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Accomplishments 
and Challenges 
in Bioinformatics

See-Kiong Ng and Limsoon Wong

I nformatics has helped launch molecular
biology into the genome era. The use of
informatics to organize, manage, and ana-
lyze genomic data (the genetic material of

an organism) has become an important element
of biology and medical research.A new IT disci-
pline—bioinformatics—fuses computing, mathe-
matics, and biology to meet the many compu-
tational challenges in modern molecular biology
and medical research. The two major themes in
bioinformatics—data management and knowl-
edge discovery—rely on effectively adopting
techniques developed in IT for biological data,
with IT scientists playing an essential role.

In the 1990s, the Human Genome Project and
other genome sequencing efforts generated large
quantities of DNA sequence data. Informatics
projects in algorithms, software, and databases
were crucial in the automated assembly and
analysis of the genomic data. The “Road to Un-
raveling the Human Genetic Blueprint” sidebar

lists key advances in human
genome research.

The Internet also played a
critical role: the World Wide
Web let researchers through-
out the world instantaneously
share and access biological
data captured in online com-
munity databases. Informa-
tion technologies produced
the necessary speedup for col-
laborative research efforts in

biology, helping genome researchers complete
their projects on time.

We’re now in the “postgenome” era. Many
genomes have already been completely se-
quenced,and genome research has migrated from
raw data generation to scientific knowledge dis-
covery. Likewise, informatics has shifted from
managing and integrating sequence databases to
discovering knowledge from such biological data.
Informatics’ role in biological research has
increased and it will certainly become increasingly
important in extending our future understanding
of biological life.

DATA MANAGEMENT
The many genome mapping and sequencing ini-

tiatives of the 1990s resulted in numerous data-
bases. The hot topics then were managing and
integrating these databases and comparing and
assembling the sequences they contained.

Data integration
No single data source can provide answers to

many of biologists’ questions; however, informa-
tion from several sources can help satisfactorily
solve some of them. Unfortunately, this has
proved difficult in practice. In fact, in 1993 the US
Department of Energy published a list of queries
it considered unsolvable.What’s interesting about
these queries was that a conceptually straightfor-
ward answer to each of them existed in databases.
They were unsolvable because the databases were
geographically distributed, ran on different com-

Research in the “postgenome
era” examines the genomic data
produced by DNA sequencing
efforts, seeking a greater under-
standing of biological life.
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puter systems with different capabilities, and had
very different formats.

One of the US Department of Energy’s
“impossible queries” was: “For each gene on a
given cytogenetic band, find its nonhuman
homologs.” Answering this query required two
databases: the Genome Database, GDB, (www.
gdb.org) for information on which gene was on
which cytogenetic band,and the National Center
for Biotechnology Information’s Entrez data-
base (www.ncbi.nlm.nih.gov/Entrez) for infor-
mation on which gene was a homolog of which
other genes.GDB,a relational database from the
company Sybase supporting Structured Query
Language (SQL) queries, was located in Balti-
more, Maryland. Entrez, which users accessed
through an ASN.1 (Abstract Syntax Notation
One) interface supporting simple keyword
indexing, was in Bethesda, approximately 38
miles south.

Kleisli, a powerful general query system devel-
oped at the University of Pennsylvania in the
mid-1990s, solved this problem. Kleisli lets users
view many data sources as if they reside within
a federated nested relational database system. It
automatically handles heterogeneity, letting
users formulate queries in an SQL-like high-
level way independent of 

• the data sources’ geographic location,
• whether the data source is a sophisticated rela-

tional database system or a dumb flat file, and 
• the access protocols to the data sources.

Kleisli’s query optimizer lets users formulate
queries clearly and succinctly without having to
worry about whether the queries will run fast.
Figure 1 shows Kleisli’s solution to the Depart-
ment of Energy’s “impossible query.”

Several additional approaches to the biological data inte-
gration problem exist today.Ensembl,SRS,and Discovery-
Link are some of the better-known examples.

• EnsEMBL (http://www.ensembl.org) provides easy
access to eukaryotic genomic sequence data. It also
automatically predicts genes in these data and assem-
bles supporting annotations for its predictions.Not quite
an integration technology, it’s nonetheless an excellent
example of successfully integrating data and tools for
the highly demanding purpose of genome browsing.

• SRS (http://srs.ebi.ac.uk) is arguably the most widely
used database query and navigation system in the life
science community. In terms of querying power, SRS is
an information retrieval system and doesn’t organize or
transform the retrieved results in a way that facilitates

setting up an analytical pipeline.However,SRS provides
easy-to-use graphical user interface access to various sci-
entific databases. For this reason, SRS is sometimes con-
sidered more of a user interface integration tool than a
true data integration tool.

• IBM’s DiscoveryLink (http://www.ibm.com/
discoverylink) goes a step beyond SRS as a general data
integration system in that it contains an explicit data
model—the relational data model. Consequently, it also
offers SQL-like queries for access to biological sources,
albeit in a more restrictive manner than Kleisli, which
supports the nested relational data model.

Recently,XML has become the de facto standard for data
exchange between applications on the Web.XML is a stan-
dard for formatting documents rather than a data integra-

The race to mapping the human genome
generated an unprecedented amount of
data and information, requiring
the organizational and analytical
power of computers. Computers
and biology thus became inseparable
partners in the journey to discover the
genetic basis of life.

Several key historical events led to the complete sequencing
of the human genome:

➤ 1865—Gregor Mendel discovers laws of genetics.
➤ 1953—James Watson and Francis Crick describe the dou-

ble-helical structure of DNA.
➤ 1977—Frederik Sanger, Allan Maxam, and Walter Gilbert

pioneer DNA sequencing.
➤ 1982—US National Institutes of Health establishes

GenBank, an international clearinghouse for all publicly
available genetic sequence data.

➤ 1985—Kary Mullis invents polymerase chain reaction
(PCR) for DNA amplification.

➤ 1985—Leroy Hood develops the first automatic DNA
sequencing machine.

➤ 1990—Human Genome Project begins, with the goal of
sequencing human and model organism genomes.

➤ 1999—First human chromosome sequence published.
➤ 2001—Draft version of human genome sequence published.
➤ 2003—Human Genome Project ends with the completed

version of human genome sequence.

A detailed graphic timeline is available at http://www.
genome.gov/11007569.

Road to Unraveling the Human
Genetic Blueprint
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tion system. However, taken as a
whole, the growing suite of tools
based on XML can serve as a data
integration system. Designed to
allow for hierarchical nesting (the
ability to enclose one data object
within another) and flexible tag def-
inition, XML is a powerful data
model and useful data exchange
format, especially suitable for the
complex and evolving nature of
biological data. It’s therefore not
surprising that the bioinformatics
database community has rapidly
embraced XML.

Many bioinformatics resource
and databases such as the Gene
Ontology Consortium (GO, http://
www.geneontology.org), Entrez,
and the Protein Information Re-
source (PIR,http://pir.georgetown.
edu) now offer access to data using
XML. The database community’s
intense interest in developing query
languages for semistructured data
has also resulted in several power-
ful XML query languages such as
XQL and XQuery. These new lan-
guages let users query across mul-
tiple bioinformatics data sources
and transform the results into a
more suitable form for subsequent
biocomputing analysis steps.

Research and development work
on XML query optimization and
XML data stores is also in progress.
We can anticipate robust and sta-
ble XML-based general data inte-
grating and warehousing systems
in the near future. Consequently,
XML and the growing suite of
XML-based tools could soon
mature into an alternative data
integration system in bioinformat-
ics comparable to Kleisli in gener-
ality and sophistication.

Data warehousing
In addition to querying data

sources on the fly, biologists and
biotechnology companies must
create their own customized data
warehouses. Several factors moti-
vate such warehouses:

Figure 2. A GenBank data record. 

{(#uid: 6138971,
#title: “Homo sapiens adrenergic ...”,
#accession: “NM_001619”,
#organism: “Homo sapiens”,
#taxon: 9606,
#lineage: [“Eukaryota”, “Metazoa”, ... ],
#seq: “CTCGGCCTCGGGCGCGGC...”,
#feature: {

(#name: “source”,
#continuous: true,
#position: [

(#accn: “NM_001619”,
#start: 0, #end: 3602,
#negative: false)],

#anno: [
(#anno_name: “organism”,
#descr: “Homo sapiens”), ... ]),

...}, ...)}

Figure 1.  Kleisli solution. 

sybase-add (name: “gdb”, ...);
create view locus from locus_cyto_location using gdb;
create view eref from object_genbank_eref using gdb;
select

accn: g.genbank_ref,
nonhuman-homologs: H

from
locus c,
eref g,
{g.genbank_ref} r,
{select u
from r.na-get-homolog-summary u
where not(u.title like “%Human%”)

and not(u.title like “%H.sapien%”)} H
where c.chrom_num = “22” and 

g.object_id = c.locus_id  and not (H = {});

This Kleisli query answers the US Department of Energy query “list non-
human homologs of genes on human chromosome 22.” The first three
statements connect to GDB and map two tables in GDB to Kleisli. The
next few lines extract from these tables the accession numbers of genes
on Chromosome 22, use the Entrez function na-get-homolog-summary to
obtain their homologs, and filter the homologs for nonhuman homologs.
Underlying this simple SQL-like query, Kleisli automatically handles the
heterogeneity and geographical distribution of the two underlying
sources, and automatically optimizes, makes concurrent, and coordinates
the various query execution threads.
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• Query execution can be more efficient,
assuming data reside locally on a powerful
database system.

• Query execution can be more reliable,
assuming data reside locally on a high-
availability database system and a high-
availability network.

• Query execution on a local warehouse
avoids unintended denial-of-service attacks
on the original sources.

• Most importantly,many public sources con-
tain errors. Some of these errors can’t be
corrected or detected on the fly. Hence,
humans—perhaps assisted by computers—
must cleanse the data,which are then ware-
housed to avoid repeating this task.

A biological data warehouse should be effi-
cient to query, easy to update, and should
model data naturally.This last requirement is
important because biological data, such as the
GenBank report in Figure 2, have a complex
nesting structure.Warehousing such data in a
radically different form tends to complicate
their effective use.

Biological data’s complex structure makes
relational database management systems
such as Sybase unsuitable as a warehouse.
Such DBMSs force us to fragment our data
into many pieces to satisfy the third normal
form requirement. Only a skilled expert can
perform this normalization process correctly.
The final user, however, is rarely the same
expert.Thus, a user wanting to ask questions
on the data might first have to figure out how
the original data was fragmented in the ware-
house. The fragmentation can also pose effi-
ciency problems, as a query can cause the
DBMS to perform many joins to reassemble
the fragments into the original data.

Kleisli can turn a relational DBMS into a
nested relational DBMS. It can use flat
DBMSs such as Sybase, Oracle, and MySQL
as its updateable complex object store. In fact,
it can use all of these varieties of DBMSs
simultaneously.This capability makes Kleisli
a good system for warehousing complex bio-
logical data. XML, with its built-in expressive power and
flexibility, is also a great contender for biological data ware-
housing. More recently, some commercial relational
DBMSs such as Oracle have begun offering better support
for complex objects. Hopefully, they’ll soon be able to per-
form complex biological data warehousing more conve-
niently and naturally.

KNOWLEDGE DISCOVERY
As we entered the era of postgenome knowledge dis-

covery, scientists began asking many probing questions
about the genome data such as, “What  does a genome
sequence do in a cell?” and, “Does it play an important
role in a particular  disease?” The genome projects’ suc-
cess depends on the ease with which they can obtain accu-
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Genes Groups from Gene Expression Data by Using the
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Scientific literature mining
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rate and timely answers to these questions. Informatics
therefore plays a more important role in upstream
genomic research.

Three case studies illustrate how informatics can help
turn a diverse range of biological data into useful infor-
mation and valuable knowledge. This can include recog-
nizing useful gene structures from biological sequence
data, deriving diagnostic knowledge from postgenome
experimental data, and extracting scientific information
from literature data. In all three examples, researchers used
various IT techniques plus some biological knowledge to
solve the problems effectively. Indeed, bioinformatics is
moving beyond data management into a more involved
domain that often demands in-depth biological knowledge;
postgenome bioinformaticists are now required to be not
just computationally sophisticated but also biologically
knowledgeable.

Biological sequence analysis
In addition to having a draft human genome sequence

(thanks to the Human Genome Project), we now know
many genes’ approximate positions. Each gene appears to
be a simple-looking linear sequence of four letter types
(or nucleotides)—As,Cs,Gs,and Ts—along the genome.To
understand how a gene works, however, we must discover
the gene’s underlying structures along the genetic
sequence, such as its transcription start site (point at which
transcription into nuclear RNA begins), transcription fac-
tor binding site, translation initiation site (point at which
translation into protein sequence begins), splice points,
and poly(A) signals. Many genes’ precise structures are
still unknown, and determining these features through tra-
ditional wet-laboratory experiments is costly and slow.
Computational analysis tools that accurately reveal some
of these features will therefore be useful, if not necessary.

Informatics lets us solve the TIS recognition problem
using computers.Translation is the biological process of syn-
thesizing proteins from mRNAs.The TIS is the region where
the process initiates.As Figure 3 shows,although a TIS starts
with the three-nucleotide signature “ATG” in cDNAs, not
all ATGs in the genetic sequence are translation start sites.
Automatically recognizing which of these ATGs is a gene’s
actual TIS is a challenging machine-learning problem.

In 1997,Pedersen and Nielsen addressed this problem by
applying an artificial neural network (ANN) trained on a
203-nucleotide window. They obtained results of 78-per-
cent sensitivity and 87-percent specificity,giving an overall
accuracy of 85 percent. In 1999 and 2000, Zien and col-
leagues worked on the same problem using support vector
machines instead. Combining the support vector machine
(SVM) with polynomial kernels, they achieved perform-
ance similar to Pedersen and Nielsen.When they used SVM
with specially engineered locality-improved kernels, they
obtained 69.9-percent sensitivity and 94.1-percent speci-
ficity, giving an improved overall accuracy of 88.1 percent.

Because the accuracy obtained by these and many other
systems is already sufficiently high, much of today’s
research on the TIS recognition problem aims to better
understand TISs’ underlying biological mechanisms and
characteristics.

Our approach comprises three steps:

• feature generation,
• feature selection, and 
• feature integration by a machine-learning algorithm for

decision-making.

This approach achieves 80.19-percent sensitivity and
96.48-percent specificity,giving an overall accuracy of 92.45
percent. Furthermore, it yields a few explicit features for
understanding TISs, such as:

• The presence of A or G three nucleotides to a target
ATG is favorable for translation initiation.

• The presence of an in-frame ATG upstream near a tar-
get ATG is unfavorable for translation initiation.

• The presence of an in-frame stop codon (a three-
nucleotide signature that signals termination of the
translation process) downstream near a target ATG is
also unfavorable for translation initiation.

Such understanding of biological patterns acquired by
machine-learning algorithms is becoming increasingly
important as the bioinformatics endgame elevates into the
discovery of new knowledge and providing accurate com-
putation results is no longer sufficient.Bioinformatics users

Figure 3. Recognizing translation initiation sites. 

299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACA............

What makes the second ATG the translation initiation site?
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require explainable results and usable decision
rules instead of unexplained yes/no output.

Gene expression analysis
Medical records analysis is another

postgenome application aimed mainly at diag-
nosis, prognosis, and treatment planning.
Medical records also require understandable
outputs from machine-learning algorithms.Here
we’re looking for patterns that are

• Valid. They also occur in new data with high
certainty.

• Novel.They aren’t obvious to experts and pro-
vide new insights.

• Useful.They enable reliable predictions.
• Understandable.They pose no obstacle in their

interpretation, particular by clinicians.

Scientists now use microarrays (miniaturized
2D arrays of DNA or protein samples, typically on a glass
slide or microchip, that can be tested with biological
probes) to measure the expression level of thousands of
genes simultaneously. The gene expression profiles thus
obtained might help us understand gene interactions under
various experimental conditions and the correlation of
gene expressions to disease states, provided we can suc-
cessfully achieve gene expression analysis. Gene expres-
sion data measured by microarrays or other means will
likely soon be part of patients’ medical records.

Many methods for analyzing medical records exist, such
as decision-tree induction, Bayesian networks (a class of
probabilistic inference networks) neural networks, and
SVMs. Although decision trees are easy to understand,
construct, and use, they’re usually inaccurate with nonlin-
ear decision boundaries. Bayesian networks, neural net-
works, and SVMs perform better in nonlinear situations.
However, their resultant models are “black boxes” that
might not be easy to understand and therefore limited in
their use for medical diagnosis.

PCL is a new data-mining method combining high accu-
racy and high understandability. It focuses on fast tech-
niques for identifying patterns whose frequencies in two
classes differ by a large ratio—the emerging patterns—and
on combining these patterns to make a decision.

The PCL classifier effectively analyzes gene expression
data. One successful application was the classification of het-
erogeneous acute lymphoblastic leukemia (ALL) samples.
Accurately classifying an ALL sample into one of six known
subtypes is important for prescribing the right treatment for
leukemia patients and thus enhancing their prognosis.
However, few hospitals have all the expertise necessary to
correctly diagnose their leukemia patients.An accurate and
automated classifier such as PCL, together with microarray
technologies, could lead to more accurate diagnoses.

We’ve tested PCL on a data set consisting of gene
expression profiles of 327 ALL samples, obtained by
hybridization on the Affymetrix U95A GeneChip microar-
ray containing probes for 12,558 genes. The samples con-
tain all the known ALL subtypes.We used 215 samples as
training data for constructing the classification model using
PCL and 112 samples for blinded testing. PCL made con-
siderably fewer false predictions than other conventional
methods. More importantly, the top emerging patterns in
the PCL method also serve as high-level rules for under-
standing the differences between ALL subtypes. Hospitals
can also use these rules to suggest treatment plans.

Scientific literature mining
Other than the molecular sequence databases generated

by the genome projects, much of the scientific data
reported in the literature have not been captured in struc-
tured databases for easy automated analysis. For instance,
molecular interaction information for genes and proteins
is still primarily reported in scientific journals in free-text
formats.

Molecular interaction information is important in
postgenome research. Biomedical scientists have there-
fore expended much effort in creating curated online data-
bases of proteins and their interactions, such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG,www.kegg.
org) and the Cell Signaling Networks Database (CSNDB,
geo.nihs.go.jp/csndb). However, such hand-curated data-
bases are laborious and unlikely to scale.

Natural language processing (NLP) of biomedical liter-
ature is one alternative to manual text processing. Figure
4 shows a typical workflow for mining the biomedical lit-
erature for protein interaction pathways. The system col-
lects numerous abstracts and texts from biological research
papers in scientific literature databases such as NCBI’s

Molecular
interactions

Medline
Various

abstractsKeywords

Molecular
names

Sentences

Scientific
texts

ExtractAssemble
Pathways

MatchQuery

Figure 4. Mining literature 
for protein interactions.
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Medline, the main online biomedical literature repository.
It then applies NLP algorithms to recognize names of pro-
teins and other molecules in the texts.

Sentences containing multiple occurrences of protein
names and some action words—such as “inhibit” or “acti-
vate”—are extracted. Natural language parsers then ana-
lyze the sentences to determine the exact relationships
between the proteins mentioned. Lastly, it automatically
assembles these relationships into a network for us, so we
know exactly which protein is acting directly or indirectly
on which other proteins and in what way.

Pies is one of the first systems capable of analyzing and
extracting interaction information from English-language
biology research papers. Pies is a rule-based system that
recognizes names of proteins and molecules and their
interactions. Figure 5 shows approximately 20 percent of
the system’s output given a protein Syk with a pathway of
interest. Pies downloaded and examined several hundred
scientific abstracts from Medline, recognizing several hun-
dred interactions involving hundreds of proteins and mol-
ecules mentioned in the abstracts.

Understandably, the complex nature of linguistics and
biology makes biomedical text mining especially difficult.
This challenging task has recently attracted increased inter-
est from the bioinformatics and other computational com-
munities (such as computational linguistics). Hopefully, a
combined effort by researchers in bioinformatics and other
information technologies will fill some of the gaps.

T he future of molecular biology and biomedicine will
greatly depend on advances in informatics. As we
review researchers’ many achievements in bioinfor-

matics, we’re confident that the marriage between molec-
ular biology and information technology is a happy one.
Accomplishments in bioinformatics have advanced molec-
ular biology and information technology.Although many
computational challenges lie ahead, more fruitful out-
comes of this successful multidisciplinary marriage are
likely. ■
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Figure 5. Pathway extracted by Pies.


