
1

Using Amino Acid Patterns to Accurately Predict Translation
Initiation Sites

Huiqing Liu� Hao Han Jinyan Li Limsoon Wong
Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore, 119613
�huiqing, hanhao, jinyan, limsoon�@i2r.a-star.edu.sg

Summary

The translation initiation site (TIS) prediction problem is
about how to correctly identify TIS in mRNA, cDNA, or
other types of genomic sequences. High prediction accu-
racy can be helpful in a better understanding of protein
coding from nucleotide sequences. This is an important
step in genomic analysis to determine protein coding from
nucleotide sequences. In this paper, we present an in-silico
method to predict translation initiation sites in cDNA or
mRNA sequences. This method consists of three sequen-
tial steps as follows. In the first step, candidate features are
generated using �-gram amino acid patterns. In the second
step, a small number of top-ranked features are selected by
an entropy-based algorithm. In the third step, a classifica-
tion model is built to recognize true TISs by applying sup-
port vector machines or ensembles of decision trees to the
selected features. We have tested our method on several in-
dependent data sets, including two public ones and our own
extracted sequences. The experimental results achieved are
better than those reported previously using the same data
sets. Our high accuracy not only demonstrates the feasibil-
ity of our method, but also indicates that there are “amino
acid” motifs around TIS in cDNA and mRNA sequences.

Key words: translation initiation site, feature generation,
k-gram amino acid patterns, feature selection, classifica-
tion.

Introduction

The selection of the start site for translation is an impor-
tant step in the initial phase of protein synthesis. In eu-
karyotic mRNA, the context of the start codon (normally
“AUG”) and the sequences around it are crucial for recruit-
ment of the small ribosome subunit. Thus, the characteriza-
tion of the features around translation start site will be help-
ful in a better understanding of translation regulation and
accurate gene predication of coding region in genomic and
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mRNA/cDNA sequences. However, since DNA sequences
and protein sequences represent the spectrum of biomed-
ical data, they do not possess explicit signals or features.
For example, a genomic sequence is just a string consisting
of the letters “A”, “C”, “G”, and “T” in an apparently ran-
dom order. Therefore, when applying traditional machine
learning techniques to this recognition problem, there is a
need for good methodologies for generating explicit fea-
tures underlying translation initiation site.

Since 1987, the recognition of TIS has been extensively
studied using biological approaches, data mining tech-
niques, and statistical models.8, 10–13, 17–19, 21, 24, 26 In one of
works, Pedersen and Nielsen18 directly fed DNA sequences
into an artificial neural network (ANN) for training the sys-
tem to recognize true TIS. They achieved a result of 78%
sensitivity on start ATGs (true TISs) and 87% specificity
on non-start ATGs (false TISs) on a vertebrate data set,
giving an overall accuracy of 85%. In Zien et al., 26 they
studied the same vertebrate data set, but replaced ANN
with support vector machines (SVMs) using different kinds
of kernel functions. They believe that carefully designed
kernel functions are useful for achieving higher TIS pre-
diction accuracy. One of their kernels is called “locality-
improved” kernel, which emphasizes correlations between
any two sequence positions that are close together, and a
span of 3 nucleotides up- and down-stream is empirically
determined as optimal. Recently, Hatzigeorgiou8 built a
multi-step ANN system named “DIANA-TIS” to study the
recognition problem. This ANN system combines a con-
sensus ANN and a coding ANN with the ribosome scan-
ning model. They obtained an overall accuracy of 94% on
a data set containing full-length human cDNA sequences.
All of these methods use nucleotide sequence data directly;
they do not generate any new and explicit features for the
differentiation between true and false TISs.

There are some related works that use statistical features.
The program ATGpr21 uses a linear discriminant function
that combines some statistical features derived from the
sequence. Each of those features is proposed to distin-
guish true TIS from false TIS. In a more recent work, 17

an improved version of ATGpr called ATGpr sim was de-
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veloped, which uses both statistical information and sim-
ilarities with other known proteins to obtain higher accu-
racy of fullness prediction for fragment sequences of cDNA
clones. In our previous study,16, 24 features were gener-
ated from nucleotide acid patterns and feature selection was
conducted to choose significant features for building clas-
sification models using machine learning techniques.

Our proposed method consists of the following three
steps: (1) generating new features using �-gram amino
acid patterns and generating the values of the new fea-
tures using the frequency of the patterns in the amino acid
sequences coded from the original cDNA or mRNA se-
quences; (2) ranking the newly generated features via their
entropy value and selecting important ones; (3) integrat-
ing the selected features by machine learning techniques —
support vector machines (SVMs) or an ensembles of deci-
sion trees method — to recognize true TIS. Our idea is dif-
ferent from traditional methodologies because it generates
new features and also transforms the original nucleotide se-
quence data to amino acid sequence data, and finally to �-
gram frequency vectors.

We apply our method on three independent data sets.
The first set (data set I) contains 3312 vertebrate se-
quences,18 while the second one (data set II) contains
480 completely sequenced and annotated human cDNA se-
quences.8 Our cross validation accuracy on the first data
set is 92.45%, which is better than 89.4%, the best reported
result on this data set. Our cross validation accuracy on the
second data set is 98.16%; we did not find literature cross
validation results on this data set for comparison. (Note
that the results of Hatzigeorgiou8 is not directly compa-
rable due to the use of the ribosome scanning model and
different way of data splitting.) We also conduct experi-
ment to test the accuracy on one data set when using our
model trained on another data set. Besides, this kind of
cross data sets validation is further applied to genomic data.
We formed our data set III by extracting a number of well-
characterized and annotated human genes of Chromosome
X and Chromosome 21 from Human Genome Build30.
Such a validation is highlighted because all the previously
reported results are based on only one data set, the perfor-
mance of those methods on other independent data are not
reported. Our good accuracy in different experiments not
only demonstrates the feasibility of our method, but also
indicates that there are “amino acid” motifs around TIS in
cDNA and mRNA sequences.

Results

To verify the effectiveness of our method, we designed a
series of experiments on three data sets:

a. Conducting computational cross validations in data
set I and data set II separately. In �-fold cross val-

idation, data set is divided randomly into � disjoint
subsets of approximately equal size, in each of which
the class is represented in approximately the same pro-
portions as in the full data set.23 We train the model
� times, each time one of the subsets is held out in
turn from training while feature selection and classifi-
cation model building are conducted on the remaining
� � � subsets and evaluated on the holdout set. Af-
ter all subsets being tested, an overall performance is
produced.

b. Selecting features and building classification model
using data set I. Applying the well-trained model to
data set II to obtain a blind testing accuracy.

c. Incorporating the idea of ribosome scanning into the
classification model.

d. Applying the model built in experiment-b to genomic
sequences.

Validation in different data sets

To strictly compare with our previous study results pre-
sented in,16, 24 we conduct the same 3-fold cross validation.
Table 1 shows our results on the data set I and data set
II when the top 100 features are selected by the entropy-
based algorithm. Using the simple linear kernel function,
SVMs achieves accuracy of 92.45% at 80.19% sensitivity
and 96.48% specificity on data set I. This is better than the
accuracy of 89.4% at 74.0% sensitivity and 94.4% speci-
ficity, which is the previous best result reported on the
same data set.24 On data set II, SVMs (with linear ker-
nel) achieves an accuracy of 98.16% at 63.75% sensitivity
and 99.67% specificity. Note that we can not find previ-
ously reported results on this data set under similar across
validation.

Validation across two data sets

The good cross validation results within the individual data
set encouraged us to extend our study to span the two data
sets. In this experiment, we use the whole data set I as
training data to select features and build the classification
model, then we test the well-trained model on data set II to
get a test accuracy.

Before doing this validation test, we removed from data
set II 292 sequences that are similar to the training data.
Using the classification model learnt from 100 top-ranked
features of data set I, we got a test accuracy of 89.42%
at 96.28% sensitivity and 89.15% specificity on data set II
using SVMs built on the linear kernel function. The train-
ing accuracy is 92.77% at 80.68% sensitivity and 96.75%
specificity (on data set I). We note that the testing accuracy



3

Table 1: The results by 3-fold cross validation on the two data sets when 100 top features are considered (experiment-a).
SVM(linear/quad) means the classification model is built by linear/quadratic polynomial kernel function.

Data Algorithm Sensitivity Specificity Precision Accuracy
I SVMs(linear) 80.19% 96.48% 88.24% 92.45%

SVMs(quad) 80.19% 96.17% 87.34% 92.22%
Ensemble Trees 76.18% 96.14% 86.67% 91.20 %

II SVMs(linear) 63.75% 99.67% 87.18% 98.16%
SVMs(quad) 71.25% 99.42% 81.24% 98.46%
Ensemble Trees 83.54% 97.67% 55.93% 97.19%

Table 2: Classification accuracy when using data set I as training and data set II as testing (experiment-b). The row of II**
is the testing accuracy on data set II before similar sequences being removed.

Data Algorithm Sensitivity Specificity Precision Accuracy
I (train) SVMs(linear) 80.68% 96.75% 89.10% 92.77%

SVMs(quad) 86.05% 98.14% 93.84% 95.15%
Ensemble Trees 85.54% 97.91% 93.10% 94.85%

II (test) SVMs(linear) 96.28% 89.15% 25.31% 89.42%
SVMs(quad) 94.14% 90.13% 26.70% 90.28%
Ensemble Trees 92.02% 92.71% 32.52% 92.68%

II** (test) SVMs(linear) 95.21% 89.74% 24.69% 89.92%
SVMs(quad) 94.38% 89.51% 24.12% 89.67%
Ensemble Trees 87.70% 93.26% 28.60% 92.11%

on the original data set II (without the removal of the sim-
ilar sequences) is quite similar. See Table 2 for a summary
of these two results.

Remarkably, this cross-validation spanning the two data
sets shows a much better sensitivity on data set II than that
achieved in the 3-fold cross-validation on this data set. A
reason may be that only 3.41% ATGs in data set II are true
TIS, which leads to an extremely unbalanced numbers of
samples between the two classes. However, this bias is rec-
tified significantly by the model built on data set I where the
population size of true TIS v.s. false TIS is more balanced.

Incorporation of scanning model

Hatzigeorgiou8 reported a high accuracy on data set II by an
integrated method which combines a consensus ANN with
a coding ANN together with a ribosome scanning model.
The model suggests to scan from the 5’ end of a cDNA
sequence and predicts TIS at the first ATG in a good con-
text.1, 4, 11 The rest of the ATGs in the cDNA sequence to
the right of this ATG are then automatically classified as
non-TIS. Thus, one and only one ATG is predicted as TIS
per cDNA sequence.

We also incorporate this scanning model into our exper-
iment. This time, in a sequence, we test ATGs in turn from
left to right, utill one of them is classified as TIS. A predic-

tion on a sequence is correct if and only if the TIS itself is
predicted as a TIS. Since the scanning model indicates that
the first ATG that in an optimal nucleotide context would
be TIS, a higher prediction accuracy is expected if only up-
stream ATGs and true TIS are used. Thus, we ignore all
down-stream ATGs in data set I and obtain a new training
set containing only true TISs and their up-stream ATGs.
Then feature selection and classification model learning are
based on this new training data. Table 3 shows our results
with scanning model being used.

Under this scanning model idea, Artemis reported that
94% of the TIS were correctly predicted on data set II. 8

Since in her paper,8 the data set was split into training and
testing parts in some way, the results reported there are not
directly comparable with our results.

Testing on genomic sequences

In order to further evaluate the feasibility and robustness
of our method, we apply our model built in experiment-b
to our own prepared data (data set III), which containing
gene sequences of Chromosome X and Chromosome 21.
Using the simple linear kernel function, SVMs gives 397
correct prediction out of a total of 565 true TISs found in
Chromosome X while 132 correct prediction out of a total
of 180 true TISs in Chromosome 21. The prediction rates
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Table 3: Classification accuracy under scanning model
when using data set I (3312 sequences) as training and data
set II (188 sequences) as testing (experiment-c). The row
of II** is the testing accuracy on data set II before similar
sequences being removed (480 sequences). NoCorPred is
the number of sequences whose TIS is correctly predicted.

Data Algorithm NoCorPred Accuracy
I SVMs(linear) 3161 95.44%

(train) SVMs(quad) 3156 95.29%
Ensemble Trees 3083 93.09%

II SVMs(linear) 174 92.55%
(test) SVMs(quad) 172 91.49%

Ensemble Trees 176 93.62%
II** SVMs(linear) 453 94.38%
(test) SVMs(quad) 450 93.75%

Ensemble Trees 452 94.17%

are 70.27% and 73.33%, respectively. One point needs to
be addressed here is that in this validation, we removed
the feature built on the ribosome scanning model since that
model is not true for genomic data.

To illustrate the tradeoff between the prediction sensitiv-
ity and specificity, we randomly selected same number of
sequences containing non-start ATGs (false TIS) from our
own extracted negative data set. Figure 1 gives the ROC
curve showing the changes of prediction accuracy on true
and false TIS samples.

Discussion

In this study, we proposed a method for recognition of TIS
in cDNA or mRNA sequences via generating amino acid
patterns. We designed a series of experiments by applying
our method to some public data sets as well as our own
extracted sequences. Our testing accuracy are better than
the previously reported best ones (where available) on the
same data sets. Most importantly, we not only conducted
the cross validation within the individual data sets sepa-
rately, but also established the validation across the differ-
ent data sets, including genomic data. The success of such
a validation indicates that there are common feature motifs
around true TIS in cDNA or mRNA sequences.

Significant Features

“What are the key features to predict TIS?” To answer this
question, let us have a look of an interesting discovery on
the features selected in the 3-fold cross validation on data
set I in our experiment-a. Table 4 shows the ranking posi-
tions of the 10 top-ranked features selected by the entropy-
based algorithm for the each fold. Observe that they are
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Figure 1: ROC curve of our model on prediction TIS
in genomic data Chromosome X and Chromosome 21
(experiment-d). Our SVM model is built on the linear ker-
nel function.

the same features though their ordering is slightly different
from one fold to another. This suggest that these features,
or exactly amino acid patterns, are indeed motifs around
true or false TISs. Furthermore, “UP-ATG” can be ex-
plained by the ribosome scanning model1, 4 — seeing such
an up-stream ATG makes the candidate ATG less likely to
be the TIS. “DOWN-STOP” is the in-frame stop codons
down-stream from the target ATG and it is consistent with
the biological process of translating in-frame codons into
amino acids stops upon encountering an in-frame stop
codon — seeing such a down-stream stop codon makes the
candidate protein improbably short. “UP3-AorG” is corre-
spondence to the well-known Kozak consensus sequence. 10

Most of the other features were also identified in our previ-
ous study,24 in which the feature space is built directly on
nucleotides. Remarkably, these amino acid patterns, except
“DOWN-L”, all contain “G” residue. Note also that “UP-
M” is one of the top features in each fold, but we exclude it
as it is redundant given that UP-ATG is true if and only if
UP-M � 0. The significance of these features is further ver-
ified when we find that both sensitivity and specificity drop
down greatly if these features are excluded from predic-
tion. However, we do not observe obvious decrease when
we remove any one of them from the classification model.

In addition to the result when the 100 top-ranked features
are used, we also obtained cross-validation results when
the whole feature space (i.e. without feature selection) and
other numbers (such as 5, 10, 20, 50, 200 and 300) of top-
ranked features are used. We found that (all the results are
on the basis of SVMs using linear kernel function), (1) us-
ing the whole feature space could not let us achieve best re-
sults. In fact, we got an accuracy of only 90.94% at 79.86%
sensitivity and 94.58% specificity for data set I when run-
ning 3-fold cross validation on data set I. This result is not
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Table 4: Ranking of the top 10 features selected by the entropy-based algorithm as relevant in each of the 3 folds of data
set I. Feature “UP-ATG” indicates whether an in-frame up-stream ATG exists (boolean type). Feature “UP3-AorG” tests
whether purine A or G tends to be found 3 nucleotides up-stream of a true TIS (boolean type). Feature “UP(DOWN)-X”
counts the occurrence that an in-frame (relative to the candidate ATG) triplet coding for the amino acid letter X appears in
the up-stream (down-stream) part of a candidate ATG. Feature “DOWN-STOP” is the occurrence of in-frame stop condons
down-stream of a candidate ATG.)

Fold UP- DOWN- UP3- DOWN- DOWN- UP- DOWN- DOWN- DOWN- UP-
ATG STOP AorG A V A L D E G

1 1 2 4 3 6 5 8 9 7 10
2 1 2 3 4 5 6 7 8 9 10
3 1 2 3 4 5 6 8 9 7 10

as good as that on the 100 top-ranked features. (2) using a
small number of features could not achieve good results, ei-
ther. For example, the accuracy is only 87.44% if only top
5 features are used on data set I; (3) results by top 200, 300
or more features show no much difference with the result
by the 100 features. All these observations indicate that the
results achieved by using the top 100 features is reasonable.
This also suggests that in real biological process of transla-
tion there are some factors other than Kozak consensus that
may regulate the recognition of TIS.

Classification Algorithms

For the classification methods, overall speaking, SVMs
performs slightly better than our ensembles of decision
trees method, in terms of prediction accuracy. However,
our tree committee achieves very good sensitivity when
running 3-fold cross validation on data set II where the
number of true TISs is much less than the number of false
TISs. Besides, decision trees can output comprehensive
rules to disclose the essence of learning and prediction.
Some discovered interesting and biologically sensible rules
with larger coverage are listed below.

1. If UP-ATG=‘Y’ and DOWN-STOP�0, then prediction
is false TIS.

2. If UP3-AorG=‘N’ and DOWN-STOP�0, then predic-
tion is false TIS.

3. If UP-ATG=‘N’ and DOWN-STOP�0 and UP3-
AorG=’Y’ , then prediction is true TIS.

On the other hand, in our series of experiments, SVMs
built on quadratic polynomial kernels do not show their ad-
vantages over those built on simple linear kernel functions.
Note that quadratic kernels need much more time on train-
ing process.

Comparison with ATGpr

As mentioned earlier, ATGpr17, 21 is a TIS prediction pro-
gram that makes use of a linear discriminant function, sev-
eral statistical measures derived from the sequence and the
ribosome scanning model. It can be accessed via http:
//www.hri.co.jp/atgpr/. When searching TIS in
a given sequence, the system will output several (5 by de-
fault) ATGs in the order of decreasing confidence but we
always predict the ATG with highest confidence as TIS.
For the 3312 sequences in our data set I, ATGpr can predict
correctly true TIS in 2941 (88.80%) of them. This accu-
racy is 6.64% lower than that we achieved. For our data set
II, true TIS in 442 (92.0%) of 480 sequences are properly
recognized, which is about 2.38% lower than the accuracy
obtained by us. Our results quoted here are based on SVM
model using the linear kernel function.

When we feed the genomic data used in our experiment-
d to ATGpr, the program can give correct TIS prediction on
128 (71.11%) of 180 Chromosome 21 gene sequences and
417 (73.81%) of 565 Chromosome X gene sequences, giv-
ing the overall sensitivity as 73.15%. On the other hand,
ATGpr achieves 70.47% specificity on the same number
of negative sequences that were used in our experiment-d.
From the ROC curve in Figure 1, we can find our prediction
specificity is around 80% when sensitivity is set to 73.15%
— 9.5% higher than that of ATGpr on specificity. This in-
dicates that our program may also outperform ATGpr when
dealing with genomic data sequences.

Materials and Methods

Data

The first data set (data set I) is provided by Dr. Peder-
sen. It consists of vertebrate sequences extracted from Gen-
Bank (release 95). The sequences are further processed
by removing possible introns and joining the remaining
exon parts to obtain the corresponding mRNA sequences. 18

From these sequences, only those with an annotated TIS,
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and with at least 10 upstream nucleotides as well as 150
downstream nucleotides are considered in our studies. The
sequences are then filtered to remove homologous genes
from different organisms, sequences added multiple times
to the database, and those belonging to same gene families.
Since the data are processed DNA, the TIS site is ATG—
that is, a place in the sequence where “A”, “T”, and “G”
occur in consecutive positions in that order. We are aware
that some TIS sites may be non-ATG; however, this is re-
ported to be rare in eukaryotes13 and is not considered in
this paper.

An example entry from this data set is given in Figure 2.
There are 4 ATGs in this example. The second ATG is the
TIS. The other 3 ATGs are non-TIS (false TIS). ATGs to
the left of the TIS are termed up-stream ATGs. So the first
ATG in the figure is an up-stream ATG. ATGs to the right
of the TIS are termed down-stream ATGs. So the third and
fourth ATGs in the figure are down-stream ATGs. The en-
tire data set contains 3312 sequences. In these sequences,
there are a total number of 13375 ATGs, of which 3312
ATGs (24.76%) are true TIS, while 10063 (75.24%) are
false. Of the false TISs, 2077 (15.5%) are up-stream ATGs.

The second data set (data set II) is provided by Dr. Hatzi-
georgiou. The data collection was first made on the pro-
tein database Swissprot. All the human proteins whose N-
terminal sites are sequenced at the amino acid level were
collected and manually checked.8 Then the full-length mR-
NAs for these proteins, whose TIS had been indirectly ex-
perimentally verified, were retrieved. The data set consists
of 480 human cDNA sequences in standard FASTA for-
mat. In these sequences, there are as many as 13581 false
TIS, 96.59% of total number of ATGs. However, only 241
(1.8%) of them are up-stream ATGs.

To reduce the similarity between the training and test-
ing data, a BLASTsearch between the data set I and II is
performed. Two sequences are considered similar if they
produce a BLAST hit with an identity � 75%. We found
292 similar sequences and removed them from data set II.
As a result, after being removed similar sequences, data set
II contains 188 real TIS, while there are total number of
5111 candidates.

Besides these two data sets that have been analyzed by
others, we also formed our own genomic ATG data set
(data set III) by extracting a number of well-characterized
and annotated human genes of Chromosome X and Chro-
mosome 21 from Human Genome Build30. Note that we
eliminated those genes that were generated by other predic-
tion tools. The resulting set consists of 565 sequences from
Chromosome X and 180 sequences from Chromosome 21.
These 745 sequences containing true TIS are used as pos-
itive data in our experiment-d. For negative data, we ex-
tracted a set of sequences around all ATGs in these two
chromosomes but excluded annotated ones.

Methods

Our method comprises three steps: (1) generating candi-
date features from the original sequence data; (2) selecting
relevant features using an entropy-based algorithm; and (3)
integrating the selected features by classification algorithm
to build a system to correctly recognize true TIS. An impor-
tant component of our method is to generate a new feature
space. After that, we follow some standard feature selec-
tion and feature integration ideas to make TIS predictions.

Feature generation

We generate the new feature space using �-gram (� �
�� �� �� ���) amino-acid patterns. A �-gram is simply a pat-
tern of � consecutive letters, which can be amino acid
symbols or nucleotide symbols.16, 25 We use each �-gram
amino acid pattern as a new feature. For example, “AR” is
a 2-gram pattern constituted by an alanine followed by an
arginine. Our aim is to recognize a TIS from large amount
of candidate ATGs by analysing �-gram amino acid pat-
terns around it. In our study, up-stream and down-stream
�-gram amino acid patterns of an ATG (every ATG is a can-
didate of TIS) are treated as different features. Since there
are 20 standard amino acids plus 1 stop symbol, there are
�� ��� possible combinations of �-gram patterns for each
�.

The frequencyof the �-gram amino acid patterns are
used as the values of the features. For example, (1) UP-X
(DOWN-X), which counts the number of times the amino
acid letter X appears in the up-stream (down-stream) part
of an ATG in its amino acid sequence, for X ranging over
the standard 20 amino acid letters and the special stop sym-
bol. (2) UP-XY (DOWN-XY), which counts the number of
times the two amino acid letters XY appear as a substring in
the up-stream (down-stream) part of an ATG in its amino
acid sequence, for X and Y ranging over the standard 20
amino acid letters and the special stop symbol. In this pa-
per, we use 1-gram and 2-gram patterns only. Thus, there
are 924 (� ��� � ���� � �) possible amino acid patterns,
i.e. new features.

In the framework of the new feature space, the initial nu-
cleotide sequences need to be transformed. The transfor-
mation is as follows. Given a cDNA or mRNA nucleotide
sequence containing ATGs, a window is set for each ATG
with the ATG in the center and 99 bases up-stream and
99 bases down-stream (excluding the ATG itself) aside. If
an ATG does not have enough up-stream or down-stream
context—that is, there are less than 99 nucleotides to its
left or to its right—we pad the missing context with the ap-
propriate number of dont-care (“?”) symbols. As such, for
data set I, we get 3312 sequence windows containing true
TIS and 10063 containing false TIS; for data set II, 480 se-
quence windows containing true TIS and 13581 containing
false TIS. All the windows have same size, i.e. contain-
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299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT
............................................................ 80
................................iEEEEEEEEEEEEEEEEEEEEEEEEEEE 160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Figure 2: An example annotated sequence from data set I. The 4 occurrences of ATG are underlined. The second ATG is the
TIS. The other 3 ATGs are non-TIS. The 99 nucleotides up-stream of the TIS are marked by an overline. The 99 nucleotides
down-stream of the TIS are marked by a double overline. The “.”, “i”, and “E” are annotations indicating whether the
corresponding nucleotide is up-stream (.), TIS (i), or down-stream (E).

ing 201 nucleotides. For ease of discussion, given a se-
quence window, we refer to each position in the sequence
window relative to the target ATG of that window. The
“A” in the target ATG is numbered as +1 and consecu-
tive down-stream positions—that is, to the right—from the
target ATG are numbered from +4 onwards. The first up-
stream position—that is, to the left—adjacent to the target
ATG is –1 and decreases for consecutive positions towards
the 5’ end—that is, the left end of the sequence window. 16

Next, we code every triplet nucleotides, at both up-
stream and down-stream of the centered ATG in a sequence
window, into an amino acidusing the standard codon table.
A triplet that corresponds to a stop codon is translated into
a special “stop” symbol. Thus, every nucleotide sequence
window is coded into another sequence consisting of amino
acid symbols and “stop” symbol.

Then the amino acid sequences are converted into fre-
quency sequence data under the description of our new fea-
tures. Later, the classification model will be applied to the
frequency sequence data, rather than the original cDNA se-
quence data or the intermediate amino acid sequence data.

Apart from these �-gram amino acid patterns, we also
make use of 3 bio-knowledge patterns as new features.
From the original work for the identification of the TIS in
cDNA sequences, Kozak developed the first weight matrix
from an extended collection of data.10 The consensus mo-
tif from this matrix is GCC[AG]CCATGG, where (1) a G
residue tends to follow a true TIS, which indicates that a
“G” appears in position +4 of the original sequence win-
dow; (2) purine (A or G) tends to be found 3 nucleotides
up-stream of a true TIS, which indicates that an “A” or a
“G” appears in position -3 of the original sequence window.
Also, according to the ribosome scanning model, 1, 4, 11 a
mRNA sequence is scanned from left (5’) to right (3’), and
the scanning stops as soon as an ATG is recognized as TIS.
The rest of the ATGs in the mRNA sequence to the right of
this ATG are then treated as non-TIS. To incorporate these
knowledge to our feature space, we add three Boolean fea-

tures “DOWN4-G”,“UP3-AorG” and “UP-ATG” (whether
an in-frame up-stream ATG exists). Thus, there are 927
features in the new feature space.

After this process of feature generation and data transfor-
mation, we get 3312 true TIS samples and 10063 false TIS
samples from data set I, 480 true TIS samples and 13581
false TIS samples from data set II. Each sample is a vector
of 924 integers and three boolean values. Figure 3 presents
a diagram for the data transformation with respect to our
new feature space.

Feature selection

Since the number of candidate features in the feature space
is relatively big, we expect that some of the features would
be irrelevant to our prediction problem. So the next step of
our method is to apply a feature selection technique to the
feature space to pick those features that most likely to help
in distinguishing true TIS from false TIS.

In this study, we use a simple and efficient entropy-based
algorithm to select important features. The basic idea of
this algorithm5 is to filter out those features whose values
are relatively random. For the remaining features, the al-
gorithm can automatically find some cut points in these
features’ value ranges such that the resulting intervals of
every feature can be maximally distinguished. If every in-
terval induced by the cut points of a feature contains only
the same class of samples (such as true TIS), then this parti-
tioning by the cut points of this feature has an entropy value
of zero. This is an ideal case.

This algorithm is outlined in the following. Let
� ��� �� �� be the proportion of samples whose feature �
has value in the range � and are in class �. The class en-
tropyof a range � with respect to feature � and a collection
of classes � is defined as

�	
���� � �� � �
�

���

� ��� �� ������ ��� �� ���
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amino acid sequenceamino acid sequence

cDNA

sequence

further transformation

codinga (false) TIS window

……GGACGG (False)ACTGCC……

        99bps                              99bps

a (true) TIS window

……CTCGAT (True)GCACCT……

99bps                            99bps

 sequence window generation

……GGACGGATGACTGCC……CTCGATATGGCACCT……TTGCTAATGACAATA……

True TIS

False TIS

(upstream)

False TIS

(downstream)

amino acid sequence

…… GR (False) TA……

33aa                     33aa

amino acid sequence

…… LD (True) AP……

33aa                   33aa

New feature space (total of 927 features + class label)

42 1-gram amino

acid patterns

882 2-gram amino

acid patterns

3 bio-know-

ledge patterns

UP-A, UP-R,

….,UP-N, DOWN-

A, DOWN-R, ….,

DOWN-N

(numeric type)

UP-AA, UP-AR, ….,

UP-NN, DOWN-AA,

DOWN-AR , …,

DOWN-NN

(numeric type)

DOWN4-G

UP3-AorG,

UP-ATG

(boolean type,

Y or N)

class

label

True,

False

Frequency as values

1, 3, 5, 0, 4, … 6, 2, 7, 0, 5, … N, N, N, False

6, 5, 7, 9, 0, … 2, 0, 3, 10, 0, … Y, Y, Y, True

Figure 3: A diagram for data transformation aiming for the description of the new feature space.

Let � partition the values of � into two ranges �� (of val-
ues less than � ) and �� (of values at least � ). We some-
times refer to � as the cutting pointof the values of � . The
entropy measure������ of a feature � is then defined as
��	������ � ��� ��� � ���� ��� is a partitioning of the val-
ues of � in

�
� by some point ��. Here, ����� � ��� ���

is the class entropyof partition ���� ���. Its definition is
given below, where 	���� � �� means the number of sam-
ples in the class � whose feature � has value in the range
�,

����� � ��� ��� �
	���� � ���

	���� � �� � ���
�	
���� � ���

�
	���� � ���

	���� � �� � ���
�	
���� � ���

A refinement of the entropy measure is to recursively par-
tition the ranges �� and �� until some stopping criteria
is reached. A commonly used stopping criteria is the so-
called minimal description length principle given in. 5

In the selection process, all features are first ranked ac-
cording to their class entropy values in an ascending order,
then some certain number of top-ranked features are con-
sidered to build the model.15

Feature integration

To achieve the ultimate goal of predicting true TIS, our
next step is to integrate the selected features by a classi-
fication algorithm. At this step, we consider support vector
machines (SVMs) and our own developed method of con-
structing ensembles of decision trees.14 SVMs is chosen as
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our main classifier since it is known to have good classi-
fication performance in the biological domain. 7, 26 On the
other hand, from the experiments of using decision trees,
we expect to get some interesting rules for TIS prediction.

SVMs SVM is a kind of blend of linear modeling and
instance-based learning.23 It originates from research in
statistical learning theory.22 A SVM selects a small number
of critical boundary samples from each class and builds a
linear discriminant function (also called maximum margin
hyperplane) that separates them as widely as possible. In
the case that no linear separation is possible, the technique
of kernelwill be used to automatically inject the training
samples into a higher-dimensional space, and to learn a
separator in that space.23 A maximum margin hyperplane
��� � for a test sample � is a linear combination of kernels
computed at the training data points and is constructed as

��� � � ��	�
�

�


��� � 
� �� � ���� 
� ��� � ��

where 
� �� are the training data points, 
� �� are the class
labels (which are assumed to have been mapped to 1 or -1)
of these data points, ��	� 	� is the kernel function, � and 
�� �
are parameters that determine the hyperplane and can be
learned from the training data. The training of a SVM is a
quadratic programming problem and here, we omit the de-
tailed description about this. A good tutorial to understand
SVMs is the one written by Burges.3

There are several ways for training support vector ma-
chines. One of the fastest algorithms is developed by
Platt,9, 20 which solves the above quadratic programming
problem by sequential minimal optimization (SMO). In our
experiments, we use the implementation of SMO in Weka
(version 3.2), a free machine learning software package
written in Java and developed at University of Waikato in
New Zealand.27 The kernel is the polynomial function and
the transformation of the output of SVM into probabilities
is conducted by a standard sigmoid function. In most of
cases in this paper, we present our results obtained by lin-
ear and quadratic polynomial kernels.

Ensembles of decision trees Ensemble methods, such as
constructing committees of decision trees, have shown sig-
nificant effectiveness in improving the accuracy of single
base classifiers.2, 6, 14 Compared with SVMs, approaches
of constructing decision trees organize what they learned
from data in a more comprehensible way — tree format.
Furthermore, every branch of a decision tree can be easily
translated into a rule in the format of “If	 	 	, then	 	 	”. 23

The main idea of this classification algorithm is to use
different top-ranked features as the root node of a mem-
ber tree. Different from Bagging or Boosting2, 6 which uses

bootstrapped data, we always build decision trees using ex-
actly the same set of training samples. In detail, to con-
struct � number of decision trees � 
 	 (	 is the number
of features describe the data), we have following steps:

(1) Ranking all the 	 features according to certain crite-
rion, with the best feature at the first position.

(2) � � �.

(3) Using the �th feature as root node to construct �th de-
cision tree.

(4) If � � �, increasing � by 1 and goto (3); otherwise,
stop.

In this paper, information gain ratiois used as the mea-
sure to rank features and the number of decision trees � is
set as 20. When doing classification, we define the cover-
ageof a rule in a tree as the percentage of the samples in
its class satisfying the rule. Suppose we have discovered �
decision trees from our training set containing true TIS and
false TIS samples. Then, all the rules derived from � trees
can be categorized into two groups: one group only con-
taining rules for true TIS samples, another containing rules
for false TIS samples. In each group, we rank the rules in
descending order according to their coverage, such as

��������
�

� ��������
�

� 	 	 	 � ��������� �

and
�������	�

�
� �������	�

�
� 	 	 	 � �������	�� �

Given a test sample � , each of the � trees will have a rule
to fit this sample and therefore, give a prediction for this
sample. Suppose that � satisfies the following �� true TIS
rules and �� false TIS rules:

������ �����
�

� ������ �����
�

� 	 	 	 � ������ �������
�

and

������ ����	�
�

� ������ ����	�
�

� 	 	 	 � ������ ����	���
�

Where � 
 ��� �� 
 � and ����� � �. The order of these
rules is also based on their coverage. When we make a
prediction for � , two scores will be calculated as following:

������� ����� �

���

���

�������������� ������ �

����������������� �
���

������� ����	� �

���

���

�������������� ����	�� �

���������������	�� �
���

If ������� ����� � ������� ����	�, then � will be pre-
dicted as a true TIS; Otherwise, � predicted as a false TIS.
In practice, the tie-score case occurs rarely.14
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Model evaluation

We adopt standard performance measures defined as fol-
lows. Sensitivitymeasures the proportion of TIS that are
correctly recognized as TIS. Specificitymeasures the pro-
portion of false TIS that are correctly recognized as false
TIS. Precisionmeasures the proportion of the claimed TIS
that are indeed TIS. Accuracymeasures the proportion of
predictions, both for true TIS and false TIS, that are cor-
rect. Let TP be the true positives, TN the true negatives,
FP the false positives, and FN the false negatives. Then the
above measures are defined as: ��	��
���
� � ������ �
���, � �������
� � ������ � �� �,  �������	 �
������ � �� �, and �������� � ��� � ������� �
�� � �� � �� �. Besides, we also plot ROC(Receiver
Operating Characteristic) curve for the testing on genomic
sequences where we select same number of true TIS and
false TIS samples. From a ROC curve, the tradeoff be-
tween sensitivity and specificity can be illustrated clearly.
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