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ABSTRACT
Motivation: Protein–protein interaction, mediated by protein interac-
tion sites, is intrinsic to many functional processes in the cell. In this
paper, we propose a novel method to discover patterns in protein
interaction sites. We observed from protein interaction networks that
there exist a kind of significant substructures called interacting protein
group pairs, which exhibit an all-versus-all interaction between the two
protein-sets in such a pair. The full-interaction between the pair indi-
cates a common interaction mechanism shared by the proteins in the
pair, which can be referred as an interaction type. Motif pairs at the
interaction sites of the protein group pairs can be used to represent
such interaction type, with each motif derived from the sequences of
a protein group by standard motif discovery algorithms. The syste-
matic discovery of all pairs of interacting protein groups from large
protein interaction networks is a computationally challenging problem.
By a careful and sophisticated problem transformation, the problem
is solved by using efficient algorithms for mining frequent patterns, a
problem extensively studied in data mining.
Results: We found 5349 pairs of interacting protein groups from a
yeast interaction dataset. The expected value of sequence identity
within the groups is only 7.48%, indicating non-homology within these
protein groups. We derived 5343 motif pairs from these group pairs,
represented in the form of blocks. Comparing our motifs with domains
in the BLOCKS and PRINTS databases, we found that our blocks
could be mapped to an average of 3.08 correlated blocks in these two
databases. The mapped blocks occur 4221 out of total 6794 domains
(protein groups) in these two databases. Comparing our motif pairs
with iPfam consisting of 3045 interacting domain pairs derived from
PDB, we found 47 matches occurring in 105 distinct PDB comple-
xes. Comparing with another putative domain interaction database
InterDom, we found 203 matches.
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1 INTRODUCTION
Protein-protein interactions carry out many biological processes in
the cells such as gene expressions, signal transduction and inter-
cellular communication. Protein interactions are usually mediated
by short sequences of residues, which form the contact interfa-
ces between two interacting proteins, referred to as interaction
sites (Sheu et al., 2005). These interaction sites are often geometri-
cally complementary and electric-statically compatible (Jones and
Thornton, 1996). They are also highly conserved (Keskin et al.,

2004, 2005) and co-evolved (Pazos et al., 1997) and only limi-
ted interaction templates exist, which are termed as interaction
types (Aloy and Russell, 2004). Unraveling these interaction sites
is helpful for understanding the mechanism of protein recognition
and protein function, and is beneficial to the design of drug-aimed
protein-protein interactions (Loregian and Palu, 2005).

Protein interaction sites can be determined by various experimen-
tal methods, including X-Ray crystallographic screening (Garman
et al., 2000), NMR-based methods (Swanson et al., 1995; Taka-
hashi et al., 2000), site-directed mutagenesis (Clemmons, 2001)
and phage display (DeLano et al., 2000). Experimental methods
are generally laborious and expensive. Consequently, only a small
number of interaction types have been determined so far. It was
estimated that it would take more than 20 years to accomplish all
interaction types by using current experimental techniques (Aloy
and Russell, 2004).

On the other hand, computational methods play an important
role in the determination of interaction sites due to their low cost.
Recently, protein-protein docking, which predicts the structures of
protein complexes based on solved or modeled structures of the
component proteins (Terwilliger, 2004), has made significant pro-
gress since the proposal of CAPRI assessment in 2001 (Mendez
et al., 2005). Protein interaction sites can be pinpointed during the
course of docking. However, about 40% of proteins cannot be mode-
led for putative structures (Aloy et al., 2005). This leaves a critical
gap in this docking approach.

Another approach is based on the conservation characteristics of
interaction sites among homologous sequences, also referred to as
binding motif discovery algorithms such as PROTOMAT (Heni-
koff and Heinikoff, 1991) and MEME (Bailey and Elkan, 1995).
Correlations between the binding motifs can be measured by an
expectation maximization (EM) model as shown by Wang et al.
(2005). The intrinsic deficiency of this approach lies in the difficulty
to distinguish the folding and binding motifs as binding and folding
are both interrelated (Kumar et al., 2000). The third category of
computational methods are machine learning oriented approaches.
The features utilized in the learning are some known characteri-
stics about interaction sites such as hydrophobicity (Gallet et al.,
2000), the sequence segments (Ofran and Rost, 2003) or the spatial
patches (Jones and Thornton, 1997). SVMs (Yan et al., 2004) and
neural networks (Zhou and Shan, 2001) are two commonly used
machine learning methods. Drawbacks in this approach include the
difficulty in finding discriminating features and the unattractive per-
formance in accuracy. Overall, current computational methods for
interaction site prediction are far from perfect.
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Fig. 1. An all-versus-all predicted interaction subnetwork (most are con-
firmed by experiments) consisting of two groups of proteins, where one
group contains 6 proteins with SH3 domains and the other contains 4
proteins with SH3-binding motifs. (Tong et al., 2002).

In this paper, we propose a novel approach to the discovery of
interaction sites on a proteome-wide scale. This approach uses only
protein interaction data and the associated sequence data. As men-
tioned earlier, interaction sites are highly conserved (Keskin et al.,
2005). Conserved interaction sites are favorable interfacial scaffolds
that have been repeatedly used in the evolution process by proteins
with different sequence, structure and function (Keskin and Nussi-
nov, 2005). An example can be seen fromcipa (PDB code 1aoh)
and Dsred (PDB code 1g7k), two complexes which have similar
interfaces between their component chains A and B (Keskin et al.,
2004), but which have dissimilar global structures and functions.
(See supplementary information.) A set of conserved interaction
sites corresponds to an interaction type (Aloy and Russell, 2004)
as they share some common binding mechanism. Whenever the
interaction type occurs in a novel protein pair regardless of their
homology, the two proteins are likely to interact—This principle
has been used by Tong et al. (2002) and Aytuna et al. (2005) to
predict protein interactions with an acceptable performance. Such
an interaction type implies a most-versus-most and even anall-
versus-allinteraction subnetwork between two groups of proteins
in a protein network, with each protein group corresponding to one
side of the interaction type. Figure 1 shows an example of such a
subnetwork (Tong et al., 2002).

Interestingly, if a large enough subnetwork with all-versus-all
interactions between two protein groups is found in a protein net-
work, an interaction type with conserved interaction sites can be
predicted. That is because most proteins only contain a small num-
ber of interaction sites (usually,2 ∼ 6 for typical proteins (Liang
et al., 1998)). Due to the constraints of all-versus-all interactions
between these two groups, it is expected that there exists two groups
of interaction sites from these two protein groups which interact
with each other for at least some occurrences. The interaction sites
within the same group should hold similar structures and possibly
have a sequence motif as they have similar interaction partners.
These two groups of interaction sites and their corresponding motifs
can be easily identified using standard motif discovery methods
from the sequence data of the corresponding protein group. Then,
an interacting motif pair (Li et al., 2004) is formed, with which to
represent the corresponding interaction sites of the interaction type.

We term the above two protein groups that exhibit an all-versus-
all interaction as a pair ofinteracting protein groups. It is a chal-
lenging problem to discover all pairs of interacting protein groups
from a proteome-wide protein interaction network by a naive way
as the number of combinations of proteins is exponential. Howe-
ver, we found that this problem of mining interacting protein groups
can be transformed into the classical problem of miningfrequent

patterns(Agrawal and Srikant, 1994). As frequent pattern mining
has been extensively studied in the data mining field, many exi-
sting algorithms can be directly used to efficiently find all pairs of
frequent interacting protein groups from large datasets of protein
interactions.

To assess the performance of our proposed method for mining
motif pairs from a large yeast interaction dataset, we propose a
systematic validation experiment on comprehensive domain data-
bases and domain–domain interaction databases. We compare our
single motifs with the domains in specific domain databases to
study the relationship between our motifs and domains. Even
more importantly, we study the relationship between motif pairs
at interaction sites and interacting domain pairs, by mapping our
motif pairs into domain–domain interacting pairs and analyzing the
amount of overlaps between our mapped domain pairs and those in
domain–domain interaction databases.

2 INTERACTING PROTEIN GROUPS
We fix PrtAll to be a set ofm proteins: {Pi, i = 1, . . . , m},
andPairDB to be alln interacting protein pairs of the proteins in
PrtAll. That is,PairDB = {PPi = {Pi, Qi}, i = 1, . . . , n, Pi ∈
PrtAll, Qi ∈ PrtAll, wherePi andQi have interactions}. PrtAll
andPairDB are used throughout the paper.

DEFINITION 1. [Neighborhood of a protein] Theneighborhood
β(P ) of a protein P ∈ PrtAll is defined as the set of prote-
ins in PrtAll that interact withP . That is, β(P ) = {Q | Q ∈
PrtAll, Q interacts withP}.

This neighborhood notion can be generalized by replacing one
protein with a protein set. Then the definition can capture a partial
all-versus-all relation between two protein-sets.

DEFINITION 2. [Neighborhood of a protein set] The neighbor-
hoodβ(S) of a protein setS ⊆ PrtAll is the intersection of the
neighborhoods of all proteins inS. In other words, it is the set
of proteins that interact with all proteins inS. That is, β(S) =⋂

P∈S β(P ). In particular, we defineβ(∅) = PrtAll.

If a protein interacts with all proteins inS, it must be in the neigh-
borhood setβ(S). However, if a protein interacts with all proteins
in β(S), it may not be inS. Our next definition gives a maximal
all-versus-all neighborhood-relation between two protein-sets.

DEFINITION 3. [A pair of interacting protein groups] Let
A,B ⊆ PrtAll be two protein sets. Ifβ(A) = B andβ(B) = A,
then we callA andB a pair of interacting protein groups. If |A| ≥
τ and |B| ≥ τ , we callA and B a pair of frequentinteracting
protein groups, whereτ is a positive user-defined threshold.

Definition 3 also says that if two proteins are a pair of interac-
ting protein groups, then every protein in one set (A or B) interacts
with all proteins in the other set, and vice versa. Note that not
every protein set is an interacting protein group because the partner
interacting protein group may not exist.

Our definition of interacting protein group pairs is closely rela-
ted to that of maximal complete bipartite subgraphs in graph
theory (Eppstein, 1994). For details about their theoretical issues,
please refer to our previous paper (Li et al., 2005).
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We require a protein group to be large enough (≥ τ ) in our defi-
nition. This is because it is rather hard to determine whether a motif
is significant if there are only a few of proteins in a group.

Problem statement: Let a setPrtAll, its PairDB, and the
sequence data of all the interacting protein pairs be given. The pro-
blem is to find all pairs of frequent interacting protein groupsA and
B, such that|A| ≥ τ and |B| ≥ τ , and then to identify “good”
motif pairs from the pairs of frequent interacting protein groups.

3 METHODS
Our algorithm consists of two steps: The first step is to find all pairs
of interacting protein groups fromPairDB where this problem is
transformed to the problem of miningfrequent patterns(Agrawal
and Srikant, 1994); The second step is to identify motif pairs from
the pairs of protein groups discovered in the first step.

3.1 Mining interacting protein groups
The classic problem of mining frequent patterns in the data mining
field is: Given a setI of itemsand a setTDB of transactionsTi,
i = 1, · · · , x, where a transactionTi is a subset ofI (i.e. Ti ⊆ I),
the problem is to find all frequent patterns ofTDB—all itemsets
I ′ ⊆ I such that the number of transactions that containI ′ is no
less than a thresholdτ , whereτ is a user-specified threshold. Here,
the number of the transactions that containI ′ is called thesupport
of I ′ in TDB. The set of the identities (ids) of the transactions that
containI ′ is called theoccurrence setof I ′, denoted byg(I ′) =
{id(Ti) | Ti ∈ TDB, I ′ ⊆ Ti}, whereid(Ti) is the identity ofTi.

To transform the problem of mining frequent interacting protein
groups to the problem of mining frequent patterns, a crucial step
is to determine what is an item and what is a transaction. We map
a protein to an item—therefore,PrtAll is I. Thus, a protein set is
a transaction. The next crucial step is to determine which and how
many protein sets (transactions) are inTDB. We define a transaction
in TDB asthe neighborhood of a proteinin PrtAll. ThusTDB is
the set of all the neighborhoods of all the proteins inPrtAll. This
TDB is specially denoted asTDBPrtAll. So, this specialTDB con-
tainsm transactions, namelyTi = β(Pi), i = 1, · · · , m, where
m is the total number of proteins inPrtAll. The identity of each
transactionTi (i = 1, · · · , m) is Pi, namelyid(Ti) = Pi.

Let X be a frequent pattern ofTDBPrtAll. Let the support ofX
be k, and its occurrence set beg(X) = {P1, P2, · · · , Pk}. Then,
the meaning ofX is (of course) a protein set in which every pro-
tein interacts with all proteins in the occurrence setg(X). This is
becauseX is a subset ofβ(Pi) for all i = 1, · · · , k. In other words,
all proteins inX interact with every protein ing(X). Therefore, all
proteins ing(X) must be in the neighborhood ofX (i.e.β(X)).

Furthermore, there is no protein other thanPi (i = 1, · · · , k) that
interacts with all proteins inX. This is due to the definition of sup-
port of a pattern. We explain it using a contradiction. Suppose there
is a proteinQ ∈ PrtAll other thanPi (i = 1, · · · , k) that interacts
with all proteins inX, thenβ(Q)—a transaction inTDBPrtAll—
containsX. So, the support ofX would bek + 1. But, the support
of X is onlyk. Here is a contradiction. Therefore, there are exactly
only Pi, i = 1, · · · , k, that interact with all proteins inX. This can
be re-written asβ(X) = g(X). That is, the neighborhood of a fre-
quent patternX of TDBPrtAll is the occurrence set ofX. All these
ideas and discussions can be in the important theorem below.

THEOREM 1. Let X be a frequent pattern ofTDBPrtAll. Then
β(X) = g(X), andg(X) is a frequent protein set.

Let fβ(X) = β(β(X)). If |fβ(X)| ≥ τ , thenβ(X) andfβ(X)
is a pair of frequent interacting protein groups.

PROOF. Denoteβ(X) = A andfβ(X) = B.
(I) Obviously,β(A) = fβ(X) = B.
(II) As B is the neighborhood ofg(X), then

B =
⋂

P∈g(X)

β(P )

So,B is an itemset ofTDBPrtAll with support at least|g(X)|. On the
other hand, it is a superset ofX asX is contained in everyβ(P ) for
P ∈ g(X), so, its support is at most|g(X)|. Therefore,B andX
have the same level of support inTDBPrtAll, and also have the same
occurrence set, namely theg(X). This meansβ(B) = g(X) = A.

Combining (I) and (II), we getβ(X) and fβ(X) is a pair of
frequent interacting protein groups if|fβ(X)| ≥ τ .

This theorem indicates that every frequent pattern ofTDBPrtAll

corresponds to a candidate for a pair of frequent interacting protein
groups.

Is there any other patterns ofTDBPrtAll that could correspond to
a pair of frequent interacting protein groups? The answer is no. This
is because for an infrequent patternX of TDBPrtAll, its occurrence
setβ(X) is infrequent, i.e.|β(X)| < τ . So, no matter what is the
size offβ(X), β(X) andfβ(X) is not a pair of frequent interacting
protein pairs.

We also conjecture that some frequent patterns ofTDBPrtAll can
lead to the same pair of interacting protein groups. In fact, all fre-
quent patternsX in anequivalence class(Nicolas et al., 1999) share
the same pair of interacting protein groups (Li et al., 2005). The
resultedfβ(X) defined in above theorem one-to-one matches an
equivalence class, often termed as a closed pattern (Nicolas et al.,
1999). So, it is unnecessary for us to identify all frequent patterns
from TDBPrtAll for a given thresholdτ , instead, one can just dis-
cover all frequent closed patterns fromTDBPrtAll using an efficient
algorithm such as FPClose* (Grahne and Zhu, 2003).

3.2 Generating a motif pair from a pair of interacting
protein groups

Given a protein group and its sequence data, we can get a motif (pos-
sibly containing flexible gaps) by using standard motif discovery
algorithms such as PROTOMAT (Henikoff and Heinikoff, 1991)
and MEME (Bailey and Elkan, 1995). So, we can easily obtain
a motif pair from a pair of interacting protein groups by execu-
ting the motif discovery algorithm twice. In this paper, we choose
PROTOMAT (Henikoff and Heinikoff, 1991) as the motif discovery
algorithm because it is believed to be a good method to find local
conserved regions from a group of related proteins. PROTOMAT
is also a key method to construct BLOCKS database (Pietrokov-
ski et al., 1996)—a comprehensive database of highly conserved
regions for homologous protein groups (domains).

4 RESULTS
To assess the performance of our proposed method for mining motif
pairs, we performed several experiments on a PC with a CPU clock
rate of 3.2GHz and 2GB of main memory. The protein interac-
tion set PairDB used in the experiments was downloaded from
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Fig. 2. The distribution of the sequence identities within our 10698 groups.

DIP (database of interacting proteins) on Oct. 23, 2005, consisting
of 17511 experimentally determined interactions in saccharomyces
cerevisiae (yeast) among 4959 proteins. We select 10640 physi-
cal interactions by excluding 6871 interactions determined only by
complex level experiments such as Tandem Affinity Purification
(TAP) and immunoprecipitation (the full list of excluded experi-
ments can be found in the supplementary information). To discover
frequent closed patterns by FPClose* (Grahne and Zhu, 2003), we
set the thresholdτ = 5, an average number of interactions per pro-
tein in the yeast genome (Grigoriev, 2003). Default parameters are
used for PROTOMAT (Henikoff and Heinikoff, 1991). To facilitate
our analysis, we further term the motifs induced from closed pat-
terns as left motifs (left blocks), while the ones induced from the
occurrence sets of the closed patterns as right motifs (right blocks).

The FPClose* algorithm outputs a total of 5349 non-redundant
pairs of interacting protein groups, by taking 4.35 seconds on our
machine (including the transformation). The mining based on the
transformation idea is very efficient compared to a naive search
method which needs about 33 minutes (455-fold more than the effi-
cient approach) to find all the protein groups. The implementation
of the naive search contains some optimization techniques.

The homology property within a group is an interesting issue. It
can be estimated simply by the sequence identity within the group—
A value less than 15% is often considered as a good indicator for
non-homology (Doolittle, 1981). We calculate all pairwise sequence
identities within a same protein group using CLUSTAL W package
with default parameters (Thompson et al., 1994). Then we use the
average value of these pairwise sequence identities as the sequence
identity within the group. The distribution of the sequence identities
within the 10698 groups is shown in Figure 2, with more details in
the supplementary information. The expected value of the sequence
identities within the groups is 7.48%, with a standard deviation
1.33%. This is a good value indicating the non-homology within
these groups. Therefore, these groups and their underlying sequence
motifs are unlikely to detect by standard methods based on sequence
homology (Sauder et al., 2000).

The PROTOMAT method outputs 5343 motif pairs from these
5349 pairs of interacting protein groups by taking 3 hours. 85% of
protein groups generate two or three blocks. (Note that a group in
BLOCKS contains 6.91 blocks on average.) Only 4 left groups and
2 right groups failed to produce any valid motif, with a failure rate
< 0.2%. Totally, there are 11948 left blocks and 13004 right blocks.
The average length of these blocks is 11.05, with a standard devia-
tion 5.06. Compared with BLOCKS where the average length of

Table 1. Databases used in our validation experiments.

BLOCKS PRINTS Pfam iPfam
Version 14.0 37.0 16.0 18.0

Num. of domains 4944 1850 7677 2145
Num. of entries 24294 11170 7677 3045

blocks is 25.337 and the standard deviation is 12.897, our blocks
are more specific and match better with current knowledge about
interaction sites, that is, 10-20 residues in length (Sheu et al., 2005).

We treat the whole set of blocks generated by PROTOMAT from
a protein group rather than each individual block as a motif to reflect
the cooperation among these blocks. We expect that some interacti-
ons happen among the blocks from different sides of the motif pair,
but do not study the detailed interactions among these blocks in this
paper. In our results, the average number of blocks per motif is 2.33,
with a standard deviation 0.73. The average number of proteins per
motif is 7.01, with a standard deviation 2.59. More details are in the
supplementary information.

4.1 Validations
Currently, comprehensive databases for motif–motif interactions
(motif pairs) are hard to find but there are a handful of databa-
ses for domain–domain interactions such as iPfam (Finn et al.,
2005), 3did (Stein et al., 2005) and InterDom (Ng et al., 2003).
Since domains are known to involve in protein interactions and are
closely related to motifs, we compare our motif pairs with these
domain pairs. The following two steps are employed to illustrate the
effectiveness of our algorithm.

• Compare all single motifs in our discovered motif pairs with
all domains in specific domain databases to obtain overall mat-
ches, i.e. to determine the number of motifs that can be mapped
to these domains and the overall correlation in the portions that
are mapped.

• Map our motif pairs into domain–domain interacting pairs to
determine the number of overlaps between our mapped domain
pairs and those in the domain–domain interaction database.

4.1.1 Validations for single motifsAs our motifs are in the form
of blocks, we need domain databases also in the form of blocks
for comparison. Currently, there are two major domain databases
in the form of blocks: BLOCKS (Pietrokovski et al., 1996) and
PRINTS (Attwood and Beck, 1994). Some information of these two
domain databases are shown in the first two columns of Table 1,
where an entry corresponds to a block.

The comparison is conducted by a program calledLocal Ali-
gnment of Multiple Alignments(LAMA) (Pietrokovski, 1996). It
utilizes Smith-Waterman algorithm (Smith and Waterman, 1981) to
determine the optimal local alignments for pairs of position-specific
scoring matrices (PSSMs) (Gribskov et al., 1987) of the correspon-
ding blocks. To estimate the alignment scores with different lengths
and to filter out the coincidental matches, LAMA uses theZ-score
as a significance measurement, where a Z-score between a pair
of PSSMs is defined as the number of standard deviations away
from the mean score generated by millions of shuffled blocks in the
BLOCKS database.

In our study, we used the default threshold 5.6 for Z-score in
LAMA to compare our blocks with those in BLOCKS and PRINTS.
If 95% of the positions of a block are in the optimal alignment bet-
ween this block and another block and the Z-score is no less than

4



Motif pairs from interacting sequences

Table 2. Statistics of mappings from our blocks to blocks in the BLOCKS
and PRINTS databases.

# of # of mappings # of mappings Average
our blocks to BLOCKS blocks to PRINTS blocks correlation

Left blocks 11948 29357 8632 54.31
Right blocks 13004 30220 8738 53.42

Table 3. Statistics of blocks or domains in the BLOCKS or PRINTS
databases that can be mapped from our blocks or motifs.

Mapped / total Mapped / total Mapped / total
# in BLOCKS # in PRINTS # in ANY

Blocks 6408 / 24294 2174/ 11170 8582 / 35464
Domains 3128 / 4944 1093/ 1850 4221 / 6794

Table 4. Statistics of blocks or motifs in our motif pairs that can be mapped
to blocks or domains in BLOCKS or PRINTS databases.

total # # mapped # mapped # mapped
to BLOCKS to PRINTS to ANY

Blocks 24952 13859 8010 14620
Motifs 10686 8879 6464 9153

the threshold, we say there is amappingfrom the former block to
the latter one. If there is a mapping from any block of a motif to any
block of a domain, we say the motif can be mapped to the domain.
We have following results from this experiment:

• On average, each of our blocks maps to about 3.08 blocks in
the BLOCKS or PRINTS databases. See more detailed report
in the columns 2 and 3 of Table 2.

• The average correlation between the columns of our blocks and
the columns from the database in the optimal alignments is as
high as 53.88%. See column 4 of Table 2 for details.

• Our motifs can be mapped to 4221 domains out of a total of
6794 domains in these two databases, having a coverage of
62%. See Table 3. This result is interesting as our blocks can
only be mapped to 8582 blocks out of the total 35464 blocks in
these two databases, having a coverage< 24%. The interpre-
tation from a biological perspective is that most domains have
about 40% of blocks as their interaction sites, while others may
be related to folding.

• Although only 59% (14620 out of 24952) of our blocks can be
mapped to blocks in BLOCKS and PRINTS, as high as 86%
(9153 out of 10686) of motifs can be mapped to domains in
these two databases. See Table 4 for details.

Note that our groups and groups in BLOCKS and PRINTS are
constructed in quite different ways and their homology properties
are also different. However, our comparison results reveal high cor-
relation between their resulted blocks. This correlation may origin
from the common involvement of interactions for both our motifs
and their domains. This confirms the effectiveness of our method in
some way.

4.1.2 Validations for motif pairs To assess whether our disco-
vered motif pairs are indeed interaction sites, we compare them
with domain–domain interacting pairs. If our motif pairs represent
interaction sites, they should be mapped to some domain–domain
interacting pairs in some databases. We choose iPfam (Finn et al.,
2005) for this purpose. It consists of 3045 interacting pairs among
2145 Pfam domains derived from protein complexes in PDB.

Table 5. Occurrences of our mapped domains in different databases.

BLOCKS PRINTS Combined
BLOCKS/PRINTS domains 3128 1093 4221

Pfam domains 2305 144 2338
iPfam domains 975 87 997

The cross-links between our motif pairs and the domain–domain
pairs in iPfam is complicated. A reason is that the domain–domain
pairs are represented by Pfam entries. To find the cross-links, we (i)
firstly map our motifs to domains (protein groups) in the BLOCKS
or PRINTS database, as shown in Section 4.1.1; (ii) we then map a
protein group of BLOCKS to a protein group of InterPro (Apwei-
ler et al., 2001) as there exists a one-to-one mapping between an
entry of BLOCKS and an entry of InterPro; (iii) then we use existing
cross-links between protein groups of InterPro and domains of Pfam
to determine the cross-link between our motifs and Pfam domains.
By this roadmap, we can map our motif pairs into domain–domain
pairs with Pfam domain entries. Note that the association between
PRINTS and Pfam is clear. Also note that the cross-linking mapping
between motif pairs and domain–domain pairs is not a one-to-one
mapping.

Using the above cross-link mapping, we compared our 5343 motif
pairs with the 3045 domain-domain pairs in the iPfam database, 47
motif pairs can be mapped to 18 distinct domain pairs among 22
domains occurring in PDB complexes for 172 times (totally 105
distinct protein complexes).

Though the overlapping proportion seems modest, we assert that
the result is significant because:

• We read only interacting protein sequence pairs, while some
predictions about interaction sites can be confirmed by domain-
domain interactions in PDB complexes.

• iPfam is a rather incomplete database, containing merely 3045
pairs among 2145 domains. Moreover, only 997 out of 4221 of
our mapped domains are studied in iPfam, as shown in Table 5.

• The motif pairs we discovered are taken only from the yeast
genome while iPfam covers a variety of species.

• Comparing with Interdom with 30037 putative interacting
domain pairs (Ng et al., 2003), our motif pairs can be mapped
to 203 domain pairs, including 94 high-confidence ones.

4.2 A case study
The 5343 motif pairs that we discovered can be ranked according
to their correlation score in the mapping. Most of top-ranked motif
pairs can be confirmed by protein complexes. Here we report details
of one such pair. Our purpose is to check whether some block pairs
in the motif pair can be aligned with a segment pair in a complex
containing the mapped domain pair, and then check whether the
segment pair has some contacts among their residues.

This motif pair is generated from the first pair of interacting
protein groups. This protein group pair generates three blocks on
the left and one block on the right. The first left block 1xxxxxxA
contains 24 positions, while the right block 1xright contains 36
positions, as shown in Table 6.

Through the approach depicted in section 4.1.2, we map the block
pair (1xxxxxxA, 1xright) into domain pair (PF01423,PF01423) in
iPfam. Pfam database indicates that PF01423 is a LSM domain,
and iPfam shows that one LSM domain interacts with another LSM
domain densely in 20 complexes such as pdb1mgq, pdb1h64. We
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Table 6. Left block 1xxxxxxA aligning with the chain A and right block
1xright aligning with the chain B of complex 1mgq, where capital letters are
well aligned and low-case letters are skipped in the alignment.

AC 1xxxxxxA; distance from previous block=(18,243)
BL LLE motif=[4,0,17] motomat=[1,80,-10] width=24 seqs=4

DIP:1330N ( 58) LRDGRMLFGVLRTFD QY A NLI LQD
DIP:2570N ( 206) TLE GRE I MIRNLSTE LL D ENLLRE
DIP:848N ( 19) LKNGE I I QGILT NVDNWMNLTLSN
DIP:883N ( 244) LQSGRR SKRDLSPEE QR R LQI RHA

pdb1mgqA( 30) LKg dRE f r GVLk SFD Lh M NLvLn D

AC 1xright; distance from previous block=(6,52)
BL GNL motif=[3,0,17] motomat=[1,80,-10] width=36 seqs=5

DIP:1417N ( 12) IDK TI N QKVLI V LQS NRE FEG TLV GFD DFV NVI LED
DIP:1418N ( 53) LSDI I G KTVNVKLAS GLL YSG RLE S I D GFMNVALSS
DIP:1419N ( 22) LAKYKDSK I RVKLMGGKL VI GVLKGYDQLMNLVLDD
DIP:794N ( 7) FKTLVD QEVVVELKNDI E I KGTLQ SVD QFL NLKLDN
DIP:903N ( 24) LKDYLNKRVV I I KVDGEC LI A SLN GFD KNT NLF I TN

pdb1mgqA( 18) Lg n s LN S p V i I KLKGDRE Fr G VLKSFD l h MNLVLn D

take the complex pdb1mgq as an example to explain what we found.
It has 7 chains each containing a LSM domain. The 3-D structure
of these 7 chains and their interactions can be found in our Sup-
plementary Information and also in the reference(http://www.ebi.ac.uk/

thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=1mgq ). We observed
the following details:

• Our left block 1xxxxxxA can be well aligned at positions 30
to 53 within the LSM domain of the chain A at the complex
pdf1gmgq, and our right block 1xright can be well aligned at
positions 18 to 53 of the chain B also within the LSM domain
at the same complex. See Table 6 for alignment details.

• The residue 47M (residue M at position 47) of the chain
A interacts with residue 48N of the chain B in pdb1mgq;
another pair between residue 46H of the chain A and
residue 48N of the chain B is also spatially close. See
Figure 3 for details about the interactions between this
segment pair(http://www.sanger.ac.uk/cgi-bin/Pfam/detailed_interaction_

view.pl?acc=PF01423&partner=PF01423&pdb=1mgq ).

• The interaction pair (47M,48N) is well conserved in the com-
plex pdb1mgq—it occurs in 7 chain interactions out of a total
of 9 chain interactions. The 7 interactions are between chain
A and chain B, between chain B and chain C, . . . , and bet-
ween chain G to chain A. Interestingly, this residue interaction
located in the middle of the domain is also highly conserved in
other complexes containing LSM domains, for example in the
complex pdb1h64.

5 DISCUSSION AND CONCLUSION
Our motif pairs are conceptually similar with correlated sequence-
signatures proposed by Sprinzak and Margalit (2001). But their
correlated sequence-signatures are modeled as over-represented
domain pairs, which are essentially longer than our motif pairs
and can not derive novel binding motifs since their domains are
predefined. On the other hand, our interacting protein group pairs
are structurally similar with interacting domain profile pairs pro-
posed by Wojcik and Schachter (2001). But each of their domain
profiles is the summarization of a domain cluster, which is a set

Fig. 3. Interactions between segment [30L, 53D] of the chain LSM A and
segment [18L,53D] of the chain LSM B in the complex pdb1mgq (showing
only the backbone).

of domains sharing significant sequence similarity and interacting
with the same region of a certain protein. This approach replies
on protein-protein interactions with domain interaction annotations,
which are not widely available.

In our model, we require that pairs of interacting protein groups
should always have an all-versus-all relationship. This is a bit
strict as it is vulnerable to handle incomplete dataset. As a future
direction, we will considermost-versus-mostrelationship.

Other future work include new evaluation methods. For exam-
ple, the predicted interaction sites in the blocks of motif pairs can
be compared with known interaction sites in some protein-protein
interaction databases (Rain et al., 2001) or compared with interac-
tion sites in interface databases (Keskin et al., 2004). Also our motif
pairs can be compared with those learned from non-interacting pro-
tein pairs or from random protein pairs, to study their statistical
significance, as done in our previous study (Li and Li, 2005).

Finally, we summarize the main results achieved in this work. We
have used the concept of motif pairs to model protein interaction
sites and studied the mining problem based on the sequence data
of interacting protein pairs. We have proposed the new concept of
interacting protein groups for the discovery, where a protein group
may share a common interaction motif and a pair of protein groups
may share a motif pair at their interaction sites. We transformed
the mining of interacting protein groups into the mining of frequent
closed patterns. We used standard motif discovery algorithms onto
these discovered interacting protein groups to generate motif pairs in
form of blocks. The high efficiency of this two-step approach is due
to: (1) In the discovery of interacting protein groups, we examine
only interacting protein pairs without checking their sequences, the-
reby dramatically reduce the complexity of the problem; (2) By
producing protein groups firstly, the discovery of interaction motifs
is greatly accelerated as we need not execute the NP-hard motif
discovery algorithm on insignificant candidates of protein sets.

The systematic validation results of the discovered motif pairs
indicate that our discovered motifs have high correlation with
domains in the existing domains databases. Our discovered motif
pairs can also be mapped into the domain–domain interacting pairs
in an experimentally validated domain–domain database with good
matches.
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