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Abstract

High-throughput experimental methods, such as yeast-two-hybrid and phage display, have fairly
high levels of false positives (and false negatives). Thus the list of protein-protein interactions de-
tected by such experiments would need additional wet laboratory validation. It would be useful if
the list could be prioritized in some way. Advances in computational techniques for assessing the
reliability of protein-protein interactions detected by such high-throughput methods are reviewed
in this paper, with a focus on techniques that rely only on topological information of the pro-
tein interaction network derived from such high-throughput experiments. In particular, we discuss
indices that are abstract mathematical characterizations of networks of reliable protein-protein
interactions—e.g., “interaction generality” (IG), “interaction reliability by alternatve pathways”
(IRAP), and “functional similarity weighting” (FSWeight). We also present indices that are based
on explicit motifs associated with true-positive protein interactions—e.g., “new interaction gener-
ality” (IG2) and “meso-scale motifs” (NeMoFinder).

Keywords: Protein-protein interaction network, graph mining, network motif.

1 Introduction

Progress in high-throughput experimental techniques in the past decade has resulted in a rapid accu-
mulation of protein-protein interaction data [33, 13, 21]. However, recent surveys [16, 21, 32, 9] have
revealed that interaction data obtained by the popular yeast-two-hybrid assay may contain as much
as 50% false positives and false negatives. As a result, further carefully-focused small-scale experi-
ments are often needed to complement the large-scale methods to validate the detected interactions.
However, the vast interactomes require much more scalable and inexpensive approaches.

We review in this paper several methods for assessing the reliability of a protein-protein inter-
action, given a graph derived from high-throughput protein interaction experiments. The pairs of
“interacting” proteins that are ranked highly by these methods are shown more likely to be true pos-
itive interacting pairs. Conversely, the pairs of proteins that are ranked lowly by these methods are
shown more likely to be false positives. The most interesting feature of these methods is that they are
able to rank the reliability of an interaction between a pair of proteins using only the topology of the
interactions between that pair of proteins and their neighbours within a short “radius”.
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The methods considered in this paper can be roughly divided into two groups. The first group
comprises the “interaction generality” (IG), “interaction reliability by alternate pathways” (IRAP),
and “functional similarity weighting” (FSWeight) indices. This group of indices attempt to provide
abstract mathematical characterizations of networks of reliable protein-protein interactions. They
are based on the hypothesis that true-positive interactions are likely to be characterized by dense
cross connections in the derived interaction graph. The second group comprises the “new interaction
generality” (IG2) and “meso-scale motifs” (NeMoFinder) indices. This group of indices attempt to
provide explicit motifs of network connections that are associated with reliable protein interactions.
They also demonstrate how to systematically use such motifs for assessing the reliability of protein-
protein interaction data.

The remainder of this paper is organized as follows. Section 2 introduces IG [29] and IG2 [30].
They are among the first generation of indices for assessing reliability of protein interactions based
on topological information of the derived interaction graph. We also present here a framework for
evaluating the performance of these and other indices based on repeatability of observations, function
homogeneity, localization coherence, and gene expression correlation. Section 3 describes IRAP [5],
which is a significant improvement to IG. It goes beyond the immediate neighbourhood of an interact-
ing pair of proteins in the interaction graph, as it considers also possibly long alternate paths linking
that pair. Section 4 presents FSWeight. Although FSWeight is devised originally for protein function
prediction [8], it improves upon IRAP in the context of assessing protein interaction reliability in two
ways: it is more accurate when the interaction graph is dense; it is also more efficient to compute.
Section 5 presents meso-scale motifs (NeMoFinder) [7]. These motifs are “meso scale” in the sense
that they generally involve 5–25 proteins. Their discovery is computationally demanding. They are a
significant improvement of the small-scale motifs used in IG2. Section 6 contains a summary of the
paper and some comments on application of these indices for false negative detection, as well as some
historical remarks.

2 Interaction Generality

There is no better place to start our review on the detection of false positives in protein-protein in-
teractomes, based on topology of derived interaction graphs, than the two really remarkable papers
of Saito, Suzuki, and Hayashizaki [29, 30]. These two papers have introduced four important ideas.
Firstly, they postulate that it is possible to evaluate the reliability of a protein interaction using solely
information based on the topology of the derived interaction graph. This is an important conceptual
contribution, because previous approaches have all used information beyond the derived interaction
graph. Secondly, they demonstrate how to use a simple topological measure—the interaction general-
ity (IG) index—to capture a biologically intuitive characteristic of false protein-protein interactions in
high-throughput yeast-two-hybrid experiments. Thirdly, they also show how to use statistical learning
to identify simple topological motifs—the new interaction generality (IG2) index—that are associated
with true protein-protein interactions. Lastly, they have established a rigorous framework—based
on repeatability of observations, function homogeneity, localization coherence, and gene expression
correlation—for validating such protein-protein interaction reliability indices. We discuss these im-
portant concepts in this section.

Let us start with the first interaction generality index (IG) [29].

Definition 2.1 (Interaction Generality Index, IG) The “interaction generality” index IGG(X, Y ),
on a pair of potentially interacting proteins X and Y in an interaction graph G, is defined as the num-
ber of proteins that directly interact with exactly one of X or Y and nothing else in G. That is,

IGG(X, Y ) = 1 + |{{X ′, Y ′} ∈ G | X ′ ∈ {X, Y }, Y ′ 6∈ {X, Y }, degG(Y ′) = 1}|

where degG(U) = |{V | {U, V } ∈ G}| is the degree of the node U in the undirected graph G.
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The intuition underlying the IG index is a simple one. In a yeast-two-hybrid experiment, two
target proteins are fused separately with a DNA-binding domain and a transactivation domain of a
transcription factor; the expression of the reporter gene is then revealed if the two target proteins
interact [26]. This method has been applied to construct the yeast protein-protein interactome by
Uetz et al. [33] and Ito et al. [13] in particular. There are a large number of false positives in such
experiments, due to self activators and “sticky” proteins that transactivate the reporter gene without
actually interacting with their partners. A characteristic of these self activators and sticky proteins is
that they seem to have a large number of interaction partners in the yeast-two-hybrid experiment, but
these partners typically do not interact with each others. Thus one of the two proteins in such a false-
positive interaction tends to be a “hub” that has many partners that do not interact with each other
nor with the second protein in the pair. Furthermore, the higher the number of such non-mutually
interacting partners that an interacting pair has, the more likely the pair is false positive. The IG
index is a clear and direct exploitation of this characteristic; and the smaller the IG index value is,
the more likely the interaction.

On the other hand, true-positive interactions are likely to be characterized by dense cross connec-
tions in the derived interaction graph. A direct use of the idea of “dense cross connections” is to treat
a pair of interacting proteins that are in a clique-like subnetwork to be true positive [11, 34]. However,
given the constraint of limited available interaction area on the surface of proteins, it is unlikely that
two proteins having a large number of interaction partners can directly interact with each other. So,
real interactions tend to involve two proteins where one has a large number of other partners and one
has only a few other partners [20], as opposed to a clique-like subnetwork. This “many-few” prop-
erty can be thought of as a form of “motifs” that characterize true interacting pairs. This inspires
Saito et al. [30] to propose a number of small local motifs and use them in a new interaction generality
index (IG2) to characterize true-positive interactions.

Definition 2.2 (New Interaction Generality Index, IG2 ) The new interaction generality index
IGG

2 (X, Y ), on a pair of potentially interacting proteins X and Y in an interaction graph G, is defined
as a weighted sum of the 5 local topological configurations τ1, ..., τ5 shown in Figure 1:

IGG
2 (X, Y ) =

5∑
i=1

λi ∗ |{X ′ | {X ′, Y ′} ∈ G, Y ′ ∈ {X, Y }, τG
i (X ′, X, Y )}|

where λi is the weight for configuration τi, and τG
i (X ′, X, Y ) means X ′ is in configuration τi in graph

G with respect to the pair X and Y .

Figure 1: The 5 small local motifs proposed by Saito et al. [30]. These motifs are based on the possible
topological configurations of a protein C that interacts with the target pair of interacting proteins A
and B.

Specifically, Saito et al. [30] propose 5 small local motifs (τ1, ..., τ5) shown in Figure 1. These
motifs are based on the possible topological configurations of a third protein that interacts with the
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target pair of interacting proteins. Of these 5 motifs, Saito et al. postulate that those that form a
closed loop (τ1, τ2, τ3) are likely to be associated with true positives, and those that do not form
a closed loop (τ4, τ5) with false positives. Saito et al. further use a statistical learning approach
to determine the weights (λ1, ..., λ5) of these motifs in distinguishing true- vs false-positive protein
interactions. Furthermore, the more negative the IG2 index value is, the more likely the interaction.

How effective are IG and IG2 as indices for assessing the reliability of a protein-protein interaction?
A thorough evaluation based on laboratory experiments is not feasible due to constraints on cost,
materials, and time. Saito et al. [29, 30] therefore propose an alternate rigorous framework based
on repeatability of observations, function homogeneity, localization coherence, and gene expression
correlation. We discuss this framework below.

Figure 2: Comparison of IG and IG2 indices on their correlation with (a) function homogeneity,
(b) localization coherence, and (c) gene expression correlation. The comparison is performed by
Saito et al. [30] using the yeast protein interaction data of Ito et al. [13], Uetz et al. [33], and MIPS
(2000) [22].

A protein-protein interaction that is observed in several different experiments is obviously more
reliable than one that is observed in only one experiment. Thus a good reliability index for protein-
protein interactions should correlate with the likelihood that a protein-protein interaction is observed
in multiple experiments. Indeed, both IG and IG2 show such a correlation [29, 30]. For example,
while 30% of those proteins interactions observed by Ito et al. [13] but not by Uetz et al. [33] achieve
the best IG index value of 1, 50% of protein interactions observed by both Ito et al. and Uetz et al.
achieve the best IG index value of 1 [29].

The cellular functions of proteins participating in a genuine biological interactions are likely to
be similar [32]. Thus a good reliability index for protein-protein interactions should correlate with
the likelihood of two interacting proteins having a common cellular function. Indeed, both IG and
IG2 show such a correlation [29, 30]. For example, as can be seen in Figure 2(a), while 63% of all
interacting proteins from Ito et al. and Uetz et al. share a common general cellular function, 90% of
those having an IG2 index value of –5 share a common function.

With the exception of proteins involved in pathways such as signaling and transportation, the
cellular localizations of proteins participating in a true interaction are expected to be the same [32].
Thus a good reliability index for protein-protein interactions should correlate with the likelihood of
two interacting proteins having a common cellular localization. Indeed, both IG and IG2 show such a
correlation [29, 30]. For example, as can be seen in Figure 2(b), while 75% of all interacting proteins
from Ito et al. and Uetz et al. share a common cellular localization, 87% of those having an IG2 index
value of –5 share a common cellular localization.

The average correlation coefficient of gene expression profiles that corresponds to interacting pro-
tein pairs is higher than those of random protein pairs [12]. Thus a good reliability index of protein-
protein interactions should correlate with the likelihood of two interacting proteins having highly
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correlated gene expression profiles. Indeed, both IG and IG2 show such a correlation [29, 30]. For
example, as can be seen in Figure 2(c), while 16% of all interacting proteins from Ito et al. and Uetz
et al. have correlated gene expression profiles, 25% of those having an IG2 index value of –5 have
correlated gene expression profiles.

The correlations of IG and IG2 to repeatability of observations, function homogeneity, localization
coherence, and gene expression correlation support the hypothesis that they correlate to the reliability
of protein-protein interactions. However, it is also clear from Figure 2 that the correlation to reliability
is far from perfect, and there is much ground for improvement. We review several such improvements
in the next three sections.

3 Interaction Reliability by Alternate Pathways

Recall that the self activators and sticky proteins in a yeast-two-hybrid experiment have a large
number of interaction partners that do not interact with each others. A consequence is that such a
false-positive interaction is “orphaned” in the sense that there is no other indirect path of interactions
between the two proteins in the interaction. The IRAP and FSWeight indices to be discussed in this
section and in Section 4 are both exploitations of the contra-positive of this consequence—there tend
to be some alternative paths connecting a pair of real interacting proteins.

Thus, Chen et al. [5] define the IRAP index to link the reliability of an interacting pair to the
“confidence” of the strongest irreducible alternate path connecting the pair. Here, a path φ connecting
a pair of proteins X and Y is irreducible if there is no shorter path φ′ connecting X and Y that shares
some common intermediate nodes with the path φ. The confidence of a path can be estimated from
the confidence confG(U, V ) of individual edges (U, V ) in the path in a number of ways. One possibility
is to assume independence, and define the confidence of a path as the product of the confidence of
individual edges in the path, as given in the definition of the IRAP index below. We can also think
of this definition of the IRAP index as a way to refine the confidence of the edges in an interaction
graph based on an initial estimate of the confidence of the edges.

Definition 3.1 (Interaction Reliability by Alternate Pathways Index, IRAP) The “interac-
tion reliability by alternate pathways” index IRAPG(X, Y ), on a pair of proteins X and Y in an
interaction graph G, is defined as the maximum probability of a reliable irreducible alternate path
connecting X and Y . Specifically,

IRAPG(X, Y ) = max
φ∈ΦG(X,Y )

∏
{U,V }∈φ

confG(U, V )

where ΦG(X, Y ) is the set of all posible non-reducible paths between X and Y , but excluding the
direct edge connecting X and Y ; and confG(U, V ) is an estimated confidence of the edge {U, V } in
the interaction graph G. Thus, the higher the IRAP index value that an edge has, the more likely the
interaction.

But what should we use as an initial estimate of the confidence of the edges? Recall from the
previous section that edges having high IG index values tend to be unreliable. Thus the IG index
value of an edge normalized by the maximum possible IG index value of the interaction graph can be
thought of as a kind of probability that the edge is unreliable. Then taking the complement of this
value gives us a kind of probability that the edge is reliable. This leads Chen et al. [5] to define

confG(U, V ) =

(
1− IGG(U, V )

IGG
max

)

where IGG
max = max{IGG(U, V ) | {U, V } ∈ G} is the maximum IG index value in G.



6 Chen et al.

Figure 3: Comparison of IG2 and IRAP (denoted as IPR here) on their correlation with (a) function
homogeneity, (b) localization coherence, and (c) gene expression correlation. The comparison is per-
formed by Chen et al. [5] using the yeast protein interaction data of Ito et al. [13], Uetz et al. [33],
and MIPS (2002) [23].

Figure 3 compares the effectiveness of IRAP to IG2 as indices for assessing the reliability of a
protein-protein interaction. In terms of function homogeneity, it can be seen from Figure 3(a) that
IRAP is significantly better than IG2. For example, nearly 90% of the top 20% of interacting pairs
ranked according to IRAP are annotated to have a common cellular role; in contrast, less than 75%
of the top 20% of interacting pairs ranked according to IG2 are annotated to have a common cellular
role. Similarly, though to a lesser extent, IRAP exhibits better localization coherence and higher gene
expression correlation than IG2, as shown in Figures 3(b) and (c).

There are a number of possible variations to the way IRAP is formulated. For example, instead
of the confidence of the strongest irreducible path, one can consider the confidence of the strongest
shortest alternate path, the combined confidence of all shortest alternate paths, or even the combined
confidence of all alternate paths. Another example, instead of using IG to define confG(U, V ), one can
consider IG2, or one can base it on the type of biological experiments that were performed to detect
the interaction represented by the edge, as different types of such experiments have different known
range of errors [32]. A notable use of these variations is Pei and Zhang [27], who use the combined
confidence of all alternate paths up to a length k, and who base confG(U, V ) on the type of biological
experiments performed to detect the interaction represented by the edge (U, V ).

While IRAP [5] and variations such as that of Pei and Zhang [27] are more effective than IG
and IG2, there is still considerable room for improvement in terms of their accuracy for assessing
reliability of protein-protein interactions. Furthermore, they are many orders of magnitude more
computationally complex and time consuming to obtain than simple indices like IG and IG2.

4 Functional Similarity Weighting

The computational inefficiency of IRAP [5] and its variantions such as that of Pei and Zhang [27]
is largely due to the need to consider many alternative paths. In fact, for practical reason, Pei and
Zhang consider only alternative paths of length up to 5. This motivates us to look for more efficient
alternatives that are based on a similar principle. The obvious possibility is to look at alternative
paths that go through only one intermediate node. The number of such paths between an interacting
pair of proteins is equal to the number of common interaction partners between the two proteins.
The existence of a common interaction partner between two proteins X and Y actually makes X
simultaneously both an immediate partner of Y and an indirect partner of Y . As shown in Chua et
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al. [8], such a pair of proteins are highly likely to be functionally linked; thus they are highly likely to
be a true positive interacting pair.

Therefore a reliability index for protein-protein interactions can be formulated in terms of the
proportion of interaction partners that two proteins have in common. A simple and direct formulation
of such an index is the Czekanowski-Dice distance (CD-Dist), originally used for the purpose of protein
function prediction from protein interaction graphs [4].

Definition 4.1 (Czekanowski-Dice Distance Index, CD-Dist) The Czekanowski-Dice distance in-
dex CD-DistG(X, Y ), on a pair of proteins X and Y in an interaction graph G, is defined as the
proportion of partners that the two proteins have in common. Specifically,

CD-DistG(X, Y ) =
2 ∗ |NG(X) ∩NG(Y )|
|NG(X)|+ |NG(Y )|

where NG(U) = {V | {U, V } ∈ G} is the set of neighbours of U in the graph G.

As two proteins may have very different numbers of partners, it is useful to refine the CD-Dist
index to account for this situation. Chua et al. [8] introduce a variation called functional similarity
weight (FS), also for the purpose of protein function prediction from protein interaction graphs:

Definition 4.2 (Functional Similarity Weight Index, FS) The “functional similarity weight” in-
dex FSG(X, Y ), on a pair of proteins X and Y in an interaction graph G, is defined as

FSG(X, Y ) =
2 ∗ |NG(X) ∩NG(Y )|

|NG(X)|+ |NG(X) ∩NG(Y )|+ λ
∗ 2 ∗ |NG(X) ∩NG(Y )|
|NG(Y )|+ |NG(X) ∩NG(Y )|+ λ

=
2 ∗ |NG(X) ∩NG(Y )|

|NG(X)−NG(Y )|+ 2 ∗ |NG(X) ∩NG(Y )|+ λ
∗

2 ∗ |NG(X) ∩NG(Y )|
|NG(Y )−NG(X)|+ 2 ∗ |NG(X) ∩NG(Y )|+ λ

where λ is a weight to correct for the situation where the proteins have too few neighbours.

It is well known that different experimental sources of deriving protein-protein interaction may
have different reliability. An approach [25] to estimate the overall reliability of an experimental source
is to find the fraction of interaction pairs from each source that shares at least one function. Then
for a pair of proteins X and Y , the reliability of their interaction can be optimistically estimated as
r(X, Y ) = 1 −

∏
i∈E(X,Y )(1 − r(i))n(i,X,Y ), where r(i) is the overall reliability of experimental source

i, E(X, Y ) is the set of experimental sources in which an interaction between X and Y is observed,
and n(i,X, Y ) is the number of times the interaction between X and Y is observed from experimental
source i.

Chua et al. [8] further refine the FS index to take into account the reliability of each interaction,
when predicting the function of a protein from a protein interaction graph, by substituting the es-
timated reliability r(U, V ) for each interaction {U, V } into the definition of FS. This gives us the
following index:

Definition 4.3 (Functional Similarity Weight with Reliability Index, FSWeight) The “func-
tional similarity weight with reliability” index FSWeightG(X, Y ), on a pair of protein X and Y in an
interaction graph G, is defined as

FSWeightG(X, Y ) =
AG(X, Y )

BG(X, Y ) + AG(X, Y ) + λ
∗ AG(X, Y )

BG(Y, X) + AG(X, Y ) + λ

where AG(X, Y ) = 2 ∗
∑

W∈NG(X)∩NG(Y ) r(X, W ) ∗ r(W,Y ), and BG(X, Y ) =
∑

W∈NG(X) r(X, W ) +∑
W∈NG(X)∩NG(Y ) r(X, W ) ∗ (1− r(W,Y )).
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Figure 4: Effectiveness of FSWeight as an index for predicting the functional similarity of proteins,
taken from Chua, Sung, and Wong [8]. (a) The fraction of direct and indirect neighbours of a protein
that have at least one function in common with that protein. (b) The fraction of direct and indirect
neighbours of a protein, at FSWeight index value threshold of 20%, that have at least one function in
common with that protein. Here S1 refers to direct neighbours and S2 refers to indirect neighbours.
Thus we can see that there is significant enrichment of shared functions at all MIPS annotation levels
for both direct and indirect interaction pairs at FSWeight threshold of 20%.

Although FSWeight is originally devised for the purpose of protein function prediction, it is also
suitable as an index for assessing the reliability of protein-protein interactions. First, common inter-
action partners are explicitly used in FSWeight; this is a special case of the hypothesis expressed in
Section 3 that there tend to be some alternative paths connecting a pair of real interacting proteins.
Second, two proteins having many interaction partners in common are likely to have similar physical
and biochemical characteristics; this makes the two proteins likely to interact. Third, as shown in
Chua et al. [8] and in Figure 4, a protein pair having a high FSWeight value are likely to share a
common function; this is likely to be a consequence of the protein pair interacting.

As noted in the previous section, IRAP correlates relatively well with functional homogeneity,
localization coherence, and gene expression correlation in the smaller and older interaction datasets
(e.g., MIPS 2000, 2003, and 12-08-2003). However, it seems to be less effective with some newer and
bigger interaction datasets. With more interactions in the larger datasets, few proteins have neighbours
with only one interaction neighbour. Hence the IG value for a large fraction of the proteins is 1 (the
best IG value). This limits the usefulness of IG as a reliability indicator since the range of IG values
becomes limited. As IRAP is derived from IG, a similar limitation applies.

FSWeight and CD-Dist, on the other hand, seem to be better indicators of interaction reliability
for larger interaction datasets. In particular, while FSWeight, CD-Dist, and IRAP exhibit similar
performance on older versions of datasets in MIPS, FSWeight and CD-Dist outperform IRAP on
newer datasets that contain more interaction data. For example, Figure 5 compares FSWeight and
CD-Dist to IG and IRAP on the 18-04-2005 version of GRID [3]. In terms of function homogeneity,
it can be seen from Figure 5(a) that about 50% of the top 30% of interacting pairs ranked according
to IRAP have a common function; in contrast, over 60% of the top 30% of interacting pairs ranked
by FSWeight and CD-Dist share a common function; and FSWeight further outperforms CD-Dist in
this aspect when the top 20% of interacting pairs are considered. Similarly, as shown in Figures 5(b)
and (c), FSWeight and CD-Dist both exhibit better localization coherence and higher gene expression
correlation than IRAP, with FSWeight further outperforming CD-Dist.



Increasing Confidence of Protein-Protein Interactomes 9

Figure 5: Comparison of IG, IRAP (denoted as IPR here), CD distance, and FSWeight indices on
their correlation with (a) function homogeneity, (b) localization coherence, and (c) gene expression
correlation. This comparison is performed here using data on 19452 interactions from the General
Repository for Interaction Datasets (18-04-2005 version) [3].

5 Meso-Scale Motifs

We have seen in the two preceding sections how IRAP [5] and FSWeight [8] improve upon IG [29] as
models of protein interaction networks. However, these improved models are abstract characterizations
of networks of reliable interactions. They do not present explicit motifs associated with reliable protein
interactions like IG2 [30]. IG2 is basically a set of 5 manually derived network motifs of size 3 or 4
for detecting false positives in protein-protein interaction data [30]. Similarly, 4 small motifs have
been used by Albert and Albert [1] to predict protein-protein interactions. But many processes in
biological networks are meso scale in the sense that they involve 5–25 genes or proteins. In this section,
we discuss explicit meso-scale network motifs of Chen et al. [7] that can be systematically exploited
for assessing the reliability of protein-protein interaction data.

Interesting network motifs are typically repeated and unique [24]. That is, these motifs appear
repeatedly in protein-protein interaction networks but do not appear in randomized networks. Thus,
Chen et al. [7] define network motifs as follows:

Definition 5.1 (Network Motifs) A “network motif” g in a protein-protein interaction graph G
is a connected, unlabelled, and undirected topological pattern of inter-connections that is “repeated”
and “unique” in G. A topological pattern g is said to be repeated in an interaction graph G if f(g,G)
exceeds a specified threshold, where f(g,G) is the number of times g occurs in G. A topological
pattern g is said to be unique in an interaction graph G if s(g,G) exceeds a specified threshold, where
s(g,G) = |{Grandi

| 1 ≤ i ≤ n, f(g,Grandi
) < f(g,G)}|/n and each Grandi

is a randomization of G
that preserves the number of nodes and edges.

We write g(X, Y ) for the topological pattern g that is partially labelled with a protein interaction
{X, Y }. For convenience, we also called such a partially instantiated topological pattern a network
motif. The definitions of f(g,G) and s(g,G) are extended to these partially instantiated network
motifs in the obvious manner.

We illustrate some of the concepts mentioned in the definition above in Figure 6. In part (a) of
the figure, an example graph G is shown. In part (b), a number of topological patterns of size 2 to
size 5 are displayed. In part (c), the occurrences of the pattern identified as t4 2 in G in part (b) of
the figure are shown.
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Figure 6: (a) An example graph G. (b) Some example topological patterns of size 2 to size 5 in G.
(c) Occurrences of the topological pattern t4 2 in G.

There are a number of computational challenges that Chen et al. [7] have to solved to provide
an efficient mining of such meso-scale network motifs. We briefly describe the challenges now. It is
common for proteins and their interactions in complex biological networks to participate in multiple
functional modules. So during the subgraph counting process in accordance to Definition 5.1, we must
consider patterns with arbitrary overlaps of vertices and edges. This results in a computationally
complex problem as the degree of “repeatedness” and “uniqueness” of network motifs is not downward
closed,1 and thus the usual pruning heuristics for frequent pattern search cannot be applied. In
particular, when a motif g extends or reduces to its supergraph or subgraph, the decrease or increase
of f(g,G) and f(g,Grandi

) is nondeterministic. Thus we cannot directly infer whether the supergraphs
or subgraphs of a network motif g are unique. In fact, even when we have found a non-unique motif, we
still have to generate its supergraphs and check for their frequencies and uniqueness. So determining
the uniqueness of a motif is computationally costly.

Chen et al. [7] propose an efficient algorithm called NeMoFinder to discover repeated and unique
meso-scale motifs in a large protein-protein interaction graph. As shown in Figure 7, NeMoFinder is
many times more efficient, as well as more complete, than existing network motif discovery algorithms
such as naive enumeration [24], sampling [14], and FPF [31]. Furthermore, the network motifs discov-
ered by NeMoFinder have very good coverage. For example, 96% of the protein interactions in the
MIPS CYGD dataset are covered by at least one network motif discovered by NeMoFinder.

A strategy similar to IG2 can be employed to rank the reliability of a protein interaction by meso-
scale motifs; viz., we sum the “strength” of all meso-scale network motifs containing the interaction

1“Downward closed” is an important concept in the data mining of frequent patterns. In the context of this paper,
a motif is “downward closed” means that the degree of “repeatedness” and “uniqueness” of each of its submotifs is as
high as that of the motif itself.
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Figure 7: Performance of NeMoFinder. (a) Comparison of computational times to find network motifs
of varying sizes in the protein interaction data of Uetz et al [33]. (b) Comparison of size and number
of network motifs found in MIPS CYGD (2005) [23].

in question in the derived interaction graph. Specifically, Chen et al. [7] define the following index:

Definition 5.2 (Meso-Scale Motif Interaction Reliability Index, NeMoFinder) The meso-scale
motif interaction reliability index NeMoFinderG

k (X, Y ), on a pair of potentially interacting proteins X
and Y in an interaction graph G based on network motifs of size up to k, is defined as the sum of the
“strength” of all network motifs of size up to k in G that contain the interaction {X, Y }:

NeMoFinderG
k (X, Y ) =

k∑
i=2

∑
g∈Mi(X,Y,G)

i× s(g,G)× f(g,G)
maxi(G)

where Mi(X, Y,G) is the set of network motifs of size i in G that are partially instantiated with—
i.e., contain—the interaction {X, Y }, and maxi(G) is the maximum value of s(h, G) × f(h, G) of all
network motifs of size i in G.

Figure 8 compares the effectiveness of NeMoFinder to IG, IG2, and IRAP as indices for assessing
the reliability of protein-protein interactions. In terms of functional homogeneity, it can be seen
from Figure 8(a) that NeMoFinder is generally better than IRAP, and is significantly better than
IG and IG2. For example, using network motifs of size up to 8 (12), over 82% (87%) of the top
20% of interacting pairs ranked according to NeMoFinder are annotated to have a common cellular
role; in contrast only about 77% (74%, 65%) of the top 20% of interacting pairs ranked according to
IRAP (IG2, IG) are annotated to have a common cellular role. Similarly, NeMoFinder exhibits better
localization coherence and higher gene expression correlation than IRAP, IG2, and IG, as shown in
Figures 8(b) and (c). These results demonstrate the positive effect of using a more comprehensive set of
actual network motifs against a small number of simple predefined motifs. Additionally, Chen et al. [7]
have also compared the performance of using motifs of different sizes. They have shown that using
network motifs of size up to 12 consistently show superior performance over using motifs of size up to
8. Thus it is advantageous to include the larger motifs, justifying the need for discovering meso-scale
network motifs.
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Figure 8: Comparison of meso-scale motifs of size up to 8 (NeMoFinder = 8), meso-scale motifs of
size up to 12 (NeMoFinder = 12), IRAP, IG, and IG2 indices on their correlation with (a) function
homogeneity, (b) localization coherence, and (c) gene expression correlation. This comparison is
performed here using data on 10199 nonredundant yeast protein interactions from MIPS CYGD (14-
11-2005) [23]. The threshold for f(·, ·) is 50 and the threshold for s(·, ·) is 0.95, following [24].

6 Closing Remarks

In this paper, we have presented an overview of approaches for assessing the reliability of high-
throughput protein-protein interaction data that rely solely on the topological properties of the derived
protein interaction graph. In particular, we have focused on three generations of indices—IG and IG2

in the first generation, IRAP in the second generation, and FSWeight and NeMoFinder in the third
generation—which show increasing promise in detecting false positives.

Due to space and time constraints, we have not discussed other approaches [2, 10, 11, 19, 15, etc.]
to detect false positives. We have also not discussed approaches to detect false negatives. However, we
note that indices like IRAP, FSWeight, and their variants can be used for detecting false negatives.
In particular, one can postulate a pair {X, Y } to be interacting if IRAPG(X, Y ) or FSWeightG(X, Y )
are high, even if {X, Y } are not observed to be interacting in the graph G [6, 27].

We note that the detection of false positives here has been intentionally presented using only
the topological information that are mathematically derived from the underlying interaction graphs.
This allows us to clearly demonstrate the potential usefulness of the indices discussed. However, in
practice, other biological information—such as gene expression correlation, functional homogeneity,
localization coherence, presence of binding motifs, etc.—should be incorporated to improve the quality
of reliability assessment. As a future work, it will be interesting to investigate how other topological
measures, as well as additional biological information, can be incorporated for increasing the reliability
of protein-protein interactome.

We now close this paper by relating some “history”. The last author (Wong) first learned, at
GIW 2002, of the possibility of ranking the reliability of protein-protein interactions reported in high-
throughput yeast-two-hybrid assays from Saito (the 6th author), who was showing a poster of his works
on IG [29] and IG2 [30]. Wong was so impressed with the poster that, upon returning to Singapore,
he told his colleagues Ng (the 5th author) and Soon-Heng Tan about it. Ng subsequently followed
up on the idea with his collaborators Chen (the 1st author), Hsu (the 3rd author), and Lee (the 4th
author); and developed improvements such as IRAP [5], IRAP* [6], and NeMoFinder [7]. Soon-Heng
Tan did not follow up on the idea, though he was inspired to work on identification of protein-protein
binding motifs [17]. Wong followed up on the paper of Tan, and co-authored with Haiquan Li and
Jinyan Li a paper on binding motifs [18], which contained a figure showing SH3 and SH3-binding
proteins in way that places SH3 proteins on one side and SH3-binding proteins one another side of
the figure, as shown in Figure 9. Wong showed this figure to Chua (the 2nd author), who remarked
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Figure 9: The figure of SH3 and SH3-binding proteins from [18] that inspired the work on FSWeight [8].

that the figure implied that a protein might share functions with its indirect neighbours even though
it might share no function with its direct neighbours. A paper with Sung (the 7th author) soon
followed on using indirect neighbours to infer protein function [8], in which the FSWeight measure
was defined. Subsequently, we realised the possibility of FSWeight as a means to rank the reliability
of protein interactions. As we can see, the discussion of Wong and Saito at GIW 2002 has lead to a
very fruitful chain of results. We wish to thank the organizers of GIW 2006 for inviting Wong to make
a keynote presentation. It is our great pleasure to take this opportunity to summarise these results in
this keynote paper at GIW 2006.
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