same order as xs, while the result produced by the “union of two
joins” has lost this ordering. Thus, if the result is to be used as an input to a subsequent
query (see the arranging-meeting example in Figure 7), the former might be usable directly;
whereas, the latter might require extra sorting effort.

5.3 Synchronized iteration on multiple collections

Synchrony fold and derivatives described earlier are synchronizing iterations on two col-
lections. How about synchronizing iterations on three or more collections using these
functions? Consider a user-programmer writing a program mtg0(ws, xs, ys, zs) for find-
ing the common overlaps between four collections of events. If ws, xs, ys, and zs are the
available time slots of four people, then mtg0(ws, xs, ys, zs) are the time slots they are
available to meet together.

A naive definition for mtg0 in comprehension syntax, aiming at clarity, is given first
in Figure 7. While mtg0 is easy to understand, its quartic time complexity begs for
improvement. An quick improvement is to insert some overlap predicates to eliminate
nonoverlapping time slots as early as possible, as done by mtg1 in Figure 7. If each available
time slot of a person overlaps fewer than k time slots of another person, the time complexity
of mtg1 is quadratic, viz. O(|ws|(|xs|+ k|ys|+ k2|zs|+ k3)). This is still not very efficient.
So, mtg2 in Figure 7 is an attempt using Synchrony generator to obtain a more efficient
implementation. It also makes use of a nice idea on parallel comprehension-cum-monadic
zip (Gibbons, 2016).

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

Iterating on multiple collections in synchrony 27

def mtg0(ws: Vec[Event], xs: Vec[Event], ys: Vec[Event], zs: Vec[Event]
): Vec[Event] =

for (
w <- ws; x <- xs; y <- ys; z <- zs;
s = max(w.start , x.start , y.start , z.start);
e = min(w.end , x.end , y.end , z.end);
if s < e

) yield Event(start = s, end = e, id = w.id + x.id + y.id + z.id)

def mtg1(ws: Vec[Event], xs: Vec[Event], ys: Vec[Event], zs: Vec[Event]
): Vec[Event] =

for (
w <- ws;
x <- xs; if overlap(x, w);
y <- ys; if overlap(y, w);
z <- zs; if overlap(z, w);
s = max(w.start , x.start , y.start , z.start);
e = min(w.end , x.end , y.end , z.end);
if s < e

) yield Event(start = s, end = e, id = w.id + x.id + y.id + z.id)

def mtg2(ws: Vec[Event], xs: Vec[Event], ys: Vec[Event], zs: Vec[Event]
): Vec[Event] = {

// Requires: ws ,xs , ys , and zs sorted by (start , end).
// Issue: The first four lines of codes below
// breaks the first -order restriction .
val wxss = syncGenGrp(isBefore , overlap)(ws, xs)
val wyss = syncGenGrp(isBefore , overlap)(ws, ys)
val wzss = syncGenGrp(isBefore , overlap)(ws, zs)
val wxyzs = zip3(wxss , wyss , wzss)

for (
(wxs , wys , wzs) <- wxyzs;
(w , xss) = wxs;
(_, yss) = wys;
(_, zss) = wzs;
x <- xss; y <- yss; z <- zss;
s = max(w.start , x.start , y.start , z.start);
e = min(w.end , x.end , y.end , z.end);
if s < e

) yield Event(start = s, end = e, id = w.id + x.id + y.id + z.id)
}

Fig. 7. The arranging-meeting example.

Assuming ws, xs, ys, and zs are sorted lexicographically based on start and end

point of events, and all events overlap fewer than k other events, the time complexity
of mtg2(ws, xs, ys, zs) is linear, O(|ws|+ 2k|xs|+ |ws|+ 2k|ys|+ |ws|+ 2k|zs|+ 2|ws|+
k3|ws|) = O((k3 + 5)|ws|+ 2k(|xs|+ |ys|+ |zs|)). Note that the 5|ws| overheads are due to
(1) zipping wxss, wyss, and wzss; (2) scanning wxyzs; and (3) scanning ws three times when
synchronizing with xs, ys, and zs. Nonetheless, this is much better than the quartic time
complexity of mtg0 and quadratic time complexity of mtg1, albeit it will be further improved
in the next Section when Synchrony iterator is introduced.

Associated with the 5|ws| overheads is also the need to construct and store the interme-
diate collections wxss, wyss, wzss, and wxyzs, as Scala constructs these eagerly. Moreover,
wxss, wyss, wzss, and wxyzs are nested collections; this breaks the first-order restriction. In

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

28 Stefano Perna, Val Tannen, and Limsoon Wong

addition, the need to scan ws three times may be an issue when ws is a large data stream, as
it implies needing to buffer the whole stream in memory. In a lazy programming language,
this issue may go away, depending on how clever its garbage collector is.

Another somewhat unsatisfactory issue is the need for defining the function zip3 to com-
bine the three sequences of synchronizations of xs, ys, and zs to ws. We already know from
the limited-mixing lemmas of Section 3 that zip is not efficiently definable under the first-
order restriction, even though it is a straightforward two-line recursive function. And when
the calendars of more people have to be synchronized, a zoo of zip4, zip5, etc. have to be
written as well.7 This issue is attributable to Scala’s unsophisticated treatment of compre-
hension syntax. In a programming language (e.g., Haskell) which has more powerful ways
to compile comprehension syntax using alternative binding semantics as well as enhance-
ments to comprehension syntax design (Marlow et al., 2016; Wadler & Peyton Jones,
2007; Gibbons, 2016; Lindley et al., 2011), this issue of breaking the first-order restriction
will likely disappear, though the 5|ws| time-complexity overheads highlighted earlier will
likely remain.

6 Synchrony iterator

Recall again the motivating example from Figure 1, ov1(xs, ys) = for (x <- xs; y <- ys;
if overlap(x, y)) yield (x, y). Besides its poor quadratic time complexity which has
already been highlighted, it suffers from another problem. If Vec[·] is a streaming data
type, i.e. xs and ys are dynamic data generated continuously as events in them take place,
then ov1(xs, ys) has to buffer all of ys and cannot move on to the second item in xs until
the data stream ys is finished.

Our syncFold and syncFoldGrp—and thus, syncMap, syncFlatMap, syncGen, and
syncGenGrp—do not suffer this same problem because, by Antimonotonicity Condition 2,
they can move on to the next item in xs as soon as the current item in ys is after the current
item in xs and cannot see the item. So, Synchrony fold and its derivatives do not have to
buffer for all of ys. Nonetheless, the definitions of Synchrony fold in Section 4.1 and 4.2
do not produce any output until all items in xs and ys have been processed. As the actual
processing by Synchrony fold only needs to see a small chunk of the two data streams at
a time to compute the result for this small chunk, it is desirable to be able to return results
incrementally in an on-demand manner.

A possible solution is using the relationship between foldLeft and foldRight to derive,
from syncGenGrp, a lazy version syncGenGrpLazy where its result type is a LazyList.8 While
this is sufficient for getting a streaming version of Synchrony generator, syncGenGrpLazy

has similar issues as syncGenGrp when it comes to synchronizing multiple collections. The

7 The reader may find this zip issue confusing. Are we not already using recursion and other features when we
define Synchrony fold and generator? Why are we complaining about having to define zip3 in mtg2? Recall,
in this paper, we separate an implementer-programmer who implements programming constructs and library
functions from a user-programmer who uses these. The former has access to all features of Scala. The latter, in
the context of this paper, is restricted to first-order Scala plus specifically permitted library functions which the
former provides. As mtg2 is an example of how to use Synchrony generator, it is expected to be written by the
user-programmer. The user-programmer, being restricted to first-order Scala, thus cannot define an efficient
zip. So, this user-programmer will have to write a much clumsier-looking program than mtg2 for efficiency’s
sake; the clumsier-looking but efficient program is such an eyesore that we decided to omit it from this paper.

8 In Scala, items in a LazyList are computed only when they are needed and are memoized.

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Iterating on multiple collections in synchrony 29

arranging-meeting example of Figure 7, for instance, would have exactly the same imple-
mentation using syncGenGrpLazy as the version using syncGenGrp, viz. mtg2, but with every
occurence of syncGenGrp replaced by syncGenGrpLazy. In particular, a user-programmer
implementing it would also be required to write the functions for LazyList version of zip3,
zip4, etc. depending on the number of people required for the meeting, as a generic zip

function for zipping an arbitrary number of collections of arbitrary different types cannot
be assigned a valid type in current strongly typed programming languages.

As another mechanism for incrementally producing items on demand, an iterator comes
to mind. A normal Scala iterator yi provides a yi.next() method which on-the-fly computes
and produces the next item in the iteration. Although this is simple, we decided against it.
The reason is yi.next() is iterating only on one collection. A user-programmer would thus
be forced to organize the synchronization with the other collections using some additional
mechanism, and we would be back to square one.

These two problems—viz. streaming and multi-collection synchronized iteration—are
addressed in this section. In particular, Synchrony iterator is conceived in this section. A
Synchrony iterator yi = new EIterator(ys, isBefore, canSee) provides a yi.syncedWith(x)

method that on-the-fly computes and produces the items in the iteration on ys that should be
synchronized to (i.e. can see) the item x, under the assumption that successive invocations
of syncedWith are given, as the values of x, successive items of a collection xs ordered such
that isBefore is monotonic with respect to (xs, ys) and canSee is antimonotonic with respect
to isBefore.

This design of Synchrony iterator has two advantages over the standard iterator. Firstly,
a nice byproduct of this design is that the same x can be used to synchronize multiple
Synchrony iterators simultaneously. Using this alternative way to express multi-collection
synchronized iteration avoids the zip issue mentioned in the discussion on mtg2. Secondly,
like iterators in general, Synchrony iterator requires side effects. However, unlike the
standard iterator, some safe-use conditions can be provided on Synchrony iterator. These
conditions isolate these side effects and are sufficient for restoring transparent equational
reasoning for programs involving Synchrony iterator.

6.1 Designing Synchrony iterator

Deriving a version of Synchrony generator that incrementally computes and returns its
result is a fairly typical programming problem. So, we give it a try first by looking at the
definition of syncGenGrp. The codes for the Synchrony generator syncGenGrp, after unfold-
ing through synGenGrp(bf, cs)(xs, ys) = syncFoldGrp((x, zs, a) => a :+ (x, zs), Vec(), bf,
cs)(xs, ys), are shown in the top half of Figure 8.

It is quite apparent that a simple rearrangement of the aux function used in defining
syncGenGrp is sufficient to make it return one element of the result at a time. This is
shown in the bottom half of Figure 8. In this rearrangement, the EIterator class is intro-
duced. Objects of this class are called eiterators (pronounced “iterators.”) An eiterator
yi = new EIterator(ys, isBefore, canSee) can be regarded as an enhanced iterator on the
collection ys. The eiterator is characterized by a method yi.syncedWith(x), which is the
rearranged aux function from syncGenGrp.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

30 Stefano Perna, Val Tannen, and Limsoon Wong

// The codes for syncGenGrp after unfolding through
// synGenGrp(bf , cs)(xs , ys) =
// syncFoldGrp ((x, zs , a) => a :+ (x, zs), Vec(), bf , cs)(xs , ys).
def syncGenGrp[A,B]

(bf: (B,A) => Boolean , cs: (B,A) => Boolean)
(xs: Vec[A], ys: Vec[B])

: Vec[(A,Vec[B])] = {

def aux(xs: Vec[A], ys: Vec[B], zs: Vec[B], acc: Vec[(A,Vec[B])])
: Vec[(A,Vec[B])] = {

if (xs.isEmpty) acc
else if (ys.isEmpty && zs.isEmpty) acc
else if (ys.isEmpty) aux(xs.tail , zs, Vec(), acc :+ (xs.head , zs))
else {

val (x,y) = (xs.head , ys.head)
(bf(y, x), cs(y, x)) match {

case (true , false) => aux(xs, ys.tail , zs , acc)
case (false , false) => aux(xs.tail , zs ++: ys, Vec(), acc :+ (x,zs))
case (_, true) => aux(xs, ys.tail , zs :+ y, acc)

}
}

}

aux(xs , ys, Vec(), Vec ())
}

// Rearranging syncGenGrp ’s aux function to return one element
// of the result at a time. This provides a preliminary
// implementation of Synchrony iterator.
class EIterator[A,B](

elems: Vec[B],
bf: (B,A)=>Boolean , cs:(B,A)=>Boolean) {

private var es = elems

def syncedWith(x: A): Vec[B] = {
def aux(zs: Vec[B]): Vec[B] = {

if (es.isEmpty && zs.isEmpty) zs
else if (es.isEmpty) { es = zs; zs }
else {

val y = es.head
(bf(y, x), cs(y, x)) match {

case (true , false) => { es = es.tail; aux(zs) }
case (false , false) => { es = zs ++: es; zs }
case (_, true) => { es = es.tail; aux(zs :+ y) }

}
}

}
aux(Vec())

}
}

Fig. 8. Preliminary definition of EIterator, shown along side the unfolded definition of syncGenGrp.
The syncedWith method of the former is derived from the aux function of the latter.

The theorem below shows that when yi = new EIterator(ys, isBefore, canSee) is a
fresh eiterator on ys, calling yi.syncedWith(x) on each successive item x in xs, returns
the corresponding successive item (x, zs) in syncGenGrp(isBefore, canSee)(xs, ys).
Furthermore, the total time complexity is the same. Thus, an eiterator generates—at the
same efficiency—the same items produced by a Synchrony generator, and it produces these

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

Iterating on multiple collections in synchrony 31

items one at a time when its syncedWith method is called iteratively. For this reason, an
eiterator is called a Synchrony iterator.

Theorem 6.1. Suppose isBefore is monotonic with respect to (xs, ys), and canSee is anti-
monotonic with respect to isBefore. Then, the following two programs define the same
function.

1. syncGenGrp(isBefore, canSee)(xs, ys)

2. val yi = new EIterator(ys, isBefore, canSee)

for (x <- xs; zs <- yi.syncedWith(x)) yield (x, zs)

Both programs have time complexity O(|xs|+ 2k|ys|), assuming isBefore and canSee have
constant time complexity and each item in ys can see fewer than k items in xs.

Proof When an eiterator yi = new EIterator(ys, isBefore, canSee) is freshly created, its
internal variable es is initialized to the collection ys. Let the items in xs be x1, ..., xn, in this
order. Suppose isBefore is monotonic with respect to (xs, ys), and canSee is antimonotonic
with respect to isBefore. Suppose yi.syncedWith(x1), ..., yi.syncedWith(xn) are called in
this order. Let zs1, ..., zsn be the corresponding results. Let es1, ..., esn be the value of the
internal variable es at the end of each of these calls. And let e0 = ys.

By construction, for each y in ys, such that isBefore(y, x j), it is the case canSee(y, x j)

if and only if y is in zs j and es j. Also, by construction, for each y in ys, such that not
isBefore(y, x j), it is the case that y is in es j; and by Antimonotonicity Condition 2, y is in
zs j if and only if canSee(y, x j). Thus, for y in ys, y is in zs j if and only if canSee(y, x j). So,

zs j = for (y <- ys; if canSee(y, x j)) yield y

Vec((x j, zs j)) = syncGenGrp(isBefore, canSee)(Vec(x j), ys)

Then, the first part of the theorem follows from Corollary 4.6,

syncGenGrp(isBefore, canSee)(xs, ys)

= for (x <- xs; zs <- yi.syncedWith(x)) yield (x, zs)

Looking at the definition of the function aux in syncedWith, when processing
yi.syncedWith(x j), each time aux is called, it reduces the number of items in es j−1 (and
thus ys) by 1; or it increases the number of items by |zs j| exactly once, when it returns.
As mentioned earlier, the items in zs j are those y that can see x j. Thus, the total num-
ber of times aux gets called when processing yi.syncedWith(x1), ..., yi.syncedWith(xn), is
|ys|+ ∑ j |zs j|. By assumption of the theorem, each item in ys can see fewer than k items
in xs. So, each item in y appears in fewer then k distinct zs j. Thus, ∑ j |zs j|< k|ys|. Also,
the prepend operator zs ++: es is linear in |zs|; these add an overhead of ∑ j |zs j|< k|ys|.
So, for (x <- xs; zs <- yi.syncedWith(x)) yield (x, zs) has time complexity O(|xs|+
2k|ys|). This proves the second part of the theorem. �

The following useful details can also be extracted from the proof above.

Proposition 6.2. Suppose isBefore is monotonic with respect to (xs, ys),
and canSee is antimonotonic with respect to isBefore. Let the eiterator
yi = new EIterator(ys, isBefore, canSee) be freshly created. Let x1, ..., xn be some

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

32 Stefano Perna, Val Tannen, and Limsoon Wong

def mtg3(
ws: Vec[Event], xs: Vec[Event], ys: Vec[Event], zs: Vec[Event]

): Vec[Event] = {
// Requires: ws , xs , ys , zs sorted lexicographically by (start , end).
// Note: isBefore and overlap are as defined in Figure 1.
val xi = new EIterator(xs, isBefore , overlap);
val yi = new EIterator(ys, isBefore , overlap);
val zi = new EIterator(zs, isBefore , overlap);
for (

w <- ws;
x <- xi.syncedWith(w);
y <- yi.syncedWith(w);
z <- zi.syncedWith(w);
s = max(w.start , x.start , y.start , z.start);
e = min(w.end , x.end , y.end , z.end);
if s < e

) yield Event(start = s, end = e, id = w.id + x.id + y.id + z.id)
}

Fig. 9. The arranging-meeting example expressed using Synchrony iterator.

of the items in xs, with possible repetitions and omissions of items in xs, such that for
1≤ j < j′ ≤ n where x j 6= x j′ , it is the case that (x j� x j′ | xs). Suppose yi.syncedWith(x j)

is called in sequence for each x j. Let zs j be the corresponding result and es j be the value
of the internal variable es of the eiterator yi at the end of each of these calls. And let e0 =
ys. Then,

zs j = { new EIterator(es j−1, isBefore, canSee) }.syncedWith(x j)

= { new EIterator(ys, isBefore, canSee) }.syncedWith(x j)

= for (y <- ys; if canSee(y, x j)) yield y

That is, only the ordering of x j matters when calling syncedWith; repetitions and omissions
of items in xs have no impact.

The design of Synchrony iterator thus meets the objective of incrementally computing
and producing synchronized items in a collection ys to items in a collection xs.

Fortuitously, the synchronization provided by Synchrony iterator is specified via
yi.syncedWith(x); i.e., xs does not need to be given as part of the specification. This design
facilitates the simultanenous synchronization of items in multiple collections to the same
item x. In particular, let yi1, ..., yin be eiterators on the n collections ys1, ..., ysn that are to
be synchronized to items in xs. Then for each item x in xs, the methods yi1.syncedWith(x),
..., yin.syncedWith(x) are called to achieve simultaneous synchronized iteration on the n
collections to the collection xs, like this:

val yi1 = new EIterator(ys1, bf1 cs1); ...; val yin = new EIterator(ysn, bfn csn);

for (x <- xs; y1 <- yi1.syncedWith(x); ...; yn <- yin.syncedWith(x)) yield ...

The function mtg3 in Figure 9, which revisits the arranging-meeting example from
Section 5.3, illustrates this simultaneous synchronization. Notice that mtg3 is first order.
And, in contrast to the approach adopted earlier by mtg2 from Figure 7, mtg3 dispenses with
the need to define a zoo of zip’s to structure synchronized iteration in multiple collections.

However, the time complexity of mtg3 may not be as good as mtg2. Suppose all
events overlap fewer than k other events. The time complexity of mtg3 is O(|ws|+

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

Iterating on multiple collections in synchrony 33

2k|xs|+ 2k2|ys|+ 2k3|zs|+ k3|ws|), because x <- xi.syncedWith(w) is called once for each
w, y <- yi.syncedWith(w) is called once for each x, and z <- zi.syncedWith(w) is called once
for each y.

Fortunately, although y <- yi.syncedWith(w) and z <- zi.syncedWith(w) are called mul-
tiple times for different x’s and y’s respectively, these calls depend on w and not on x and y.
So, the problem is easy to solve by making syncedWith remember its immediate last result.
Figure 10 shows the revised EIterator class incorporating this simple solution. We have so
far used Vec[·] to denote a collection type. Perhaps this gives the appearance that xs and ys

are collection types of the same kind, i.e., both are vectors, both are lists, etc. Actually, this
does not need to be the case. So, we show this in this revised version of EIterator as well.
Specifically, yi = new EIterator(ys, bf, cs) now constructs an eiterator for any kind of
iterable object ys, e.g., a LazyList[B], which is Scala’s preferred data type for representing
data streams. Also, the method yi.syncedWith(x) now returns a List[B]. And the collec-
tion xs, where x comes from, can be yet another kind of collection type, e.g., a Vector[A].
Incidentally, the prepend ++: and postpend :+ operations on vectors, are not needed in this
version of EIterator.

With this simple modification to Synchrony iterator, the time complexity of mtg3

becomes O((k3 + 1)|ws|+ 2k(|xs|+ |ys|+ |zs|)). Now, mtg3 is even more efficient than
mtg2, successfully reducing the latter’s 5|ws| overheads to |ws|, as well as avoiding the con-
struction of several large intermediate collections. Moreover, even when ws, xs, ys, and zs

are large dynamic data streams, mtg3 can produce their common time slots incrementally
as overlapping events arrive.

It is worth diving deeper into the details of the revised definition of EIterator in
Figure 10. EIterator memoizes the previous result in ores and the previous value of x

in ox. If the next value of x is same as the one memoized earlier in ox, the result memoized
earlier in ores is returned immediately. Otherwise, the synchronized iteration resumes from
ores and continues onward to es. This actually kills a second bird with the same stone: In
the earlier definition of Synchrony iterator in Figure 8, when both bf(y, x) and cs(y, x)

are false, zs must be prepended back to es before returning zs as the result. This prepending
step is dispensed with in this revised definition of EIterator as the result is now already
memoized in ores and the iteration in response to the next call value x resumes from ores

before continuing onward to es.
Under the hood in Scala, being a List[·], ores is a “boxed value”; i.e., it is a pointer.

Thus, if there are multiple consecutive x’s which have the same value, the corresponding
yi.syncedWith(x) results are exactly the same pointer. This has a rather nice practical impli-
cation, akin to factorized databases (Olteanu & Schleich, 2016). As an illustration, let the
collection xs be just a sequence repeating the same value u, and the collection ys be just a
sequence repeating the same value v. Suppose also that cs(v, u) is true. Then, it does not
matter whether bf(v, u) is true, for (x <- xs; zs = yi.syncedWith(x)) yield (x, zs) has
linear physical size O(|xs+ ys|), even though—semantically—there are |xs| · |ys| number
of items from xs and ys in it. Although not explored here, this property may be further
exploited for designing more efficient algorithms, e.g., for database query processing,
perhaps in the manner of Henglein & Larsen (2010) and Olteanu & Schleich (2016).

Also, in practice, isBefore(y, x) and canSee(y, x) predicates do not use all the infor-
mation in y and x. In fact, they often have a form like bf(y, x) = bfk(ψ(y), φ(x)) and

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

34 Stefano Perna, Val Tannen, and Limsoon Wong

class EIterator[A,B](
elems: Iterable[B],
bf: (B,A)=>Boolean , cs: (B,A)=>Boolean)

{
private var es: Iterable[B] = elems
private var ores: List[B] = List() // last result
private var ox: Option[A] = None // last x

// When iterating , use items in ores before items in es.
private def empty = es.isEmpty && ores.isEmpty
private def hd = if (ores.isEmpty) es.head else ores.head
private def nx() = if (ores.isEmpty) { es = es.tail }

else { ores = ores.tail }

def syncedWith(x: A): List[B] = {
def aux(zs: List[B]): List[B] =

if (empty) { zs }
else {

val y = hd
(bf(y, x), cs(y, x)) match {

case (true , false) => { nx(); aux(zs) }
case (false , false) => { zs }
case (_, true) => { nx(); aux(y +: zs) }

}
}

// Use the last result if this x is same as the last x
if (ox == Some(x)) { ores }
else { ox = Some(x); ores = aux(List ()). reverse; ores }

}
}

class EIteratorWithKey[KA,KB,A,B](
keya: A => KA , keyb: B => KB,
elems: Iterable[B],
bfk: (KB ,KA)=>Boolean , csk: (KB,KA)=>Boolean)

extends EIterator[A,B](null , null , null)
{

// EIterator ek for synchronizing elems to keya(x) instead of x.
private val ek: EIterator[KA,B] = {

val bf = (y: B, kx: KA) => bfk(keyb(y), kx)
val cs = (y: B, kx: KA) => csk(keyb(y), kx)
new EIterator(elems , bf, cs)

}

// Override syncedWith (x) by ek. syncedWith (keya(x)).
// This is equivalent to defining the isBefore and canSee
// predicates for EIteratorWithKey as:
// bf(y, x) = bfk(keyb(y), keya(x))
// cs(y, x) = csk(keyb(y), keya(x))
override def syncedWith(x: A): List[B] = ek.syncedWith(keya(x))

}

Fig. 10. Revised definition of Synchrony iterator EIterator and its derivative EIteratorWithKey,
whose isBefore predicate (bfk) and canSee predicate (csk) are defined using sorting keys (keya,
keyb).

cs(y, x) = csk(ψ(y), φ(x)), where ψ(·) and φ(·) are some sorting keys of ys and xs

respectively. As xs is sorted by φ(·), for any (xi� x j | xs) where φ(xi) = φ(x j), it is
the case that φ(xi) = φ(xk) = φ(x j) for all (xi� xk� x j | xs); this is so even when
xi 6= xk 6= x j. This means yi.syncedWith(xi) = yi.syncedWith(xk) = yi.syncedWith(x j),

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

Iterating on multiple collections in synchrony 35

assuming yi.syncedWith(xi), yi.syncedWith(xk), and yi.syncedWith(x j) are called in
this sequence. However, when xi 6= xk 6= x j, yi.syncedWith(xi), yi.syncedWith(xk), and
yi.syncedWith(x j) would be pointers to three separate physical lists comprising exactly
the same sequence of items from ys. To avoid this situation, instead of memoizing
the argument x, the syncedWith method of EIterator should memoize φ(x). In Scala,
this can be accomplished by defining a subclass EIteratorWithKey of EIterator, where
EIteratorWithKey redefines syncedWith(x) to syncedWith(φ(x)), as shown in Figure 10. Then,
instead of creating an eiterator by yi = new EIterator(ys, bf, cs), it can be created as
yi = new EIteratorWithKey(φ(·), ψ(·), ys, bfk, csk).

6.2 Safe use of Synchrony iterator

Synchrony iterator is defined using side effects. Each time syncedWith is invoked on an
eiterator, the local variable es and its local result cache ores and ox are updated. This can
make a program difficult to understand when Synchrony iterator is used in an undisciplined
way. Therefore, the following conditions are imposed to ensure better discipline in using
Synchrony iterator. To specify these conditions, the notation F [·] denotes an expression
with a “hole”—called a “context”—and F [e] denotes the same expression but with the
expression e substituted into the hole.

Definition 6.3 (Safe-use). The following conditions are presumed to hold on a program
for each expression yi.syncedWith(x) that appears in the program.

1. There is a collection xs, and x takes successive values in xs. That is, the expression
yi.syncedWith(x) appears in an enclosing expression that binds x to the collec-
tion xs. In general, the enclosing expression C [yi.syncedWith(x)] looks like, or gets
desugared into, one of these forms:

xs flatMap (x => F [yi.syncedWith(x)])

xs map (x => F [yi.syncedWith(x)])

xs filter (x => F [yi.syncedWith(x)])

2. yi is an eiterator on some collection ys.
3. isBefore is monotonic with respect to (xs, ys).
4. canSee is antimonotonic with respect to isBefore.
5. yi.syncedWith(x) produces the same value as ys filter (y => canSee(y, x)), though

not necessarily with the same efficiency, in the context of this program. That is,
C [yi.syncedWith(x)] = C [ys filter (y => canSee(y, x))].

It may seem onerous to programmers to have these conditions imposed on them. In
reality, they only need to take responsibility for Safe-use Conditions 3 and 4, as these are
non-trivial for the compiler to verify automatically in some cases; nonetheless, they are
often easy to achieve. The other safe-use conditions are easy for a compiler to check or to
enforce in pragmatically, as explained below, or to train programmers to comply with.

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

36 Stefano Perna, Val Tannen, and Limsoon Wong

Safe-use Condition 1 is trivial, and can be easily checked and enforced by the compiler.
It simply says a Synchrony iterator on a collection ys should always be used inside the
scope of the generator that ys is synchronized to.

Safe-use Condition 2 is also trivial. It is just standard type checking.
Safe-use Condition 5, though seems non-trivial at first sight, can be achieved in a prag-

matic way which can be enforced by the compiler. In fact, only two basic rules are needed.
First, if there is another expression yi.syncedWith(x′) on the same eiterator yi, we must
have x == x′. That is, all occurrences of the eiterator yi are identical; i.e. synchronized to
the same x in xs. Or, better still, insist on yi to occur only twice in the program, once
when the eiterator is being created (i.e. yi = new EIterator(ys, isBefore, canSee)), and
once when the eiterator is being used for the only time (i.e. yi.syncedWith(x)). Second,
the eiterator yi should be constructed immediately before the generator of xs. That is, pro-
grammers should always use yi.syncedWith(x) inside an enclosing expression that looks
like, or gets desugared to, one of these forms:

val yi = new EIterator(ys, isBefore, canSee)

xs flatMap (x => F [yi.syncedWith(x)])

val yi = new EIterator(ys, isBefore, canSee)

xs map (x => F [yi.syncedWith(x)])

val yi = new EIterator(ys, isBefore, canSee)

xs filter (x => F [yi.syncedWith(x)])

Even though eiterators have side effects that change their state (viz. their local vari-
ables es, ores, and ox), the two rules under Safe-use Condition 5 isolate these side effects.
Without loss of generality, by the second rule, suppose an eiterator appears like this:

val yi = new EIterator(ys, isBefore, canSee)

xs flatMap (x => F [yi.syncedWith(x)])

By the first rule, yi appears only in the exact form yi.syncedWith(x), whose value
depends only on x. Being in a comprehension, x takes successive values x j of xs. So, by
Proposition 6.2, it is guaranteed that yi.syncedWith(x j) = ys filter (y => canSee(y, x j)).
That is,

{ val yi = new EIterator(ys, isBefore, canSee);
xs flatMap (x => F [yi.syncedWith(x)]) }

= xs flatMap (x => F [ys filter (y => if canSee(y, x))])

In other words, it permits the left-hand-side (which has side effects) to be replaced by the
right-hand-side (which has no side effects) when one is reasoning extensionally. Thus,
despite its side effects, under the safe-use conditions, one might justifiably claim that
Synchrony iterator is a purer programming paradigm than a standard iterator.

Incidentally, the equivalence highlighted above also implies that Synchrony iterator,
under the safe-use conditions, is a conservative extension of first-order restricted Scala
sans library functions.

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

Iterating on multiple collections in synchrony 37

Theorem 6.4. The extensional expressive power of Scala under the first-order restric-
tion, is the same with or without Synchrony iterator under the safe-use conditions.
However, more efficient algorithms for some functions (e.g., a linear-time algorithm for
low-selectivity join) can be defined when Synchrony iterator is made available in this
fragment of Scala.

6.3 Referential transparency of Synchrony iterator

The Safe-use conditions of Synchrony iterator assure its referential transparency. A rather
attractive implication is that equational reasoning that holds for standard collection types,
but fails on standard iterators, holds for Synchrony iterator. This is a direct consequence of
Safe-use Condition 5. We illustrate this with the equations for code motion, redundant-code
elimination, and parallelism.

Code motion

The “code-motion” equation below is valid for standard collection types, provided the free
variables of e2 are a subset of the free variables of u => F [e2], and e2 has no observable
side effects.

e1 flatMap (u => F [e2])

= { val v = e2; e1 flatMap (u => F [v]) }

The code-motion equation is inapplicable to standard iterators. In contrast, it is
applicable to Synchrony iterator under safe-use conditions. Specifically, the following
holds:

e1 flatMap (u => F [yi.syncedWith(x)])

= { val v = yi.syncedWith(x); e1 flatMap (u => F [v]) }

The validity of this code-motion equation is a consequence of Safe-use Condition 5.
To wit, assume yi = new EIterator(ys, bf, cs) for some ys, bf, and cs, then proceed as
follow.

e1 flatMap (u => F [yi.syncedWith(x)])

= e1 flatMap (u => F [ys filter (y => cs(y, x))])

= { val v = ys filter (y => cs(y, x)); e1 flatMap (u => F [v]) }
= { val v = yi.syncedWith(x); e1 flatMap (u => F [v]) }

Redundant-code elimination

The “redundant-code elimination” equation below is valid for standard collection types,
provided the expression e has no observable side effects.

(e flatMap f) ++ (e flatMap g)

= { val v = e; (v flatMap f) ++ (v flatMap g) }

This redundant-code elimination equation is inapplicable when e is an expression having
an iterator type. In contrast, under safe-use conditions, it is applicable to Synchrony iterator
despite its having side effects. Specifically, the following holds:

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

38 Stefano Perna, Val Tannen, and Limsoon Wong

(yi.syncedWith(x) flatMap f) ++ (yi.syncedWith(x) flatMap g)

= { val v = yi.syncedWith(x); (v flatMap f) ++ (v flatMap g) }

The validity of this redundant-code elimination is again a consequence of Safe-use
Condition 5. As before, assume yi = new EIterator(ys, bf, cs) for some ys, bf, and cs,
and proceed as follow.

(yi.syncedWith(x) flatMap f) ++ (yi.syncedWith(x) flatMap g)

= (ys filter (y => cs(y, x) flatMap f)) ++ (ys filter (y => cs(y, x) flatMap g))

= { val v = ys filter (y => cs(y, x)); (v flatMap f) ++ (v flatMap g) }
= { val v = yi.syncedWith(x); (v flatMap f) ++ (v flatMap g) }

Homomorphism over flatMap

The “homomorphism” equation below is valid for standard collection types, provided
expressions e, f, and g have no observable side effects. This equation is the basis for
parallelization of flatMap in, e.g., Hadoop-like platforms.

(e ++ f) flatMap g

= (e flatMap g) ++ (f flatMap g)

A similar homomorphism equation holds for syncedWith. Suppose
val yi = new EIterator(us ++ vs, bf, cs) for some us, vs, bf, and cs. Then, after replac-
ing val yi = new EIterator(us ++ vs, bf, cs) by { val ui = new EIterator(us, bf, cs);

val vi = new EIterator(vs, bf, cs) }, the equation below holds.

yi.syncedWith(x)

= ui.syncedWith(x) ++ vi.syncedWith(x)

This equation follows because

yi.syncedWith(x)

= (us ++ vs) filter (y => cs(y, x))

= (us filter (y => cs(y, x))) ++ (vs filter (y => cs(y, x)))

= ui.syncedWith(x) ++ vi.syncedWith(x)

This equation offers a simple way to parallelize syncedWith.

6.4 Possible syntax for Synchrony iterator

Considering the safe-use conditions, it is perhaps pertinent to suggest a syntax for
Synchrony iterator that automatically enforces all the safe-use conditions, apart from the
safe-use conditions on monotonicity and antimonotonicity. One possibility is to introduce
the following generator pattern into comprehension syntax:

(x, zs1, ..., zsn) <- xs syncWith(ys1, bf1, cs1) ...

syncWith(ysn, bfn, csn)

This way, the EIterator class can be hidden from user-programmers, and they can be told
that zs j = ys.filter((y) => cs j(y, x)) at all times in terms of value, as per Proposition 6.2,
but is obtained very efficiently.

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

Iterating on multiple collections in synchrony 39

This generator pattern is compiled by desugaring it to

(x, zs1, ..., zsn) <- {
val yi1 = new EIterator(ys1, bf1, cs1); ...;

val yin = new EIterator(ysn, bfn, csn)

for (

x <- xs;

zs1 = yi1.syncedWith(x); ...;

zsn = yin.syncedWith(x);

) yield (x, zs1, ..., zsn) }

Usual “deforestation” rules (Wadler, 1990) should be able to optimize this further to
remove the intermediate collection introduced by this desugaring. If not, the generator
pattern can also be desugared into the chain of generator and assignment patterns below:

yi1 = new EIterator(ys1, bf1, cs1); ...;

yin = new EIterator(ysn, bfn, csn)

x <- xs;

zs1 = yi1.syncedWith(x); ...;

zsn = yin.syncedWith(x);

The program mtg4 in Figure 11 is a rewrite of the program mtg3 from Figure 9 using
this suggested syntax for Synchrony iterator. As can be seen, using this syntax, the
three Synchrony iterators xi, yi, and zi that earlier appeared explicitly in mtg3 are now
tucked away from sight. The user-programmer is thus presented with a pure functional
comprehension syntax which uses a slightly enhanced generator form.9

7 Some use-cases and a stress test

Synchrony fold and Synchrony iterator for querying relational databases in general,
genomic datasets in particular, and timestamped data streams is discussed here. A stress
test on using them on genomic datasets is also presented.

7.1 Relational database queries

The use-case of Synchrony fold and Synchrony iterator in the context of relational database
querying should be quite clear already. Further technical and theoretical details are given
in a companion paper (Wong, 2021). So, here, we just point out that only one extra func-
tion is needed to make all relational database queries (including group-by, order-by, and
aggregate functions) efficiently implementable in first-order restricted Scala endowed with

9 This tantalizing syntax is used for illustrative purpose later in Section 7.4. However, in the rest of this work,
we eschew using it in favour of the plain yi = new EIterator(ys, bf, cs) and yi.syncedWith(x) as
our eiterator constructs. The idea and design of Synchrony fold, Synchrony generator, and Synchrony iterator
are partly driven by our desire in suggesting a small set of library functions for general synchronized iteration.
The EIterator and EIteratorWithKey classes and the functions defining Synchrony fold and Synchrony
generator have the crucial advantage of being readily copied and adopted for a wide variety of programming
languages without modifying any of their compilers. Whereas, introducing new syntax into any program-
ming language faces the obstacle of modifying its compiler, which requires significantly more technical effort
(perhaps also requires lots of lobbying); it is thus an unlikely scenario for most programming languages.

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

40 Stefano Perna, Val Tannen, and Limsoon Wong

def mtg4(
ws: Vec[Event], xs: Vec[Event], ys: Vec[Event], zs: Vec[Event]

): Vec[Event] = {
// Requires: ws , xs , ys , zs sorted lexicographically by (start , end).
// Note: isBefore and overlap are as defined in Figure 1.
for (

(w, wxs , wys , wzs) <- ws syncWith(xs, isBefore , overlap)
syncWith(ys, isBefore , overlap)
syncWith(zs, isBefore , overlap)

x <- wxs; y <- wys; z <- wzs;
s = max(w.start , x.start , y.start , z.start);
e = min(w.end , x.end , y.end , z.end);
if s < e

) yield Event(start = s, end = e, id = w.id + x.id + y.id + z.id)
}

Fig. 11. The arranging-meeting example revisited again. The program mtg4 is a rewrite of the
program mtg3 from Figure 9 using the generator syntax suggested for Synchrony iterator.

Synchrony fold and Synchrony iterator. That extra function is sortWith(f)(xs) which sorts
the collection xs: Vec[A] using the ordering function f: (A,A) => Boolean. This is because
Synchrony fold and Synchrony iterator require their input to be suitably sorted beforehand.

Actually, sorting at quadratic time complexity is already expressible in first-order
restricted Scala endowed with Synchrony fold. Theorem 4.5 implies that all functions
defined using first-order restricted Scala with Synchrony fold has time complexity of
the form O(mn) where m is input size. Since efficient sorting requires Ω(m log(m))

time in general, this means sorting takes Θ(m2) time in first-order-restricted Scala with
Synchrony fold. Thus, it is necessary to provide an efficient sortWith sorting function to
user-programmers, to ensure that they are able to implement any relational database queries
efficiently in this framework.

It is worth remarking that on-disk sorting is much easier to implement than on-disk
indexed tables; cf. Silberschatz et al. (2016). It is thus a virtue of Synchrony iterator, which
needs only the former when processing very large collections, relative to approaches that
try to compile join-expressing comprehensions into indexed tables.

7.2 Genometric queries

A second use-case is genometric queries on genomic datasets. BEDOPS (Neph et al., 2012)
and GMQL (Masseroli et al., 2019) are two notable toolkits for processing these datasets,
and support similar query operations. The former via unix-style commands. The latter via
a specialized GenoMetric Query Language. The data model is highly constrained in such
domain-specific toolkits. GMQL is used here for illustration, modulo some liberty taken
with GMQL’s syntax.

There are only a few main object types. The first main object type is the genomic region;
this is Bed(chrom: String, start: Int, end: Int, ...) for a region located on chromosome
chrom, beginning at position start, ending at position end, plus some other pieces of infor-
mation which are omitted here. Regions on the same chromosome are ordered by their
start and end point lexicographically; regions on different chromosomes are ordered by
their chrom value. This ordering <Bed defines the default isBefore predicate on regions,
viz. isBefore(y, x) if and only if y <Bed x. The next main object is the genome, which

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

Iterating on multiple collections in synchrony 41

is a BED file; it is a large text file in the BED format (Neph et al., 2012), the de facto
format for this kind of information in the bioinformatics community. A BED file is just a
collection of regions, abstracted here as Vec[Bed]. The next main object type is the sample,
Sample(bedFile: Vec[Bed], meta: ...), which is just a BED file and its associated meta-
data. The last main object is the sample database, which is just a collection of samples; it
is abstracted here as Vec[Sample].

Queries at the level of samples mainly select samples from the sample database to ana-
lyze. Queries at the level of BED files mainly extract and process regions of interest. The
first kind of queries are basically simplified relational database queries. The second kind
of queries are the specialized ones that a relational database cannot handle efficiently.
The reason is that these queries invariably have a join predicate which is a conjunction of
“genometric” predicates. The GMQL “genometric” predicates in essence are: DL(n)(y, x),
meaning the regions overlap or their nearest points are less than n bases apart; DG(n)(y, x),
meaning the regions do not overlap and their nearest points are more than n bases apart;
and a few other similar ones. GMQL also implicitly imposes, on genometric predicates,
the constraint that y and x are no further apart than a system-fixed number of bases (e.g.,
200,000 bases.) For a reader who is unfamiliar with genomics, “bases,” or “bp,” is the unit
used for describing distance on a genome.

GMQL queries can be easily modeled and efficiently implemented in our Synchrony
iterator framework. Let xs: Vec[Bed] and ys: Vec[Bed] be two BED files sorted in accor-
dance to <Bed. Then, isBefore is monotonic with respect to (xs, ys). Genometric predicates
such as DL(n) are antimonotonic with respect to isBefore. Genometric predicates such as
GL(n) are not antimonotonic with respect to isBefore. As GMQL automatically inserts
DL(200000) as an additional genometric predicate into a query, a query has at least one
antimonotonic genometric predicate.

The implementation of GMQL using Synchrony iterator is described in a companion
paper (Perna et al., 2021). Here, we just briefly describe a more complex GMQL query
operator, JOIN(g1, ..., gn; f, h, j)(xss, yss). This GMQL query finds all pairs of sam-
ples xs in xss and ys in yss satisfying the join predicate j(xs, ys) on samples. Then for each
such pair of samples xs and ys, for each pair of regions x in xs.bedFile and y in ys.bedFile

satisfying all the specified genometric predicates g1(y, x), ..., gn(y, x), it builds a new
region f (x, y); these new regions are put into a new BED file xys; finally, a new sample
having BED file xys and metadata h(x.meta,y.meta) is produced.

JOIN(g1, ..., gn; f, h, j)(xss, yss) is naturally and efficiently embedded into first-
order Scala via comprehension syntax and Synchrony iterator. To wit, it is realized by

for (xs <- xss; ys <- yss; if j(x, y))
yield {

val yi = new EIterator(ys.bedFile , isBefore , p)
val xys = for (x <- xs.bedFile; y <- yi.syncedWith(x); if q(y,x))

yield f(x,y)
Sample(bedFile = xys , meta = h(xs.meta , ys.meta))

}

where p is the conjunction of all the antimonotonic predicates among g1 ..., gn and q is the
conjunction of all the remaining predicates among g1 ..., gn. In fact, our Synchrony-based
GMQL implementation does this decomposition of the list of input genometric predicates
into p and q automatically.

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

42 Stefano Perna, Val Tannen, and Limsoon Wong

7.3 A stress test

We stress-tested Synchrony iterator by re-implementing GMQL using Synchrony itera-
tor. The GMQL engine (Masseroli et al., 2019) is a state-of-the-art purpose-built system
for querying genomic datasets. GMQL is optimized for sample databases containing
many samples, with each sample having a large BED file (Neph et al., 2012) contain-
ing tens of thousands to hundreds of thousands of genomic regions. GMQL achieves
high performance by binning the genome into chunks and comparing different bins
concurrently (Gulino et al., 2018).

As the GMQL is based on Scala, we reimplemented it using Synchrony iterator in Scala;
this way, the influence of programming language and compiler differences is eliminated.
The Synchrony implementation comes with a sequential mode (samples and their BED
files are processed in a strictly sequential manner) and a sample-parallel mode (BED files
of different samples are processed in parallel but regions in a BED file are processed in a
sequential manner.) This reimplementation comprises circa 4,000 lines of Scala codes as
counted by cloc; and makes use of some Scala function libraries. In contrast, the original
GMQL engine comprises circa 24,000 lines of Scala codes and uses more Scala function
libraries and also Spark function libraries. This comparison reveals the merit of Synchrony
iterator in enabling complex algorithms to be expressed in a succinct high-level manner.

For benchmarking, we deployed the GMQL engine on a local installation of Apache
Spark, which simulates a small cluster on a single multicore machine. We refer to this
as the GMQL command-line interface, or CLI. The machine is a laptop with 2.6 GHz
6-Core i7, 16 GB 2667 MHz DDR4, 500 GB SSD. Despite the simplicity of our imple-
mentation, it significantly outperforms GMQL CLI on essentially all test queries and on
the full range of dataset sizes and equals GMQL CLI on the largest-size datasets. This is a
strong testimony to Synchrony iterator as an elegant idea for expressing efficient synchro-
nized iterations on multiple collections in a succinct and easy-to-understand manner. The
implementation and detailed evaluation are presented in a companion paper (Perna et al.,
2021). The implementation is available at https://www.comp.nus.edu.sg/~wongls/
projects/synchrony.

We present below some comparison results on a simple region MAP query. The GMQL
MAP query takes two sample databases xss and yss and produces for each pair of BED files
xs.bedFile in xss and ys.bedFile in yss, and each region x in xs.bedFile, the number of
regions in ys.bedFile that it overlaps with. GMQL executes its MAP operator in a four-level
deeply nested loop, in a brute-force parallel manner; i.e., all BED file pairs are analyzed in
parallel. For each BED file pair, the BED files are chopped into bins; the bins are paired;
and all bin pairs are analyzed in parallel. Ignoring parallelism, the complexity is O(n2m2)

assuming both xss and yss contain n BED files and each BED file contains m >> n regions.
The Synchrony iterator version uses a two-level nested loop to pair up the BED files, but
each pair of BED files is analyzed using a Synchrony iterator:

for (xs <- xss; ys <- yss)
yield {

val yi = new EIterator(ys.bedFile , isBefore , DL(0))
for (x <- xs.bedFile; r = yi.syncedWith(x))
yield (x, r.length)

}

https://www.comp.nus.edu.sg/~wongls/projects/synchrony
https://www.comp.nus.edu.sg/~wongls/projects/synchrony

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

Iterating on multiple collections in synchrony 43

Fig. 12. Performance of GMQL CLI and Synchrony emulation on simple region MAP. Time in sec-
onds, average of 30 runs for SB and MB, and 5 runs for BB. Purple: GMQL CLI. Blue: Sequential
Synchrony emulation. Green: Sample-parallel Synchrony emulation.

The sample-parallel version runs the two-level nested loop in parallel but the Synchrony
iterator sequentially. The sequential version does everything sequentially. Ignoring paral-
lelism, the complexity is O((2k + 1)mn2) where k is a small number corresponding to the
maximum number of overlaps a region can have with other regions.

For this paper, the three versions are run on three input settings (SB, MB, BB) containing
varying number of BED files, where each BED file has 100,000 regions. The setting SB
means both xss and yss contain exactly one BED file; thus, there is exactly one BED file
pair to analyze. The setting MB means both xss and yss contain exactly ten BED files; thus,
there are 100 BED file pairs to analyze. The setting BB means both xss and yss contain
exactly one hundred BED files; thus, there are 10,000 BED file pairs to analyze. Roughly
xss and yss are each of size circa 10MB, 96MB, and 696MB on disk in settings SB, MB,
and BB. The timings are shown in Figure 12. It is clear that the two Synchrony iterator
versions are far more efficient than GMQL CLI. Only in the BB setting, GMQL CLI is able
to beat the strict sequential Synchrony iterator. But GMQL CLI’s brute-force parallelism is
still no match to sample-parallel Synchrony iterator for these and other settings considered.

7.4 Stream queries

As a last use-case, we model timestamped data streams. Two kinds of objects are
considered for this purpose. The first kind is called observations. An observation
x: Obs(at: Int, id: ...) has a timestamp x.at, which is the time the observation is
obtained, and has some other pieces of information that are irrelevant for our purpose.
All timestamps are the number of nanoseconds that have elapsed since a fixed reference
time point. The second kind is called observation streams. An observation stream is just a
collection of observations, xs: Vec[Obs].

Observations are intrinsically ordered by their timestamps. Thus, it is natural to define
the following as the isBefore predicate on observation streams:

bf(y, x) = y.at < x.at

and it is also natural to assume that observation streams are sorted by timestamps by
default. A variety of canSee predicates can be easily defined, such as:

notAfter(y, x) = ! (y.at > x.at)

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

44 Stefano Perna, Val Tannen, and Limsoon Wong

within(n)(y, x) = abs(y.at - x.at) <= n

For convenience, let clk be a stream of observations representing regular clock ticks at
intervals of 1 milliseconds. Also, let xss, yss, and zss be several streams of observations.
Then a variety of observation processing can be easily and efficiently expressed. Just for
practice, to see how it looks, the suggested syntax for abstracting away Synchrony iterator
from Section 6.4 is used here; the programs below are not legitimate Scala.

• cartesian(f)(clk, xss, yss, zss) groups observations in xss, yss, and zss into 1
millisecond time-synchronized blocks; applies f to each block to generate a new
observation stream.

cartesian(f)(clk, xss, yss, zss)

= { val cs= (u:Obs, v:Obs) => within(1000)(u,v) && notAfter(u,v)

for ((c, xs, ys, zs) <- clk syncWith(xss, bf, cs)

syncWith(yss, bf, cs)

syncWith(zss, bf, cs)

) yield f(c, xs, ys, zs) }

• mostRecent(f)(clk, xss, yss, zss), applies f to the last observation in xss, yss,
and zss within each 1 millisecond block. Skips a block if any stream contains no
observation in that block of time.

mostRecent(f)(clk, xss, yss, zss)

= { val cs= (u:Obs, v:Obs) => within(1000)(u,v) && notAfter(u,v)

for ((c, xs, ys, zs) <- clk syncWith(xss, bf, cs)

syncWith(yss, bf, cs)

syncWith(zss, bf, cs);

if ! (xs.isEmpty || ys.isEmpty || zs.isEmpty)

) yield f(c, xs.last, ys.last, zs.last) }

• affineMostRecent(f)(clk, xss, yss, zss), applies f to the last observation in xss,
yss, and zss within each 1 millisecond block. If a block has a stream which contains
no observation in this block of time, keep observations in this block and consider
them with the next block.

affineMostRecent(f)(clk, xss, yss, zss)

= { val cs = (u:Obs, v:Obs) => within(2000)(u,v) && notAfter(u,v)

def nd(us: Vec[Obs], t: Int) = us.filter(.at <= t).isEmpty

for ((c, xs, ys, zs) <- clk syncWith(xss, bf, cs)

syncWith(yss, bf, cs)

syncWith(zss, bf, cs);

if !(xs.isEmpty || ys.isEmpty || zs.isEmpty);

(lx, ly, lz, oc) = (xs.last, ys.last, zs.last, c.at - 999);

if (lx.at > oc && ly > oc && lz > oc) ||

((lx.at > oc || ly > oc || lz > oc) &&

(nd(xs, oc) || nd(ys, oc) || nd(zs, oc)))

) yield f(c, lx, ly, lz) }

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

Iterating on multiple collections in synchrony 45

As can be seen, a variety of temporal stream processing and synchronization operators,
akin to those in Bracevac et al. (2018), can be implemented in comprehension syntax using
Synchrony iterator. Notably, provided there are not too many events within each 1 mil-
lisecond block and f has at most linear time complexity, all of these examples have linear
time complexity. If the observation type has a structure that carries more information (e.g.,
length of observation, if observation extends over a period of time), an even richer variety
of antimonotonic predicates can be defined and used in specifying stream synchronization.

To some extent, this use-case illustrates that Synchrony iterator is not restricted to
database query processing. Rather, it is capturing and generalizing common patterns and
forms of synchronized iterations, such as those found in database query processing and in
stream event processing.

8 Other possibilities

8.1 Grouping

It is instructive to look at the function groups in the top half of Figure 13. It was sug-
gested by a reviewer as an approach to efficient implementation of relational joins. The
idea is based on grouping. This suggestion inspired us to introduce the Synchrony genera-
tor syncGenGrp, which we did not describe in the initial draft of this paper mainly because
it returns a nested collection and thus, strictly speaking, does not meet the first-order
restriction requirement.

The reviewer probably had in mind a function like syncGenGrp and provided the function
groups in Figure 13 as the implementation. However, this only works correctly when the
join predicate cs is a conjunction of equality tests, i.e. an equijoin. Here is an example to
show that it does not correctly implement a join in general. Let us regard xs: Vec[Event]

and ys: Vec[Event] as lists of line segments sorted by (start, end). Consider the following
line segments.

a = Event(start = 10, end = 70, id = "a")

b = Event(start = 20, end = 30, id = "b")

c = Event(start = 40, end = 80, id = "c")

d = Event(start = 60, end = 90, id = "d")

Let isBefore and overlap be as defined in Figure 1. Let xs be a singleton contain-
ing the line segment d and ys comprises the line segments a, b and c in this order.
Then ov1(xs, ys) evaluates to exactly the two pairs (d, a) and (d, c). In agree-
ment with ov1(xs, ys), syncGenGrp(isBefore, overlap)(xs, ys) evaluates to the singleton
(d, Vec(a, c)). Whereas, groups(isBefore, overlap)(xs, ys) incorrectly evaluates to an
empty collection.

Perhaps instead of val yt = ys.dropWhile(y => bf(y, x)), the reviewer meant
val yt = ys.dropWhile(y => bf(y, x) && !cs(y, x)). This revised groups(bf, cs)(xs, ys)

works correctly when bf is monotonic with respect to (xs, ys) and cs is reflexive and
convex with respect to bf. It does not work as expected when cs is antimonotonic but
not convex. We mentioned earlier that predicates which are reflexive and convex are also
antimonotonic, and that the converse is not true. The overlap predicate on events is such

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

46 Stefano Perna, Val Tannen, and Limsoon Wong

def groups[A,B]
(bf: (B,A) => Boolean , cs: (B,A) => Boolean)
(xs: Vec[A], ys: Vec[B])

: Vec[(A,Vec[B])] = {
def step(acc: (Vec[(A,Vec[B])], Vec[B]), x: A)
: (Vec[(A, Vec[B])], Vec[B]) = {

val (xzss , ys) = acc
// this works only for equijoin cs:
val yt = ys.dropWhile(y => bf(y, x))
// this works for convex cs:
// val yt = ys. dropWhile (y => bf(y, x) && ! cs(y, x))
val zs = yt.takeWhile(y => cs(y, x))
(xzss :+ (x, zs), yt)

}
val e: (Vec[(A,Vec[B])], Vec[B]) = (Vec(), ys)
val (xzss , _) = xs.foldLeft(e)(step _)
return xzss

}

def groups2[A,B]
(bf: (B,A) => Boolean , cs: (B,A) => Boolean)
(xs: Vec[A], ys: Vec[B])

: Vec[(A,Vec[B])] = {
// Requires: bf monotonic wrt (xs , ys); cs antimonotonic wrt bf.
val step = (acc: (Vec[(A,Vec[B])], Vec[B]), x: A) => {

val (xzss , ys) = acc
val maybes = ys.takeWhile(y => bf(y, x) || cs(y, x))
val yes = maybes.filter(y => cs(y, x))
val nos = ys.dropWhile(y => bf(y, x) || cs(y, x))
(xzss :+ (x, yes), yes ++: nos)

}
val e: (Vec[(A,Vec[B])], Vec[B]) = (Vec(), ys)
val (xzss , _) = xs.foldLeft(e)(step)
return xzss

}

Fig. 13. Alternative attempts to define syncGenGrp. The function groups is only correct when cs is an
equijoin predicate. The function groups2 is equivalent to syncGenGrp and has comparable efficiency.

an example; it is antimonotonic but not convex. This can be seen using the line segments
given above: overlap(a, d) and overlap(c, d) but not overlap(b, d). Indeed, this revised
groups function returns the singleton (d, Vec(a)), which is still incorrect.

In order to get the correct semantics as syncGenGrp, the definition of groups must be
modified to account for antimonotonicity. This can be done as in groups2, depicted in the
bottom half of Figure 13. In groups2, for each x in xs, step iterates on the current copy of
ys, to divide it using takeWhile and dropWhile. The function dropWhile stops the iteration
on ys as soon as an item y in ys is encountered such that both bf(y, x) and cs(y, x) are
false, and yields the remainder nos. This early stopping is correct due to Antimonotonicity
Condition 2. The function takeWhile copies items on ys until an item y in ys is encountered
such that both bf(y, x) and cs(y, x) are false, obtaining the prefix maybes. Those items in
maybes that can see x are extracted into yes and returned as the result for this x. The function
step also updates ys to yes ++: nos, “rewinding” it and setting it up for the next item in xs.
Thus, for the next x, the iteration on ys effectively skips over all the items in ys that are
before it and cannot see it. This skipping is correct due to Antimonotonicity Condition 1.

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

Iterating on multiple collections in synchrony 47

Group2 and syncGenGrp can be shown to define the same function and have similar time
complexity. The concepts of monotonicity and antimonotonicity seems fundamental to
achieving efficient synchronized iteration. In particular, groups2 needs both of these to
ensure correctness. Their use in groups2 has further clarified how these concepts inter-
act to synchronize iteration. Specifically, synchronized iteration on two collections, which
are already sorted in a comparable ordering, is characterized by knowing precisely when to
start, stop, and “rewind.” Hence, by explicitly parameterizing its iteration control on mono-
tonicity and antimonotonicity, Synchrony fold can perhaps be regarded as a programming
construct that characterizes efficient synchronized iteration on ordered collections.

8.2 Indexed tables

A reviewer also introduced us to the recent works of Gibbons (2016) and Gibbons et al.
(2018), which investigate programming language embedding of joins that avoid naive eval-
uation strategies. These works provide an elegant mathematical foundation for indexing
and grouping, leading to efficient implementation of equijoins. Underlying the theoretical
perspective of these works is the use of indexed tables.

Indexed tables are part of the repertoire of collection-type libraries of modern program-
ming languages. For example, the collection-type libraries of Scala provide a groupBy

method. For a collection ys: Vec[A], and an indexing function f: A => K, ys.groupBy(f)

builds and returns an indexed table ms: Map[K,Vec[A]], where ms(ky) is the precomputed
result of for (y <- ys; if f(y) == ky) yield y. Assuming f is a function of O(1) time
complexity, the indexed table is constructed in O(|ys|) time, and accessing ms(f(y)) takes
O(1) time.

This groupBy function is useful for implementing efficient equijoin by a user-
programmer, if we disregard the fact that it returns a nested collection and is thus
not first order. For a direct example, assuming f and g are constant-time func-
tions, the equijoin for (x <- xs; y <- ys; if g(x) == f(y)) yield (x, y) can be com-
puted in O(|xs|+ |ys|) time using an indexed table as { val ms = ys.groupBy(f);

for (x <- xs; y <- ms(g(x)) yield (x,y) }. This corresponds to an index-seek join strat-
egy, which a database system usually uses when it expects there are not many y that
matches any x at all. As another example, Gibbons (2016) describes an interesting
perspective where collections are viewed as indexed tables, and derives a zip-parallel com-
prehension for joining them. This strategy correponds to the index-scan join strategy, which
a database system uses when it expects most x matches at least one y and vice versa.

Using an indexed-table approach to implement an equijoin has a key advantage that
the input collections do not need to be sorted to begin with. Provided all indexed tables
which are needed can fit into memory, implementing an equijoin using an indexed-table
approach is superior to using Synchrony iterator. If one or more of the input collections
are unsorted or are in some unsuitable orderings, these inputs have to be sorted before
Synchrony iterator can be used to process them; this can be a significant overhead when
the input collections which require sorting are large.

On the other hand, there are several limitations with indexed tables, especially when
we are not operating on an actual database system. Firstly, this means the indexed table

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

48 Stefano Perna, Val Tannen, and Limsoon Wong

is an in-memory structure; so, it is not suitable for very large collections.10 Secondly, the
indexed table has to be completely constructed before it is used; so, it is not suitable for data
streams. Lastly, and crucially, as an indexed table relies on exact equality to directly retrieve
entries, it can easily implement efficient equijoin but it cannot implement non-equijoin
such as band join and interval join.

In contrast, Synchrony iterator does not suffer these limitations. In other words,
Synchrony iterator is a more general and more uniform approach for realizing efficient
equijoin and a large class of non-equijoin. Synchrony iterator is thus justifiably appealing.

9 Concluding remarks

Modern programming languages typically provide some form of comprehension syntax
for manipulating collection types. In this regard, comprehension syntax does not add
extensional expressive power, but it makes programs much more readable (Trinder, 1991;
Buneman et al., 1994). Comprehensions typically correspond to nested loops. So, it is dif-
ficult to use comprehension syntax to express efficient algorithms for, e.g., database joins.
This has partly motivated developments that introduced alternative binding semantics for
comprehension syntax, so that some comprehensions are not compiled into nested loops.
For example, parallel and grouping comprehension were introduced to enable implemen-
tation of efficient database queries in the style of comprehension syntax (Wadler & Peyton
Jones, 2007; Gibbons, 2016; Gibbons et al., 2018). Nonetheless, it has not been formally
demonstrated that efficient algorithms for, e.g., equijoin cannot be implemented without
making such refinements to comprehension syntax.

The first contribution of this paper is to highlight, in a precise sense, comprehension
syntax suffers a limited-mixing handicap. In particular, this formally confirms that effi-
cient algorithms for low-selectivity database joins—and this includes equijoin—cannot
be implemented using comprehension syntax in the first-order setting (i.e., first-order
restricted Scala in the context of this paper.) This justifies, from the intensional expressive
power point of view, that these interesting works are necessary.

Although there is no efficient implementation for low-selectivity database joins in the
first-order setting, they are nonetheless expressible as functions in the first-order setting.
Therefore, the gap is purely in the intensional expressive power of comprehension syntax.
So, we considered whether any function commonly provided in the collection-type libraries
of modern programming languages is able to fix this gap. The limited-mixing handicap
of comprehension syntax in the first-order setting remains even after adding any one of
foldLeft, takeWhile, dropWhile, and zip; and most common functions in these libraries are
derivatives of foldLeft.

10 Even when we are operating on an actual database system, this fits-into-memory issue can be a problem
in a situation where the database system has to—as is often the case—process many queries concurrently.
While hash tables needed by a query may fit into memory, this may prevent hash tables needed by other
queries to fit, thereby affecting the overall performance of the system. This was a reason that even though
the hash join (Silberschatz et al., 2016), which is based on dynamically constructing a hash table, has been
known and implemented in database systems a long time ago, its use was discouraged (e.g., hash join was rou-
tinely disabled in Oracle 11g systems) until recent times when systems with very large memory have become
common.

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

Iterating on multiple collections in synchrony 49

The second contribution of this paper is to identify and propose a candidate library
function which fills this gap. We noticed that, apart from zip, the notion of general synchro-
nized iteration on multiple collections is conspicuously absent from current collection-type
libraries. Hence, to kill two birds with one stone, we looked for a function that encapsu-
lates a common pattern of general synchronized iteration on multiple collection. Arguably,
foldLeft is the most powerful function in collection-type libraries of modern programming
languages, as most other commonly found functions in these libraries are extensionally
expressible using foldLeft. So, as an upperbound, we identified Synchrony fold, which is a
novel synchronized iteration function that expresses the same functions as foldLeft in the
first-order setting and yet expresses more algorithms, including efficient low-selectivity
database joins. Furthermore, just as a simple restriction can be imposed on foldLeft to
cut its extensional expressive power to precisely match comprehension syntax, a simi-
lar restriction can be imposed on Synchrony fold to cut its extensional expressive power
to precisely match comprehension syntax. This restricted form is Synchrony generator.
Synchrony generator expresses exactly the same functions as comprehension syntax in
the first-order setting; but it expresses a richer repertoire of algorithms, including efficient
low-selectivity database joins. Hence, Synchrony generator is a conservative extension of
comprehension syntax that precisely fills its intensional expressiveness gap.

Synchrony generator is nonetheless not well dovetailed with comprehension syntax in
the first-order setting. In particular, synchronized iteration over multiple ordered collec-
tions simultaneously apparently can only be expressed using Synchrony generator in an
aesthetically clumsy manner in the first-order setting. When a function zipn for simultane-
ously zipping n collections is available, efficient synchronized iteration over n collections
can be succinctly and elegantly expressed using Synchrony generator and this function.
However, zipn is outside the first-order setting. Moreover, this approach carries overheads
of n extra scans of at least one dataset. Another limitaton of this approach is that it is
not user-programmer friendly: A zoo of zip3, zip4, etc. have to be provided, as a single
zip function for zipping an arbitrary number of collections of different types cannot be
assigned a valid type in strongly typed programming languages.

The third contribution of this paper is Synchrony iterator. We found that Synchrony
generator is algorithmically equivalent to iterating on the items in a first collection, and
invoking Synchrony iterator on each of these items to efficiently return matching items
in a second collection. Synchrony iterator thus smoothly dovetails with comprehension
syntax. More importantly, it enables efficient synchronized iteration on multiple collections
to be simply expressed in comprehension syntax in a first-order setting and without the n
extra-scan overheads.

Synchrony fold, Synchrony generator, and Synchrony iterator can be regarded as cap-
turing an intuitive pattern of efficient synchronized iteration on ordered collections. They
suggest that efficient synchronized iteration on ordered collections are characterized by a
monotonic isBefore predicate that relates the orderings of the input collections, and an anti-
monotonic canSee predicate that identifies matching pairs to act on. The antimonotonicity
conditions on canSee further informs that the efficiency of the synchronization arises from
exploiting “right-sided convexity” of the matching items. Indeed, together, these predi-
cates make explicit where to start, stop, and rewind an iteration on two collections, thereby
achieving efficient synchronization.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

50 Stefano Perna, Val Tannen, and Limsoon Wong

The fourth contribution of this paper is the revelation that efficient synchronized iter-
ation on ordered collections is captured by such a pattern which is characterized by the
monotonic isBefore and antimonotonic canSee predicates. A corollary of this fourth con-
tribution is the result that Synchrony generator (and thus Synchrony iterator) is a natural
generalization of the merge join algorithm (Blasgen & Eswaran, 1977; Mishra & Eich,
1992) widely used in database systems for decades for realizing efficient equijoins. With
a simple modification implied by Synchrony generator, the modified merge join algorithm
can work as long as the join predicate is antimonotonic with respect to the sort order of the
relations being joined.

Lastly, we briefly described using Synchrony iterator to re-implement GMQL (Masseroli
et al., 2019), which is a state-of-the-art query system for large genomic datasets. The
Synchrony-based re-implementation is more efficient than GMQL, and is also six-fold
shorter in terms of number of lines of codes, thereby validating the theory and design of
Synchrony fold and Synchrony iterator.

This paper primarily illustrates Synchrony fold, Synchrony generator, and Synchrony
iterator using examples based on low-selectivity database joins. Nonetheless, Section 7.4
briefly showcases using Synchrony iterator to specify event stream processing operators.
This suggests Synchrony fold and Synchrony iterator capture patterns of efficient synchro-
nized iteration, showing that they can be parameterized by a pair of monotonic isBefore

and antimonotonic canSee predicates. However, our notion of synchronized iteration, as
encapsulated by Synchrony fold, generator, and iterator, is quite constrained. It maybe a
worthwhile future work to understand what interesting yet common patterns of efficient
synchronized iteration are not encapsulated by Synchrony fold and Synchrony iterator.

Conflicts of Interest

None

Acknowledgements

Stefano Ceri invited us to the GeCo Workshop on Challenges in Data-Driven Genomic
Computing, held in Como, Italy, in March 2019. This work evolved from the talk given
by LW at the workshop and the ensuing interesting discussions with VT and SP. We thank
Stefano for his invitation and surreptitious seeding of this work.

Jeremy Gibbons and the reviewers provided very useful suggestions on this paper. They
also brought many relevant works and ideas to our attention. Their comments greatly
enriched our perspective in this work. We thank them for their invaluable contribution
in helping us improve this work.

This work was supported by National Research Foundation, Singapore, under its
Synthetic Biology Research and Development Programme (Award No: SBP-P3); and by
Ministry of Education, Singapore, Academic Research Fund Tier-1 (Award No: MOE T1
251RES1725). In addition, VT was supported in part by a Kwan Im Thong Hood Cho
Temple Visiting Professorship, and LW was supported in part by a Kwan Im Thong Hood

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

Iterating on multiple collections in synchrony 51

Cho Temple Chair Professorship. Any opinions, findings, and recommendations expressed
herein are those of the authors, and do not reflect the views of these grantors.

References

Abiteboul, S. and Vianu, V. (1991) Generic computation and its complexity. Proceedings of 23rd
ACM Symposium on the Theory of Computing pp. 209–219.

Biskup, J., Paredaens, J., Schwentick, T. and den Bussche, J. V. (2004) Solving equations in the
relational algebra. SIAM Journal on Computing 33(5):1052–1066.

Blasgen, M. and Eswaran, K. (1977) Storage and access in relational databases. IBM Systems Journal
16(4):363–377.

Bracevac, O., Amin, N., Salvaneschi, G., Erdweg, S., Eugster, P. and Mezini, M. (2018) Versatile
event correlation with algebraic effects. Proceedings of ACM on Programming Languages
2(ICFP):67.

Buneman, P., Libkin, L., Suciu, D., Tannen, V. and Wong, L. (1994) Comprehension syntax.
SIGMOD Record 23(1):87–96.

Buneman, P., Naqvi, S., Tannen, V. and Wong, L. (1995) Principles of programming with complex
objects and collection types. Theoretical Computer Science 149(1):3–48.

Colson, L. (1991) About primitive recursive algorithms. Theoretical Computer Science 83:57–69.
DeWitt, D. J., Naughton, J. F., Schneider, D. A. (1991) An evaluation of non-equijoin algorithms.

Proceedings of 17th International Conference on Very Large Data Bases pp. 443–452.
Dignoes, A., Boehlen, M. H., Gamper, J., Jensen, C. S. and Moser, P. (2021) Leveraging range

joins for the computation of overlap joins. The VLDB Journal, https://doi.org/10.1007/
s00778-021-00692-3.

Felleisen, M. (1991) On the expressive power of programming languages. Science of Computer
Programming 17:35–75.

Fortune, S., Leivant, D. and O’Donnell, M. (1983) The expressiveness of simple and second-order
type structures. Journal of the ACM 30(1):151–185.

Gaifman, H. (1982) On local and non-local properties. Proceedings of the Herbrand Symposium,
Logic Colloquium ’81 pp. 105–135. North Holland.

Gibbons, J. (2016) Comprehending ringads. Lindley, S., McBride, C., Trinder, P. and Sannella, D.
(eds), A List of Successes That Can Change the World pp. 132–151.

Gibbons, J., Henglein, F., Hinze, R. and Wu, N. (2018) Relational algebra by way of adjunctions.
Proceedings of the ACM on Programming Languages 2(ICFP):86.

Gulino, A., Kaitoua, A. and Ceri, S. (2018) Optimal binning for genomics. IEEE Transactions on
Computers 68(1):125–138.

Henglein, F. and Larsen, K. F. (2010) Generic multiset programming with discrimination-based joins
and symbolic Cartesian products. Higher-Order and Symbolic Computation 23(3):337–370.

Hunt, A. and Thomas, D. (2000) The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley.

Knuth, D. E. (1973) The Art of Computer Programming: Sorting and Searching. Addison Wesley.
Libkin, L. and Wong, L. (1994) Aggregate functions, conservative extension, and linear orders. Beeri,

C., Ohori, A. and Shasha, D. E. (eds), Proceedings of 4th International Workshop on Database
Programming Languages, New York, August 1993 pp. 282–294. Springer-Verlag. See also UPenn
Technical Report MS-CIS-93-36.

Libkin, L. and Wong, L. (1997) Query languages for bags and aggregate functions. Journal of
Computer and System Sciences 55(2):241–272.

Lindley, S., Wadler, P. and Yallop, J. (2011) Idioms are oblivious, arrows are meticulous, monads
and promiscuous. Eletronic Notes in Theoretical Computer Science 229(5):97–117.

Marlow, S., Peyton-Jones, S., Kmett, E. and Mokhov, A. (2016) Desugaring Haskell’s do-notation
into applicative operations. ACM SIGPLAN Notices 51(12):92–104.

https://doi.org/10.1007/s00778-021-00692-3
https://doi.org/10.1007/s00778-021-00692-3

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

52 Stefano Perna, Val Tannen, and Limsoon Wong

Masseroli, M., Canakoglu, A., Pinoli, P., Kaitoua, A., et al. . (2019) Processing of big heteroge-
neous genomic datasets for tertiary analysis of next generation sequencing data. Bioinformatics
35(5):729–736.

Mishra, P. and Eich, M. H. (1992) Join processing in relational databases. ACM Computing Surveys
24(1):63–113.

Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., Johnson, A. K., Rynes, E.,
Maurano, M. T., Vierstra, J., Thomas, S., Sandstorm, R., Humbert, R. and Stamatoyannopoulos,
J. A. (2012) BEDOPS: High-performance genomic feature operations. Bioinformatics
28(4):1919–1920.

Odersky, M., Spoon, L. and Venners, B. (2019) Programming in Scala: A Comprehensive Step-by-
Step Guide. Artima Inc.

Olteanu, D. and Schleich, M. (2016) Factorized databases. ACM SIGMOD Record 45(2):5–16.
Perna, S., Pinoli, P., Tannen, V., Ceri, S. and Wong, L. (2021) Synchronized iteration for genomic

data processing. Manuscript available from https://www.comp.nus.edu.sg/~wongls/

projects/synchrony/synchrony-gmql-v12.pdf.
Piatov, D., Helmer, S. and Dignoes, A. (2016) An interval join optimized for modern hardware.

Proceedings of 32nd IEEE International Conference on Data Engineering pp. 1098–1109.
Schmidt, D. A. (1986) Denotational Semantics: A Methodology For Language Development. Allyn

and Bacon.
Sebesta, R. W. (2010) Concepts of Programming Languages. Addison-Wesley.
Silberschatz, A., Korth, H. F. and Sudarshan, S. (2016) Database System Concepts. 7th edn.

McGraw-Hill.
Suciu, D. and Paredaens, J. (1997) The complexity of the evaluation of complex algebra expressions.

Journal of Computer and Systems Sciences 55(2):322–343.
Suciu, D. and Wong, L. (1995) On two forms of structural recursion. LNCS 893: Proceedings of 5th

International Conference on Database Theory pp. 111–124. Springer-Verlag.
Trinder, P. W. (1991) Comprehensions, a query notation for DBPLs. Proceedings of 3rd

International Workshop on Database Programming Languages, Nahplion, Greece pp. 49–62.
Morgan Kaufmann.

Van den Bussche, J. (2001) Simulation of the nested relational algebra by the flat relational algebra,
with an application to the complexity of evaluating powerset algebra expressions. Theoretical
Computer Science 254(1–2):363–377.

Wadler, P. (1990) Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science 73:231–248.

Wadler, P. and Peyton Jones, S. (2007) Comprehensive comprehension: Comprehensions with ‘order
by’ and ‘group by’. Haskell ’07: Proceedings of ACM SIGPLAN Workshop on Haskell pp. 61–72.

Wong, L. (1996) Normal forms and conservative extension properties for query languages over
collection types. Journal of Computer and System Sciences 52(3):495–505.

Wong, L. (2013) A dichotomy in the intensional expressive power of nested relational calculi aug-
mented with aggregate functions and a powerset operator. Proceedings of 32nd ACM Symposium
on Principles of Database Systems pp. 285–295.

Wong, L. (2021) Addressing an intensional expressiveness gap of comprehension syn-
tax. Manuscript available from https://www.comp.nus.edu.sg/~wongls/projects/

synchrony/v5-wls-natural2021.pdf

https://www.comp.nus.edu.sg/~wongls/projects/synchrony/synchrony-gmql-v12.pdf
https://www.comp.nus.edu.sg/~wongls/projects/synchrony/synchrony-gmql-v12.pdf
https://www.comp.nus.edu.sg/~wongls/projects/synchrony/v5-wls-natural2021.pdf
https://www.comp.nus.edu.sg/~wongls/projects/synchrony/v5-wls-natural2021.pdf

	Introduction
	Motivating example
	Intensional expressiveness gap
	Synchrony fold
	Theory of Synchrony fold
	Second Synchrony fold
	Synchrony fold vs foldLeft
	Synchrony fold in action

	Synchrony generator
	Deriving Synchrony generator
	Synchrony generator vs database merge join
	Synchronized iteration on multiple collections

	Synchrony iterator
	Designing Synchrony iterator
	Safe use of Synchrony iterator
	Referential transparency of Synchrony iterator
	Possible syntax for Synchrony iterator

	Some use-cases and a stress test
	Relational database queries
	Genometric queries
	A stress test
	Stream queries

	Other possibilities
	Grouping
	Indexed tables

	Concluding remarks

