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Detection of outlier residues for improving
interface prediction in protein

hetero-complexes
Peng Chen, Limsoon Wong, Jinyan Li

Abstract—Sequence-based understanding and identification of protein binding interfaces is a challenging research topic due
to the complexity in protein systems and the imbalanced distribution between interface and non-interface residues. This paper
presents an outlier detection idea to address the redundancy problem in protein interaction data. The cleaned training data is
then used for improving the prediction performance. We use three novel measures to describe the extent a residue is considered
as an outlier in comparison to the other residues: the distance of a residue instance from the center instance of all residue
instances of the same class label (Dist), the probability of the class label of the residue instance (PCL), and the importance of
within-class and between-class (IWB) residue instances. Outlier scores are computed by integrating the three factors; instances
with a sufficiently large score are treated as outliers and removed. The data sets without outliers are taken as input for a support
vector machine (SVM) ensemble. The proposed SVM ensemble trained on input data without outliers performs better than that
with outliers. Our method is also more accurate than many literature methods on benchmark data sets. From our empirical
studies, we found that some outlier interface residues are truly near to non-interface regions, and some outlier non-interface
residues are close to interface regions.

Index Terms—Outlier detection; protein-protein interaction; SVM ensemble.
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1 INTRODUCTION

Outlier detection is to find patterns in data that
do not conform to expected behaviors. These non-
conforming patterns are often referred to as anomalies
or outliers. Conceptually, an outlier is an observation
that deviates so much from other observations as to
arouse suspicions that it was generated by a different
mechanism [22], or alternately, an observation (or sub-
set of observations) which appears to be inconsistent
with the remainder of that set of data [23], [24]. Based
on the availability of class label information, outlier
detection techniques have three categories [8]: super-
vised outlier detection, which assumes the availability
of an entire training data set with instances labeled as
normal or anomaly class [43]; semi-supervised outlier
detection, which operates in a semi-supervised mode,
assuming that the training data has labeled instances
for only the normal class [35]; unsupervised outlier
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detection, which operates in unsupervised mode, not
requiring training data, and thus most widely appli-
cable [18], [25]. Outliers may arise due to mechanical
faults, changes in system behavior, human error, or
other errors. Outliers in protein interface residues
are not well investigated before. This work follows
a general idea of outliers for the study of interface
residue identification: Given a set of observations with
class labels, find those that arouse suspicions, taking
into account the class labels [4], [8], [22], [23], [24].

Kleywegt and Jones assigned those residues that
are not located at the core regions on the Ramachan-
dran plot as outliers [30]. They found that ∼91% of
3000 protein structures (from the Protein Data Bank
before 1996) have up to 10% outliers [30]. Haliloglu
et al. [21] presented an idea to define outlier residues
by computing the shortest distance between HFV
residues (high-frequency vibrating residue identified
by the Gaussian network model [15]) and some con-
served residues. A conserved residue is an outlier
if the conserved residue does not overlap with any
HFV residues at <7Å. Under this definition, about
3% of conserved residues are outliers [21]. They al-
so presented some interesting explanations on how
these outlying conserved residues occur: (a) the HFV
residues may not belong to any binding region or
to any folding core; (b) inaccuracies may exist in
the multiple structural superpositions of conserved
residues due to the presence of crystal interfaces in
the data set; and (c) a residue may be conserved by a
different reason, for example, by a specific functional
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interaction [21]. Similarly, protein-binding interface
outliers in complexes can occur for two reasons: (a)
some interface residues are physically near to non-
interface residues in space which may bring up a
confusion effect in the classification; (b) inaccuracies
may also exist in the generation of the raw data of
interacting residues. These two factors add complexity
to the challenging protein-binding interface prediction
problem.

Our work here aims to detect outliers respectively
from interface residues and non-interface residues,
and to remove them from the training step to pu-
rify the data. We expect that this outlier detection
can improve the performance of interface prediction
remarkably.

The interface prediction problem has received in-
creasing attention since the pioneering work by Kini
and Evans [29], which finds that proline is the most
common residue in the flanking segments of interac-
tion sites. There are roughly two main types of pro-
tein interface prediction: sequence-based or structure-
based approach. Features used in sequence-based
methods include residue composition and propensity
[16], [27], hydrophobic scale [19], predicted structural
features such as secondary structures [39], features
extracted from multiple sequence alignment [20], [49],
and so on [17]. On the other hand, some methods
exploited structure-based properties including size of
interfaces [27], [42], shape of interfaces [2], [26], [32],
clustering of interface atoms [1], [14], B-factor [13],
electrostatic potential [6], [13], spatial distribution of
interface residues [1], [14], and others [47].

None of these methods considers outlier detec-
tion and removal to preprocess the training data.
This work takes a new sequence-based approach to
protein-binding interface prediction by using novel
ideas to characterize outlier residues. We propose
three measures to describe the extent to which a
residue instance is likely to be an outlier compared
to the others. The first measure is used to describe
the distance of a residue instance from the center
vector of all residue instances with the same class
label (Dist). The second measure is the probability of
the class label (PCL) of the residue instance. The third
measure describes the importance of within-class and
between-class (IWB) instances. An outlier score is
then computed by integrating the three measures.
Instances with a sufficiently large score are treated
as outliers and are subsequently removed from the
training data.

The resulting data sets without outliers are taken
as input to a support vector machine ensemble to i-
dentify residues that are potentially interacting. As the
data is highly imbalanced between interfacial residues
and non-interfacial residues, we propose a stratifi-
cation idea to split the large class of non-interfacial
residues into equally-sized smaller parts to be trained
with the class of interfacial residues. Results showed

that our prediction method with outlier detection can
perform better than that without the outlier detection.
It achieves an MCC improvement of around 4.4%
and F1 improvement by around 3.6%. We also found
that some outlier interface residues are truly near to
non-interface regions and, similarly, some outlier non-
interface residues are close to interface regions.

2 MATERIALS AND METHODS

2.1 Data Set

The complex data set used in this work was taken
from our previous work [12], which contains 2499
protein chains in 737 complexes. Here, only those
proteins in hetero-complexes with sequence identity
≤ 30% were selected, and proteins and molecules with
fewer than 30 residues were excluded from our data
set. In addition, protein chains which are not available
in HSSP database [44] were also removed. Moreover,
accessible surface area (ASA) change is used to define
interface residues. We used the PSAIA software [36]
to compute the ASAs. A residue is considered to be an
interface residue if the difference of its ASA between
the unbound and bound forms is >1Å. Under this
definition, there are 142410 interface residues (positive
samples) and 374346 non-interface residues (negative
samples). Thus, the positive samples account for only
27.56% in the total samples.

2.2 Feature vector representing a residue

For a given residue i in a protein chain, a sliding
window with 19 residues is used to involve the asso-
ciation among its neighboring residues. The residue i
is centered on the window. A novel encoding schema
integrating hydrophobic scale and sequence profile
is used to describe a residue. The sequence profile
for one residue extracted from HSSP database [44]
is then multiplied by the Kyte-Doolittle hydropathy
scale [31]. For instance, the profile SPk for residue k
of the 19 residues and the Kyte hydropathy scale, KD,
are both vectors with 1 × 20 dimensions. Thereafter,
MSKk = SPk × KD for residue k represents the
multiplication of the corresponding sequence profile
by the Kyte hydropathy scale, whose jth element
MSKj

k = SP j
k × KDj . As the standard deviation of

MSKk may reflect the evolutionary variance of the
residue k along with hydrophobicity, we use it as the
kth element of vector Vi. More details of this vector
representation can be found in our previous work [12].

For the residue i, therefore, it is represented by a
1× 19 vector Vi; the corresponding target value Ti is
1 or 0, denoting whether the residue is located in an
interface or a non-interface region. Our model aims to
learn the mapping from the input vectors V onto the
corresponding target array T . Our model is trained to
make its output as close to the target T as possible.
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2.3 Three measures integrated for outlier detec-
tion

Fig. 1. Example of detecting class outliers. C1 and C2

denote the two classes, and i1 and i2 are instances
representing for class 1 (green points) and class 2
(blue points), respectively.

2.3.1 K-distance of a residue
For a positive integer K, the K-distance of a residue
instance I is the mean distance between the instance
I and its K nearest neighbors. It describes how far
the K nearest instances are away from I on average.

Kdist(I) =
1

K

K∑
m=1

d(I, im) (1)

where d(∗, ∗) is the Euclidean distance measurement,
and im is one of the K nearest neighbors of I .

2.3.2 Probability of the Class Label (PCL) of a
residue
The second measure, PCL, is related to the proba-
bility of the class label of an instance in terms of its
KNN nearest neighbors. For example, the PCL of the
instance I (the green one within the circle in Figure 1),
denoted by PCL(I), is defined as the ratio of the
number of instances with class label 1 to the total
number of instances in the green circle in terms of its
KNN nearest neighbors, including the instance itself.
Therefore, PCL(I) = 1/4 if KNN = 4 for instance I
in Figure 1.

2.3.3 Importance of Within-class and Between-class
(IWB)
IWB measures the importance of within-class and
between-class changes for an instance. The IWB of in-
stance I , denoted by IWB(I), is defined as the change

in the ratio of between-class scatter Sb to within-
class scatter Sw before and after excluding instance
I . In the two-class case, Sb stands for the subtraction
of the mean values of the classes from each other.
In contrast, Sw denotes the summation of the two
scatters calculated within the same class. In general, a
within-class scatter is equivalent to the variance in the
same class computed as Sj = (

∑
i1∈Cj

(i1 −m1)
2)1/2,

where j = 1 or 2, and Cj is the residue set of class j.
In particular, S̃b and S̃w denote between-class scatter
and within-class scatter after excluding the instance
I , respectively.

IWB(I) =
Sb

Sw
− S̃b

S̃w

=
|m1 −m2|2

S1 + S2
− |m̃1 − m̃2|2

S̃1 + S̃2

=
|m1 −m2|2

(
∑

i1∈C1
(i1 −m1)2)1/2 + (

∑
i2∈C2

(i2 −m2)2)1/2

− |m̃1 − m̃2|2

(
∑

i1∈C1
(i1 − m̃1)2)1/2 + (

∑
i2∈C2

(i2 − m̃2)2)1/2

(2)
where m1 and m2 are sample means for particular
classes, and m̃1 and m̃2 are sample means for the two
corresponding classes excluding the instance I .

2.3.4 Class Outlier Score (COS)
The class outlier score of an instance I stands for the
degree of an instance being outlier with respect to a
particular class.

COS(I) = α∗PCL(I)+β ∗Kdist(I)+γ ∗IWB(I) (3)

where α, β, and γ are parameters to trade off the
probability of class label, K-distance, and IWB, respec-
tively. In this work, α, β, and γ are all normalized in
the range [-1,1]. The outlier detection was performed
by a grid search [9]. An instance I is assigned as an
outlier residue if

COS(I) ≥ c (4)

where c is a threshold according to experimental
results.

From the definitions above, the larger the values
of the three measures, the more likely the instance I
could be an outlier. Residues with the top scores are
treated as outliers, where the exact number of outliers
depends on a specific data set.

Since each set of parameters makes different results
of the protein-protein interface (PPI) prediction, we
aim to find the optimal set of parameters. The most
common and reliable approach to parameter selection
is to determine parameter ranges, and then to conduct
an exhaustive grid search over the parameter space to
find the best setting, which is what we have done in
this work. A implicit reason is in that the performance
is varied in terms of the set of parameters.
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Fig. 2. Flowchart of outlier detection in the training
data. The test set is used for evaluating interface
prediction of the whole method after outlier detection.

2.3.5 Outlier detection in the training data

As shown in Figure 2, our protein complex data
set is divided into five subsets for a 5-fold cross-
validation to evaluate our proposed method. Our
method repeats five times with different training set
and test set, in each time one subset is taken as a test
set Stest and the others are as training set Straining.
Overall performance on our whole data set is yielded
by averaging the five experiments.

In each time, in order for detecting outliers in the
training data, the training set is separated as a training
subset S1

training and a test subset S2
training by another

5-fold cross-validation only in the training step. After
parameters such as α, β, γ, and nearest neighbor dis-
tance are initialized, the class outlier score (COS(I))
is calculated for each residue in S1

training, followed
by outlier identification based on the outlier detection
rule (Eq. 4). Then, for every residue in the test subset
S2
training, a simple distance-based Euclidean classifier

is applied after removing the outliers in S1
training. The

label of the test residue is predicted as that of the
nearest class center. If the classifier does not yield the
best performance, then the parameters are changed
by a grid search, and the outlier detection and clas-
sification for the test subset residues are repeated. If
several top sets of parameters give rise to the best
classification performance, then a residue is finally
identified as an outlier if it is detected as outlier under
all the sets of parameters. Then the training data set
without these finally confirmed outliers is taken as
input into a classifier, e.g. SVM, for learning, in order

to identify whether residues, in the pre-reserved test
set Stest, are interacting or not.

2.4 SVM-based classifiers

Interface residues (positive samples), amounting to
only 27.56% in the entire collection of samples, is
much less than non-interface residues (negative sam-
ples). This leads to a rather unbalanced data distribu-
tion. To overcome this problem, the training positive
and negative samples are divided into several non-
overlapping subsets having roughly the same maxi-
mum size. In this work, the positive training samples
are split into 2 (M ) subsets each consisting of 71205
samples, and the negative training samples are divid-
ed into 5 (N ) parts each consisting of 74860 samples.
Then, we pair these positive and negative training
subsets to produce 10 training data sets (namely, 10
Straining) as illustrated in Figure 3.

Fig. 3. Flowchart of the interface prediction. In this
work, M = 2 and N = 5 for the construction of SVM
ensemble.

SVM is a state-of-the-art classification technique
which enjoys excellent generalization performance
[48]. The SVM learner is built to judge whether a
residue is located at an interface region or not. In this
work, a support vector machine with radial basis ker-
nel was applied to identify protein interface residues.
The parameters for SVM are set as: Gamma = 1 and
Cost = 1.

The output of the SVMs are combined in a simple
way in this paper. A residue is labeled as interacting if
half of SVMs identify it as positive class 1; otherwise,
it is identified as non-interface residue. In Figure 3
there are M × N number of SVM classifiers after
removing outliers for each pair of balanced training
positive and negative subsets i and j. As described, M
and N are set to 2 and 5 in this work, respectively, that
is, there are 10 sub-classifiers for the SVM ensemble.

In summary, our protein interface prediction by
outlier detection and ensemble SVM learning consists
of the following five major steps:
• Step 1: Construct balanced training and test sub-

sets Straining and Stest, i.e., determine the biggest
N and M .
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• Step 2: Detect interface outliers and non-interface
outliers in each training subset Straining by a grid
search with parameters α, β, γ ranging from -1 to
1 with step size of 0.2, and nearest neighbor (NN )
distance ranging from 1 to 20 with step size of 2.

• Step 3: Rank F1 scores on S2
training yielded by the

all possible combinations of these parameters, the
larger the F1 score, the more effective the outlier
detection is.

• Step 4: Confirm outliers for each training subset
Straining, and an SVM is learned by using the
training data without the outliers.

• Step 5: Integrate the output of all of the N ×
M SVMs to yield the final prediction for each
residue in the pre-reserved test set Stest.

Our method is named PPI-OD (prediction of protein
interface by outlier detection).

2.5 Performance evaluation measures

Since the data set contains imbalanced positive sam-
ples and negative samples, only 27.56% negative ones
in the data set, in this work six evaluation measures
are used to show the performance of our model: sen-
sitivity (Sen), specificity (Spec), accuracy (Acc), preci-
sion (Prec), F-measure (F1), and Matthews correlation
coefficient (MCC). Their definitions are as follows:

Sen =
TP

TP + FN

Prec =
TP

TP + FP

F1 = 2× Prec× Sen
Prec+ Sen

Acc =
TN + TP

TN + FP + FN + TP

Spe =
TN

FP + TN
MCC =

TP × TN − FP × FN√
(TP + FN)(TP + FP )(TN + FP )(TN + FN)

,

(5)
where TP (True Positive) is the number of interface
residues; FP (False Positive) is the number of false
positives; TN (True Negative) is the number of non-
interface residues; and FN (False Negative) is the
number false negatives. In this work, MCC ranges
from -1 to 1 and all others are represented by per-
centage values.

Moreover, the area under the receiver operating
characteristic (ROC) curve (AUC) is considered as a
performance measure for machine learning algorithm-
s. The definition of AUC is from literature [7], which
is calculated using trapezoidal integration.

3 RESULTS AND ANALYSIS

3.1 Improved Interface Residue Prediction by PPI-
OD

As introduced, the outlier detection step contains a
grid search to optimize the parameters α, β, and γ. In
this work, top 100 sets of parameters in outlier detec-
tion are used to obtain preliminary outliers which are
subsequently selected by a majority voting to deter-
mine the final outliers. Training data sets without the
final outliers are then input to the SVM as proposed
above. The overall prediction performance is shown
in Figure 4. We can see that our method yields the best
performance crossing at the vertical line in Figure 4,
where an MCC of 0.55 and an accuracy of 83.12%
are achieved. Prediction performance without outlier
detection is also listed in Table 1. The PPI-OD method
achieves an MCC improvement of around 0.06 and
an F1 improvement of around 3.6% in comparison to
the method without the outlier detection. Moreover,
compared to the model without outlier detection, the
model of PPI-OD yields improvements of 2.35% in
Sen, 1.41% in Spe, 1.67% in Acc, and 6.56% in Prec. In
these experiments, about 5.8% of the training residues
are detected as outliers. In order to compare with
random prediction, a random predictor is built based
our data set and it runs 100 times. By averaging
those results, the random predictor has a sensitivity
of 72.4%, a precision of 27.56%, and an F1 of 39.93%.
It can be seen that our PPI-OD yields significant
improvements on the six measures compared to a
random predictor.

TABLE 1
Comparison between methods with and without outlier

detection.

Method Sen Spe Acc MCC Prec F1
PPI-OD 45.55 97.41 83.12 0.55§ 86.98 59.79
SVM‡ 43.20 96.00 81.45 0.49 80.42 56.21
‡ Method without the use of outlier detection.
§ In the paper, except for using decimal for the measure MCC,
other measures present by percentage, if not specified.

At the step of outlier detection, we tried two
classifiers: the Euclidean classifier and a Liblinear
classifier [28]. The distance-based Euclidean classifier
makes use of the distance that the residues are away
from the two class centers, and it assigns the nearest
class center label to a residue. Liblinear classifier is
a linear classifier for solving large-scale regularized
linear classification and it is very efficient on large
sparse data sets. It supports logistic regression and
linear support vector machines. Experimental results
show that the Euclidean classifier outperforms the
Liblinear classifier by about 0.02 in MCC (see Figure 5)
if MCC and F1 are taken as directly comparable
measures for the results by the other methods. It
is noted that the Liblinear classifier outperforms the
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Fig. 4. Prediction performance by PPI-OD. Fig. 5. Prediction performance comparison under
three different experiments.

Euclidean classifier by about 0.026 if AUC is used as a
comparable measure. In detail the Liblinear classifier,
Euclidean classifier, and the model without outlier de-
tection achieve AUCs of 71.05%, 68.44%, and 65.13%,
respectively. In this work, MCC and F1 are used as
directly comparable measures for the results by other
prediction methods.

As expected, the ensemble SVM classifier outper-
forms the individual classifiers. Table 2 shows the per-
formance comparison between the individual SVMs
and the ensemble SVM. It can be seen that the ensem-
ble approach outperforms the best individual SVM
by about 0.04 in MCC and 3.3% in F1 measure. Other
measures, such as Sen, Acc, etc., all get improvements
by the use of ensemble approach as well. Moreover
from Table 2, the individual SVM incorporating out-
lier detection yields a better performance than that
without outlier detection by about 0.08 in MCC and
8% in F1 measure. Similarly, other measures get im-
provement by the use of ensemble approach in the
model without outlier detection. In addition, these
individual SVMs have similar performance probably
due to the similar training data distribution.

PPI-OD costs much extra time compared to the
approach without using outlier detection. However,
after outliers are detected, the prediction by our mod-
el is much simpler than the literature methods. It
is due to the simpler encoder of input vectors for
the classification problem where input vector in our
method is just 19 dimensions, which is less than
data used by the past methods, such as the data
with 180 dimensions in [46] and the data with 1050
dimensions in [11]. Moreover, the method using the
outlier detection outperforms that without it, as dis-
cussed in Table 2. Therefore, it is worth of taking the
cost of outlier detection as an effective preprocess for

TABLE 2
Prediction performance by the individual models of

PPI-OD and by those without outlier detection, and by
the ensemble approach.

Method Sen Spe Acc MCC Prec F1
model 1 42.09 97.09 81.94 0.51 84.64 56.23
model 2 42.26 97.16 82.03 0.51 84.99 56.45
model 3 42.22 97.14 82.01 0.51 84.89 56.40
model 4 42.34 97.20 82.08 0.51 85.18 56.57
model 5 42.14 97.12 81.97 0.51 84.78 56.30
model 6 42.17 97.13 81.99 0.51 84.83 56.34
model 7 42.16 97.13 81.98 0.51 84.81 56.33
model 8 42.08 97.09 81.93 0.51 84.63 56.21
model 9 42.04 97.07 81.91 0.51 84.54 56.16
model 10⊥ 41.98 97.05 81.88 0.51 84.43 56.08
Ensemble 45.55 97.41 83.12 0.55 86.98 59.79
model 1> 35.00 96.37 79.46 0.43 78.57 48.43
model 2 34.86 96.31 79.38 0.42 78.24 48.23
model 3 33.04 97.00 79.37 0.42 80.73 46.89
model 4 35.11 96.41 79.51 0.43 78.81 48.58
model 5 35.14 96.42 79.53 0.43 78.87 48.62
model 6 35.01 96.37 79.46 0.43 78.59 48.44
model 7 34.87 96.32 79.38 0.42 78.27 48.25
model 8 35.05 96.38 79.48 0.43 78.67 48.50
model 9 35.13 96.42 79.53 0.43 78.88 48.61
model 10 34.98 96.36 79.44 0.43 78.52 48.40
Ensemble 43.20 96.00 81.45 0.49 80.42 56.21
⊥ The ten models above are of PPI-OD.
> The ten models below do not use outlier detection.

interface prediction.

3.2 DPX and CX analysis on outliers and non-
outliers
To show the effectiveness of our PPI-OD method,
two indices of residues, DPX [41] and CX [40], are
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adopted to visualize proportions of outliers and non-
outliers. Figure 6 shows the residue composition with
respect to DPX, which calculates a depth index for
the buried atoms, and makes it possible to analyze the
distribution of buried residues. The larger the DPX for
one residue, the more likely it could be buried in the
protein interior in natural structure and, the more pos-
sible it is assigned as non-interface residue. However,
atoms that are buried near the protein surface might
be involved in interactions with other molecules [41].
We used the PSAIA software in computing DPX for
each residue in a complex [36]. In the lower right
subgraph, there are more residues having a low DPX
value and less residues having a high DPX value in
complexes. Our PPI-OD can distinguish more non-
interface residues having a low DPX value as outliers
(red oval in the upper right subgraph). For interface
residues, a similar phenomenon can be found. More
residues having a high DPX value are distinguished
as outliers (red oval in the upper left subgraph).
In addition, residue GLY appears the most possible
in proteins interior and residue LEU is more likely
located on the interface regions.

Figure 7 illustrates the residue composition with
respect to CX. CX computes an atomic protrusion in-
dex that makes it possible to highlight the protruding
atoms within a protein 3D structure. The larger the
CX for one residue, the more likely that it is located
on the surface of the protein and the more likely
it is interacting with water or residues in a partner
protein. Moreover, most of the experimental cleavage
sites correspond to residues having a high CX value
at the C atom [40]. However, interface residues hav-
ing a relatively lower CX value might influence the
distinguishability of interface predictor. The PSAIA
software [36] was used to compute the CX for each
residue in a complex. In the lower right subgraph,
there are more residues having a low CX value and
less residues having a high CX value in complexes
while, in the upper left subgraph, more residues have
a high CX value. Our PPI-OD can distinguish more
interface residues having a low CX value as outliers
(red oval in the upper left subgraph). It is difficult
to recognize more non-interface residues having a
high CX value as outliers. In addition, residues GLY
and ALA occur more often in proteins’ interior and
residues ARG and LYS are more likely to be located
at interface regions.

Interestingly, hydrophobic residues on non-
interface regions have a lower CX value while
hydrophilic residues on interface regions have a
higher CX value. However, it is not always the case
for the DPX distributions. Unlike the case discussed
in Figure 6, hydrophobic residues on the interface
regions seem to have a higher DPX value while
residues S, T, G, A – having a lower DPX value –
appear equally on the interface and non-interface
regions.

4 OVERALL COMPARISON TO OTHER METH-
ODS AND PERFORMANCE IMPROVEMENT

We carried out a direct comparison with those meth-
ods discussed in [50] on two benchmark data sets: the
CAPRI targets(http://capri.ebi.ac.uk/) and the Enz35
subset from the Docking Benchmark 2.0 [37]. As done
by previous work [50], only unbound structures were
chosen for interface prediction. The Enz35 data set
consists of 35 proteins after filtering at 35% sequence
identity. The real interface residues are defined as
those with a cross-interface contact of < 5Å in the
native complex. Figure 8 and Figure 9 show the com-
parison between the six web servers and our method.
The six web servers are: PPI-Pred, which takes six
protein properties (including surface shape and elec-
trostatic potential) as input [6]; SPPIDER, which is
a neural-network method taking predicted solvent
accessibility as input [42]; cons-PPISP, which is also
a neural-network method but uses PSI-Blast sequence
profile and solvent accessibility as input [10]; Promate,
which is a naive Bayesian method based on secondary
structure, atom distribution, amino-acid pairing and
sequence conservation [38]; PINUP, which is an em-
pirical scoring method consisting of side-chain energy,
solvent accessible area, and sequence conservation
conservation [34]; and Meta-PPISP, whose raw scores
are closely related to cons-PPISP, Promate and PINUP
by a regression [50].

Figure 8 shows the performance on the CAPRI data
set. At the precision level of 50%, the sensitivity of
our method PPI-OD is 38%, while the best of the six
web servers is just 31%. The worst precision level
by PPI-OD is near 20%, while the worst precisions
for the six web servers are all below 10%. In the
case of precisions above 90%, our model achieves
sensitivities slightly below 20% while the six web
servers have sensitivities around 15%. In the case of
sensitivities from 20% to 90%, our model achieves
higher precisions than all of the six literature methods.

Figure 9 shows the performance comparison on
the Enz35 data set. At the precision level of 50%,
the sensitivity of our method is 67%, while the best
of the six web servers is only 50%. In the case of
sensitivities below 30%, our model achieves precisions
higher than 90%. Fore sensitivities from 30% to 70%,
our model also achieves higher precisions than the
six methods. Furthermore, The AUC for sensitivity-
precision of PPI-OD is the largest among the seven
methods. Our method achieves AUCs of 70.12% and
69.42% on CAPRI and Enz35, respectively. The details
are shown in Table 3. Despite the small size of
the CAPRI and Enz35 data sets, these results are
suggestive of the promising prediction capability by
our method.

Table 4 shows an indirect comparison with Sikic’s
methods [46] as it uses a data set overlapping only
partly with our data set. Sikic’s methods were eval-
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Fig. 6. Residue composition for outliers and non-
outliers. Here, y axis stands for residues sorted by
hydrophobicity in terms of Kyte measurement [31].
The last column is for all residues having a DPX
value more than 1.4. Residue R is more hydrophilic
than residue I. Residues are labeled with one-letter
codes. In addition, the more bright the small square
shows, the more frequent the corresponding residue
pair occurs in interface or non-interface region.

Fig. 7. Residue composition for outliers and non-
outliers. Here, y axis stands for residues sorted by
hydrophobicity in terms of Kyte measurement [31].
The last column is for all residues having a CX value
more than 0.7. Residue R is more hydrophilic than
residue I. Residues are labeled with one-letter codes.
In addition, the more bright the small square shows,
the more frequent the corresponding residue pair oc-
curs in interface or non-interface region.

Fig. 8. Performance comparison between the six
web servers and PPI-OD on CAPRI.

Fig. 9. Performance comparison among the six
web servers and PPI-OD on Enz35.

TABLE 3
AUC comparison among the six web servers and PPI-OD on Enz35 and CAPRI.

PPI-OD PPI-Pred SPPIDER cons-PPISP Promate PINUP Meta-PPISP
CAPRI 70.12 27.98 42.27 47.24 45.80 43.58 46.37
Enz35 69.42 32.34 44.74 44.18 46.38 47.46 47.78
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uated on a similar large-scale data set as ours. In
addition, the interface ratio of the residues used by
Sikic’s method is roughly the same as ours as well. As
seen in this table, our PPI-OD method performs better
than Sikic’s. Our method yields a higher sensitivity,
precision, and therefore a much higher F1 than Sikic’s
methods. Moreover, it should be noted that the second
method by Sikic is based on the real secondary struc-
ture information. Using real structure information
may lead to improve the interface prediction indeed.

TABLE 4
Comparison with Sikic’s methods.

Method Type Ratio Sen Prec F1
PPI-OD SVM 0.28 45.01 89.35 59.86
Sikic et al. Random Forests 0.27 26.42 84.43 40.25
Sikic et al.§ Random Forests 0.27 38.06 76.45 50.82
§ Trained with secondary structure information.

TABLE 5
Interface residues of our method and Sikic’s method

with different interface definitions.

Interface residues

Non-in common In common

1C1YA
PPI-OD K31 F64 M67 E3 V21 V24-Q25 I27

V29 D33 P34 I36-R41
M52 E54 L56 T71Sikic et al. K42 Q63

1C1YB
PPI-OD T57 R59 N64-V69

N71 K84 K87-G90Sikic et al. S55 F61 V70 R73
A85 L91

§ Residues here are labeled as one letter followed by the number
in chain.

An indirect comparison between our method and
Sikic’s methods [46] is conducted by a case study
on the complex PDB:1C1Y. Sikic et al. use a different
definition of interface residues, in which a residue was
defined to be involved in a protein-protein interaction
if any of its atoms were within 6 Å of any atom in a
neighboring non homologous chain. Table 5 shows
true interface residues of our method and Sikic’s
method with different interface definition. From Table
5, there are 35 and 40 interface residues for our model
and Sikic’s model, respectively. In addition, there are
32 interface residues in common, and it should be not-
ed that interface residues non-in common are neigh-
boring each other or located around those interface
residues in common in three-dimensional structure
of complex. In this case, interface residues defined
by the two ways, ASA change with threshold 1 Å
and distance between residues in different chains with
threshold 6 Å, have approximate ratio of interface
residues to non-interface residues. Without using out-
lier detection, our method achieves a sensitivity of
100% and a precision of 61% (Figure 10(b)); whereas
if using outlier detection, a sensitivity of 100% and a

precision of 73% are obtained (Figure 10(c)). Under
this example, our predictions covers more number
of interface residues and the precision is higher than
Sikic’s (Figure 10(a)). More importantly, our method
can correct those false predictions by Sikic or by the
method without using outlier detection, e.g., for A118
in chain B. For the wrong predictions by our method,
some residues are very close to the partner chain, such
as residues G12, T61 in chain A. (All of these figures
are plotted by PyMOL, version 1.3 [45].)

TABLE 6
True interface residues in PDB:1SYX.

Chain A
K51 D93-G95 D108 Q110-E111
D114 E117-T118 R121-G122 K125
R127 V130-D135

Chain B
V26 E29 E39-G42 R65-Q73
Y75-N76 R79-D81 D83-T86

§ Residues here are labeled as one letter followed by the number
in chain.

Another case study is carried out to highlight again
the performance difference when the outlier detection
idea is not used. This case study is performed on the
complex 1SYX of a spliceosomal U5 snRNP-specific
15 kDa protein binding to a CD2 antigen cytoplasmic
tail-binding protein 2. For the method without using
outlier detection, it has a sensitivity of only 25% while
most of the predicted interface residues are correct
(Figure 11(a)). When applying the PPI-OD method,
the sensitivity is increased to 57%, and almost all
of the predicted interface residues are also correct
(Figure 11(b)). Therefore, the outlier detection idea is
effective to predict more number of correct interface
residues. Nevertheless, a few predicted residues are
still wrong, such as G42 in chain B. The true interface
residues in chain A and chain B are listed in Table
6. In summary, there are 7 out of 24 residues are
true positive and 17 residues are missed out in chain
B. Similarly, 5 residues are true positive and 14 true
positive residues are missed out in chain A. Moreover,
no predicted residues are false positive in chain A or
chain B.

5 CONCLUSIONS

In this work, we adopted three outlier detection mea-
sures to evaluate the extent a residue becomes an
outlier. Results show that the three measures are ef-
fective to detect outliers in the training data and make
the identification of interface residues more accurate.
Our method PPI-OD achieves an MCC improvement
of about 0.06 and an F1 improvement of about 3.6%
compared to the method without using outlier detec-
tion. Compared to past methods that predict protein
interface residues, such as Sikic’s method [46] and
Meta-PPISP [50], our model performs better on a data
set with similar interface ratio. Our approach can
detect more non-interface residues having a low DPX
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(a) Predictions by Sikic’s method. (b) Prediction without outlier detection.

(c) Prediction by our PPI-OD method.

Fig. 10. Prediction and comparison on complex 1C1Y. The left part stands for chain B (colored in wheat) and the
right one is for chain A (colored in gray). The predicted interface residues in chain B are in blue. The predicted
interface residues in chain A are in green. Residues here are labeled as one letter followed by the number in
chain. The raw data in (a) is from Sikic’s paper [46].

(a) Prediction without outlier detection. (b) Prediction of PPI-OD.

Fig. 11. Case study on complex 1SYX. The left part stands for chain A (colored in wheat) and the right one is
for chain B (colored in yelloworange). The predicted interface residues in chain A are in green. The predicted
interface residues in chain B are blue. Residues here are labeled as one letter followed by the number in chain.
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value as outliers, and can distinguish more residues
having a high DPX value as outliers as well. Moreover,
it can distinguish interface residues having a low CX
value as outliers.

PPI-OD has advantages over many other interface
predictors. First, a residue in our work is represented
as a 1-by-19 vector by using a sliding window of
length 19. This dimensionality is much smaller than
most of the other methods. Therefore, our model is
simple and space efficient. More importantly, earlier
works reported that using larger number of features
for input vectors does not always lead to an improved
performance [3]. A machine learning algorithm adopt-
ing a simple yet more discriminative representation of
a sequence space could be much more powerful and
effective than using the original data containing all
details [3]. Second, the vector for each residue contains
evolutionary context with hydrophobicity. Only two
features, namely sequence profile and hydrophobicity
for residues used in this work, make our model
simpler. Actually, biological properties which may be
responsible for protein-protein interactions are not
fully understood. Therefore, how to find feasible fea-
tures or feature transformations in protein interaction
prediction remains a challenging problem. Finally,
unbalanced data between interface and non-interface
residues is also a very challenging issue, which always
causes a classifier over-fitting. Results in this paper do
indicate that developing a classifier ensemble may be
a feasible pathway to deal with this unbalance nature.
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